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Abstract

In real-world image enhancement, it is often challeng-

ing (if not impossible) to acquire ground-truth data, pre-

venting the adoption of distance metrics for objective qual-

ity assessment. As a result, one often resorts to subjec-

tive quality assessment, the most straightforward and re-

liable means of evaluating image enhancement. Conven-

tional subjective testing requires manually pre-selecting a

small set of visual examples, which may suffer from three

sources of biases: 1) sampling bias due to the extremely

sparse distribution of the selected samples in the image

space; 2) algorithmic bias due to potential overfitting the

selected samples; 3) subjective bias due to further potential

cherry-picking test results. This eventually makes the field

of real-world image enhancement more of an art than a sci-

ence. Here we take steps towards debiasing conventional

subjective assessment by automatically sampling a set of

adaptive and diverse images for subsequent testing. This

is achieved by casting sample selection into a joint maxi-

mization of the discrepancy between the enhancers and the

diversity among the selected input images. Careful visual

inspection on the resulting enhanced images provides a de-

biased ranking of the enhancement algorithms. We demon-

strate our subjective assessment method using three popu-

lar and practically demanding image enhancement tasks:

dehazing, super-resolution, and low-light enhancement.

1. Introduction

For many years, image enhancement has been investi-

gated in an unrealistic setting, with the assumption that the

original images of perfect quality exist to help evaluate vi-

sual quality of the enhanced images. This promotes the use

of full-reference image quality metrics [69] to compute an

average distance between a large set of enhanced and orig-

inal image pairs as an indication of enhancement perfor-

mance. Along this path, many full-reference metrics have

been proposed [71, 54, 82, 9], trying to measure this dis-

tance more perceptually.

However, in real-world image enhancement, it is of-

ten difficult (if not impossible) to specify desired outputs.

Moreover, there may be multiple diverse outputs that are

desirable, as in the case of super-resolution [75]. Therefore,

full-reference models that rely on a single “ideal” image are

not applicable. Some attempts have been made to adopt no-

reference models [70] for performance assessment of real-

world enhancement. However, no-reference objective as-

sessment is still in its infancy, and accurate models for (spe-

cific or general) image enhancement applications are largely

lacking. Currently, the most widely used no-reference met-

ric - NIQE [45] - was empirically proven to correlate poorly

with human quality judgments of the enhanced images [45],

which exhibit unique and algorithm-specific artifacts that

are often non-overlapping with natural distortions.

Alternatively, one may refer to subjective quality assess-

ment, which is so far the most straightforward and reliable

way of evaluating real-world image enhancement because

the ultimate receiver in most such applications is the human

eye. Conventional subjective assessment typically takes a

four-step approach. First, pre-select a number of images

from the input domain of a given image enhancement prob-

lem. Second, pick a set of competing enhancers, and gener-

ate the corresponding output images. Third, ask humans to

rate the perceived quality of the enhanced images. Fourth,

compare the enhancers according to the subjective results.

Unfortunately, conventional subjective assessment may

suffer from three sources of biases. The first is the sam-

pling bias. The underlying principle of conventional sub-

jective assessment is to prove an enhancement method to

be correct. This would require the set of pre-selected im-

ages to be large enough to sufficiently represent the input

domain of interest. However, subject testing is an expen-

sive and time-consuming endeavor. In practice, the number

of images being examined is limited to a few hundreds (if

not fewer), casting doubt on the assumption of sufficient

sampling in the high-dimensional image space. The second

is the algorithmic bias. It is important to note that the se-

lection of test images precedes the selection of competing

methods. One may take advantage of this (intentionally or

unintentionally), and tunes her/his enhancer to overfit the

pre-selected images, drawing overly optimistic conclusions
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on the real-world generalization performance. The third is

the subjective bias. That is, the test results may further be

cherry-picked to bias towards certain methods. In summary,

it is sad, but not uncommon, to see that a “state-of-the art”

image enhancer produces superior results in its original pa-

per, but remains particularly weak at handling examples ap-

peared in subsequent work.

In this paper, we contribute to debiasing conventional

subjective assessment by injecting an automated, adap-

tive and sample-efficient mechanism to select input domain

samples. Our inspirations are drawn from interdisciplinary

prior work on “model falsification as model comparison”, a

renowned philosophy in the fields of computational vision

[72], software testing [43] and computer vision [47, 40, 62].

