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Abstract

Image-to-image (I2I) translation methods based on gen-

erative adversarial networks (GANs) typically suffer from

overfitting when limited training data is available. In this

work, we propose a data augmentation method (ReMix) to

tackle this issue. We interpolate training samples at the fea-

ture level and propose a novel content loss based on the

perceptual relations among samples. The generator learns

to translate the in-between samples rather than memoriz-

ing the training set, and thereby forces the discriminator

to generalize. The proposed approach effectively reduces

the ambiguity of generation and renders content-preserving

results. The ReMix method can be easily incorporated into

existing GAN models with minor modifications. Experimen-

tal results on numerous tasks demonstrate that GAN mod-

els equipped with the