Specifically, we start from a large-scale image set as a finite

approximation to the input space of an image enhancement

application. According to the available human labelling

budget, our method automatically selects a set of adaptive

and diverse images for subsequent subjective testing. The

selected images are optimal in terms of discriminating be-

tween the enhancers, while having the maximum within-

group variation in a latent space to ensure content diversity.

Subjective results of the corresponding enhanced images

reveal the advantages and disadvantages of the competing

methods, and provide a debiased ranking of their relative

performance. Our subjective assessment method is appli-

cable to a wide variety of image processing and computer

photography subfields, and we choose three real-world im-

age enhancement applications as demonstration: 1) single

image dehazing, 2) single image super-resolution, and 3)

low-light image enhancement.

2. Related Work

We provide a concise overview of three real-world image

enhancement applications, with emphasis on how previous

subjective and objective assessments were carried out.

Single Image Dehazing Outdoor images are often cap-

tured in the presence of haze [46]. Due to the absorp-

tion and refraction of light by turbid medium, the re-

sulting images may suffer from poor visibility and color

shift. Conventional single image dehazing methods relied

on the Koschmieder’s model [18] and natural image priors

[21, 23, 44, 87, 1] to estimate the atmospheric light and

the transmission map. With the recent advances in con-

volutional neural networks (CNNs), plenty of CNN-based

methods [77, 51, 32, 50, 2] have been proposed, directly

regressing clean images from hazy ones.

Ma et al. [42] made initial attempts to subjective as-

sessment of single image dehazing. A somewhat surpris-

ing observation is that due to the introduction of algorithm-

dependent distortions, the dehazed results by some algo-

rithms are statistically insignificant compared to the input

hazy images. Choi et al. [6] put emphasis on perceived fog

density instead of overall quality. Li et al. [33] evaluated

several dehazing algorithms for both human and machine

vision. Tang et al. [58] investigated nighttime image dehaz-

ing, asking subjects to rate four aspects of dehazed algo-

rithms: detail recognition, color fidelity, image authenticity,

and overall effect.

The above subjective studies lead to an increasing con-

sensus that objective quality models such as the mean

squared error (MSE), the structural similarity (SSIM) index

[71] and other no-reference methods [22] cannot accurately

predict the perceived quality of dehazed images.

Single Image Super-Resolution Super-resolving a low-

resolution image into a high-resolution one is very challeng-

ing, especially with a large scaling factor. Early attempts

were mainly interpolation-based methods [80] using natu-

ral image statistics. In the late 2000s, model-based meth-

ods [11] came into play, with gradient profile prior [57],

sparsity prior [75], and self-similarity prior [24] being rep-

resentative. In the past five years, CNN-based methods be-

gan to dominate this field [10, 28, 29, 79, 84, 85], some of

which were combined with generative adversarial networks

(GANs) to encourage texture synthesis [86].

Yang et al. [74] presented one of the first subjective eval-

uations of single image super-resolution methods. Later, the

authors [39] enlarged their dataset by including more high-

resolution images and more competing methods. Johnson

et al. [27] performed a small-scale subjective experiment to

verify the perceptual advantages of the VGG loss [55] in

super-resolution. Gu et al. [15] established PIPAL - a large-

scale subject-rated dataset for image restoration, including

GAN-based super-resolution results. With respect to ob-

jective assessment, MSE and SSIM [71] are still the most

widely adopted metrics. LPIPS [82] and DISTS [9] that

give credit to visually plausible synthesized textures have

also been used for benchmarking purposes in some of the

latest work. When high-resolution images are assumed un-

known, NIQE is sometimes used for quantitative compari-

son.

Low-Light Image Enhancement Arguably the most sig-

nificant impediment to high-quality pictures is lack of light

[20]. On the one hand, a nighttime or indoor scene may not

provide adequate light. On the other hand, a daytime scene

may has a high dynamic range (i.e., unbalanced lighting),

causing current imaging techniques to collect insufficient

light in shadow regions. Early computational methods for

low-light image enhancement were equated to contrast en-

hancement either globally [7] or locally [56]. The Retinex

theory [30] was also extensively studied in this context,

where the problem of low-light enhancement is transformed

to illumination map estimation [17]. Recently, many data-

driven CNN-based methods [26, 73, 63, 26] with and with-
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Figure 1: Overview of our debiased subjective assessment in the context of single image dehazing. (a): A large set of hazy

images as an approximation to the input domain X . (b): Top-K hazy images selected from (a) to best discriminate between

Shao20 [53] and FFA-Net [48] by optimizing Eq. (2). D1 and D2 are implemented by DISTS [9] and MSE of the last feature

layer of VGGNet [55], respectively. (c): Pairs of dehazed images corresponding to representative hazy images in (b).

out paired supervision have been developed, obtaining su-

perior results on a limited number of visual examples.

Limited work has been done to assess low-light image

enhancement subjectively. Hwang et al. [25] carried out

a user study to validate their proposed enhancer using 20
low-contrast images, some of which are due to poor light-

ing conditions. Chen et al. [4] included images captured in

hazy, underwater, and low-light conditions for human test-

ing. A recent subjective study [16] compared six advanced

low-light enhancers. Another small-scale subjective study

was reported in [26] on 23 low-light images with six en-

hancement algorithms. With regard to objective assessment,

MSE and SSIM prevail in this application. Using the input

image as a corrupted reference, one may refer to VIF [54]

and PCQI [64] for measuring the degree of enhancement.

To the best of our knowledge, existing no-reference models

[12] remain particularly weak at predicting the perceived

quality of low-light enhanced images.

The above-mentioned subjective experiments may differ

in how test images are presented to the subjects and how

human data are collected, but they all need to pre-select

the test images by the experimenters. Therefore, the results

may suffer from sampling, algorithmic, and subjective bi-

ases, motivating us to debias subjective assessment of real-

world image enhancement in this work.

3. Proposed Method

We formulate subjective assessment of real-world image

enhancement in a general mathematical framework. Start-

ing from an input image domain X , we can easily sample

an image x ∈ X that needs to be enhanced for improved

visual quality. We choose a set of enhancement methods

F = {fj}
N
j=1, each of which takes an x ∈ X as input, and

produces an enhanced output yj = fj(x). We also assume

a subjective assessment environment, where human partici-

pants can reliably rate the perceived quality of yj . The ulti-

mate goal is to compare the N methods on the input domain

X containing enormous images, under the constraint of a

very limited human labelling budget.

Conventional subjective assessment first pre-selects a

small image set S = {x(i)}Mi=1. For each image x ∈ S ,

a set of enhanced versions {yj}
N
j=1 are created, based on

which subjective testing reveals the relative performance of

{fj}
N
j=1 on x. The model with the highest subjective ratings

averaged over S is the best. As discussed previously, this

would introduce several sources of biases. Inspired by inter-

disciplinary work under the scientific philosophy of “model

falsification as model comparison” [43, 47, 40], especially

following the well-established principle of maximum dif-

ferentiation (MAD) competition [72], we aim to falsify an

enhancer by finding a minimum set of images, which are

most likely to be its counterexamples. An enhancer that is

more difficult to be falsified is considered better.

We first describe the simplest situation, where two en-

hancers f1 and f2 are being compared, and the human la-

belling budget only allows us to select a single image x ∈ X
for subjective testing. Then, the core question boils down

to: How to automatically select which image for subjective

testing from massive candidate images, such that the rela-

tive performance f1 and f2 may be most easily revealed?

According to the MAD competition methodology [72],

our method selects the image x̂ ∈ X that best differentiates

between f1 and f2:

x̂ = argmax
x∈X

D1(f1(x), f2(x)), (1)

where D1 is a quantitative measure to approximate the per-

ceptual distance between f1(x) and f2(x). Visual inspec-

tion on f1(x̂) and f2(x̂) leads to two plausible results:

• The majority of human subjects prefer f1(x̂) (or f2(x̂))
over f2(x̂) (or f1(x̂)). In this case, the proposed
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(a) Without D2

(b) With D2

Figure 2: Top-K images selected (a) without and (b) with

the diversity loss, respectively.

subjective assessment method automatically detects a

strong counterexample of one enhancer, not the other;

a clear winner is declared. The chosen x̂ is the most in-

formative in ranking the relative performance between

f1 and f2.

• Human subjects give f1(x̂) and f2(x̂) similar ratings.

High rating indicates that both methods generate de-

sirable but diverse outputs, which makes sense in real-

world image enhancement that admits multiple plau-

sible outputs. Low rating indicates that both fail, in

dramatically different ways, to produce reasonable re-

sults. In either case, the chosen x̂ reveals different as-

pects of the strengths (or weaknesses) of f1 and f2, but

contributes less to their relative performance ranking.

It seems straightforward to extend this idea to compare f1
and f2 on a small image subset S ⊂ X containing images

with top-K largest distances computed by Eq. (1). How-

ever, such a naı̈ve extension may simply identify algorithm

failures of the same underlying root cause, leading to less

interesting comparison (see Figure 2). To encourage more

diverse failures of the competing models to be spotted, we

modify Eq. (1) when looking for the k-th image:

x̂(k) = argmax
x∈X\S

D1(f1(x), f2(x)) + λ1D2(x,S), (2)

where S = {x̂(i)}k−1
i=1 is the set of k − 1 images that have

already been identified according to Eq. (2). D2 is a sec-

ond measure to quantify the semantic distance between an

image x and the set S . λ1 governs the trade-off between the

two terms. Once x̂(k) is identified, we incorporate it into S .

Given N enhancement algorithms, our subjective assess-

ment method chooses top-K images for each of the
(

N

2

)

distinct pairs of enhancers, gives rise to a final set D with

N(N − 1)K enhanced images. It is worth noting that the

size of D is independent of the size of the input domain X .

Algorithm 1: Debiased Subjective Assessment of

Real-World Image Enhancement

Input: A large-scale set X , a list of competing

methods F = {fj}
N

j=1, and two distance

measures D1 and D2

Output: Global ranking vector µ ∈ R
N

1 D ← ∅
2 for j ← 1 to N do

3 Compute the enhanced images {fj(x)|x ∈ X}
4 end

5 for i← 1 to N − 1 do

6 for j ← i+ 1 to N do

7 S ← ∅
8 for k ← 1 to K do

9 Select x̂(k) by optimizing Eq. (2)

10 S ← S ∪ x̂(k)

11 D ← D ∪ {fi(x̂
(k)), fj(x̂

(k))}

12 end

13 end

14 end

15 Create the count matrix C for D via the 2AFC

method

16 Compute µ by optimizing Eq. (3)

Provided that the computational cost of image enhancement

is negligible, the proposed subjective assessment method

suggests expanding X to cover as many images (and there-

fore diverse failures of the competing methods) as possible.

We now introduce the subjective assessment environ-

ment for gathering human opinions of image quality. As

each input image x ∈ S is associated with a pair of en-

hanced images {fi(x), fj(x)} ⊂ D, it is natural to employ

the two-alternative forced choice (2AFC) method. That is,

the subject is presented with fi(x) and fj(x) simultane-

ously, and is forced to choose which one is of higher qual-

ity. After subjective testing, we arrange the collected hu-

man data in an N × N matrix C, where Cij records the

number of votes for fi and against fj . Finally, we adopt

maximum likelihood for multiple options [60] under the

Thurstone’s model [59] to infer the global ranking of F .

Specifically, we let µ be the vector of global ranking scores

[µ1, µ2, . . . , µN ], and define the log-likelihood of the count

matrix, C, as

L(µ;C) =
∑

ij

Cij log(Φ(µi − µj)), (3)

where Φ(·) is the standard Normal cumulative distribution

function. When maximizing L(µ;C), one often adds an

addition constraint,
∑

i µi = 0, to obtain a unique optimal

solution. We summarize the proposed debiased subjective

assessment method in Algorithm 1, and show an overview
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(a) (b) (c)

Figure 3: Global ranking results of (a) single image dehazing, (b) single image super-resolution, and (c) low-light image

enhancement by optimizing Eq. (3).

of it in the context of single image dehazing in Figure 1.

4. Applications to Image Enhancement

In this section, we apply our subjective assessment

method to three real-world image enhancement tasks: sin-

gle image dehazing, single image super-resolution, and low-

light image enhancement.

4.1. Experimental Setups

Construction of X For dehazing, the 10, 000 real hazy

images are originated from RESIDE [36] and the Internet.

For super-resolution, the 10, 000 low-resolution images are

from WED [41], OST [67], and the Internet. For low-

light enhancement, the 10, 000 low-light images are chosen

from ExDark [37], NPE [65], DICM [31], MBLLEN [38],

VV [61], and the Internet. No manual pre-screening is

needed at this stage.

Selection of F For dehazing, we select eight popu-

lar algorithms published from 2015 to 2020: CAP [87],

Berman16 [1], AOD-Net [32], Cho18 [5], GCANet [3],

FFA-Net [48], Dhara20 [8], and Shao20 [53], among which

CAP, Berman16, Cho18, and Dhara20 are knowledge-

driven, while the rest are data-driven.

For super-resolution, we select eight CNN-based meth-

ods ranging from 2016 to 2020: SRCNN [10], EDSR [34],

DBPN [19], TSRN [14], ESRGAN [68], RankSR-

GAN [83], ESRGANplus [49], and USRGAN [78].

For low-light enhancement, we select eight methods

from 2016 to 2020: Fu16 [13], BIMEF [76], Retinex-

Net [73], JED [52], EnlightenGAN [26], Zhang19 [81],

Wang19 [66], and Zero-DCE [16], among which Retinex-

Net, EnlightenGAN, and Zero-DCE are CNN-based. The

implementations of all 24 methods are obtained from the

respective authors, and are tested with the default settings.

Construction of S The created X may be noisy, includ-

ing images that lie out of the input domain of interest.

Therefore, for dehazing, we replace a selected image that

is either non-natural or haze-free with the next eligible one

that optimizes Eq. (2). Moreover, for each x ∈ S , the visi-

bility improvements in the corresponding “dehazed” images

fi(x) and fj(x) are automatically checked by the computa-

tional method in [6]. If there is no predicted improvement in

either dehazed image, we discard x. We apply the same im-

age screening procedure for low-light enhancement, where

the computational method in [12] is adopted for automatic

verification of detail enhancement.

Subjective Experiment We conduct subjective user stud-

ies to gather human quality scores of the enhancement re-

sults inD. The 2AFC method is adopted, allowing differen-

tiation of subtler quality variations. Subjects are forced to

choose the image with higher perceived quality with unlim-

ited viewing time. For each enhancement application, we

set K = 12, resulting in a total of
(

8
2

)

× 12 = 336 paired

comparisons. To relieve fatigue, subjects are allowed to take

a break at anytime during each session of subjective testing.

We gather data from 25 subjects with general background

knowledge of image processing.

4.2. Main Results

Quantitative Results We show the global ranking results

of the three real-world image enhancement applications in

Figure 3, from which we have several interesting observa-

tions.

For dehazing, the main observation is that the synthetic-

to-real domain shift challenges all methods. Shao20 [53]

leverages a bidirectional network to explicitly bridge the

gap between the synthetic and realistic hazy images, and

therefore exhibits the strongest generalization to the real
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(a) Dhara20/Shao20 (b) Dhara20/Cho18 (c) Berman16/Cho18 (d) Cho18/Shao20 (e) GCANet/AOD-Net

(f) GCANet/CAP (g) Shao20/Cho18 (h) CAP/GCANet (i) AOD-Net/Shao20 (j) FFA-Net/Berman16

Figure 4: Representative distortions created by dehazing methods in our experiment. fi/fj below each image means that fi
is used to produce the image, while fj is the paired method for selecting the corresponding hazy image in Eq. (2).

world. By contrast, FFA-Net [48] relies exclusively on

synthetic data for training, the majority of which are in-

door scenes. Along with delicate feature attention and

fusion modules, FFA-Net tends to overfit synthetic data,

and has the worst performance in the debiased subjec-

tive experiment. Second, methods with less reliance on

the Koschmieder’s model [18] and image priors, such as

GCANet [3] and Cho18 [5], generally outperform prior-

based methods Berman16 [1], Dhara20 [8], and CAP [87],

and the physical model-based AOD-Net [32]. This makes

sense because current physical and statistical models over-

simplify the natural imaging process in complex realistic

hazy scenes, e.g., in the presence of non-uniform/dark light

or heterogeneous haze density. As a result, algorithm-

dependent artifacts are likely to emerge, which may be per-

ceptually more annoying than the haze (see Figure 4). Last,

the Spearman’s rank correlation coefficient (SRCC) be-

tween the subjective results of the competing methods and

their publication times is only 0.167, implying the progress

made in the field of single image dehazing might be some-

what over-estimated in terms of their real-world generaliza-

tion, despite outstanding (synthetic) benchmark numbers.

For super-resolution, steady progress over the years has

been reported in our experiment, with an SRCC value of

0.958 between subjective results and published years. SR-

CNN [10] is the first CNN for super-resolution with three

convolutions, and can be viewed as an end-to-end train-

able sparse-coding based method [75]. EDSR [34] adds

more convolution layers with residual connections to stabi-

lize training. DBPN [19] replaces single-stage upsampling

with iterative up/downsampling. TSRN [14] optimizes for

the texture-aware LPIPS [82] metric, and underperforms

RankSRGAN [83], ESRGAN [68], and ESRGANplus [49]

based on GANs with stronger texture synthesis capabilities.

The lastest USRGAN[78] inherits the flexibility of model-

based methods, while maintaining the end-to-end training

capability of learning-based methods.

For low-light enhancement, the main observation is that

CNN-based methods have not come to dominate this field

due to the lack of ground-truth normal-light images for

paired supervision. For example, Retinex-Net [73], ranked

in the last place, only sees 485 realistic pairs during train-

ing, which may be insufficient to cover the real-world scene

complexities. Zero-DCE [16] optimizes a CNN for a com-

bination of image naturalness measures, including spatial

consistency, exposedness, color constancy, and illumina-

tion smoothness, without reference to normal-light images.

However, the combined loss has not be calibrated against

human judgments, leading to unpredictable real-world gen-

eralization. An exception is EnlightenGAN [26], which

leverages an unsupervised GAN to regularize the unpaired

training, leading to the best performance in our subjective

study. Second, it is difficult to enhance the details of low-

light images without amplifying the background noise. JED

[52] performs joint optimization of low-light enhancement

and noise suppression, leading to noticeable visual qual-

ity improvements. The multi-exposure fusion framework

adopted by BIMEF [76] and Zhang19 [81] achieves a simi-

lar effect of noise reduction with comparable performance.

Third, relying on classic image processing techniques such

as multi-scale decomposition and adaptive histogram equal-

ization, Fu16 [13] and Wang19 [66] tend to overshoot lo-

cal details at the sacrifice of global brightness and contrast.

Last, similar as dehazing, steady progress over the years is

not reflected in our debiased subjective experiment, with an

SRCC value of 0.071 between the subjective results and the
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(a) USRGAN/ESRGAN (b) USRGAN/ESRGANplus (c) RankSRGAN/ESRGAN (d) TSRN/EDSR (e) TSRN/RankSRGAN

(f) DBPN/ESDR (g) DBPN/USRGAN (h) RankSRGAN/ESRGAN (i) EDSR/DBPN (j) SRCNN/RankSRGAN

Figure 5: Representative distortions created by super-resolution methods in our experiment. fi/fj below each image means

that fi is used to produce the image, while fj is the paired method for selecting the corresponding low-resolution image.

(a) Fu16/BIMEF (b) Wang19/JED (c) Zhang19/Fu16 (d) Zhang19/JED (e) Retinex-Net/JED

(f) Retinex-Net/Fu16 (g) EnlightenGAN/Fu16 (h) JED/Zero-DCE (i) BIMEF/Fu16 (j) Zero-DCE/Zhang19

Figure 6: Representative distortions created by low-light enhancers in our experiment. fi/fj below each image means that

fi is used to produce the image, while fj is the paired method for selecting the corresponding low-light image.

published years of the competing methods.

Qualitative Results We show some visual examples for

each of the three tasks, summarizing and diagnosing the

identified distortion patterns.

For dehazing in Figure 4, the perceived distortions can

be approximately classified into five types: JPGE block-

ing (see (a), (b), (c), and (d)), color cast (see (b), (d), and

(e)), loss of high-frequency information (see (f), and (g)),

low-brightness (see (h) and (i)), and haze (see (i) and (j)).

Knowledge-driven methods such as Dhara20 [8] and Cho18

[5] typically remove haze aggressively, and enhance the un-

derlying JPEG artifacts of hazy images from the Internet

accompanied by the color cast problem. Data-driven meth-

ods such as AOD-net [32] and FFA-Net [48] have learned

a more conservative dehazing strategy. CAP [87] tends to

increase the global contrast of the image, leaving the dark

regions darker and the hazy regions hazier. Despite the

best performance, Shao20 [53] is likely to smooth high-

frequency details, which is successfully spotted by our de-

biased subjective method in (g).

For super-resolution in Figure 5, the perceived distor-

tions typically fall into four categories: blurring (see (f) to

(j)), fake textures (see (b), (c), (d), and (e)), incorrect se-

mantics (see (d)), and over-enhancement of local contrast

(see (a) and (b)). CNNs not optimized for texture-aware
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Table 1: The global ranking results of single image super-

resolution under different distance measures D1

Method
Global Ranking

DISTS ∆ MSE ∆ SSIM

USRGAN [78] 1 0 0

ESRGANplus [49] 2 0 0

ESRGAN [68] 3 -1 0

RankSRGAN [83] 4 +1 0

TSRN [14] 5 0 -1

DBPN [19] 6 0 +1

EDSR [34] 7 0 0

SRCNN [10] 8 0 0

losses often suffer from blurring artifacts. CNNs reinforced

by GANs are capable of synthesizing random textures, but

remain weak at super-resolving structured (especially peri-

odic) textures. All methods fail when it comes to images

with rich semantics such as faces, validating face hallu-

cination [35] as a separate super-resolution problem of its

unique challenge and independent interest. With more spe-

cialized modules proposed, the field of single image super-

resolution begins to enter the era of local contrast over-

enhancement, as pointed out by our subjective method.

For low-light enhancement in Figure 6, the perceived

distortions roughly belong to five classes: noise (see (a),

(b), and (c)), JPEG blocking (see (d)), abnormal brightness

(see (e) and (f)), color cast (see (g) and (h)), and poor expo-

sure (see (i) and (j)). Similar as dehazing, knowledge-driven

methods (e.g., Fu16 [13], Wang19 [66], and Zhang19 [81])

encourage over-enhancing details, which significantly am-

plifies background noise and possible JPEG blocking. Un-

like super-resolution, data-driven methods (e.g., Retinex-

Net [73] and Zero-DCE [16]) are far more brittle than

knowledge-driven ones, which sometimes have unexpected

behaviors, producing results with unnatural appearances.

The best performer EnlightenGAN [26] exhibits the least

amount of artifacts, but still appears to have halos around

light sources in the scene, which is identified by our method.

Ablation Study We first analyze the sensitivity of our

subjective results to different distance measures D1 in Eq.

(2). We use another two widely adopted metrics in signal

and image processing - MSE and SSIM [71]. We opt for

single image super-resolution, and follow the procedure in

Section 4.1 to sample two subsets, each of which contains

336 pairs of images. We gather human data from 21 sub-

jects. Table 1 shows the results, where we find that the

global ranking is consistent across the three metrics. This

may be because MAD chooses images to optimally discrim-

inate between two models with large perceptual distances,

which can be well approximated by all the three measures.

Next, we analyze the sensitivity of the obtained results

Figure 7: The SRCC values between the top-12 and other

top-K rankings, where K ∈ {1, 2, . . . , 11}.

to K, i.e., the number of selected images for subjective

testing. We calculate the SRCC values between the top-

12 ranking (as reference) and other top-K rankings, where

K = {1, 2, . . . , 11}. As shown in Figure 7, the ranking re-

sults are fairly stable (SRCC > 0.97) when K ≥ 7 for all

three applications. This provides a strong indication of the

sample efficiency of the proposed subjective method.

5. Conclusion

We have presented a debiased subjective assessment

method for comparing real-world image enhancement algo-

rithms based on the MAD competition methodology. Our

method effectively reduces the sampling, algorithmic, and

subjective biases rooted in conventional subjective testing.

We have demonstrated the effectiveness of the proposed

method on three real-world image enhancement applica-

tions. Our method points out the caveats in the reported

advances for single image dehazing and low-light image en-

hancement, and verifies the reliable progress in single im-

age super-resolution with a relatively simpler degradation

model.

The application scope of the proposed debiased subjec-

tive assessment method is far beyond image enhancement.

It can be broadly applied to many other subfields of com-

putational photography, including image editing, image-to-

image translation, high-dynamic-range imaging, light field

imaging and more, where debiased and efficient subjec-

tive testing is largely lacking. Moreover, we may change

the perceptual distances in Eq. (2) to more general utility

functions, towards benchmarking computational photogra-

phy techniques for machine vision [62].
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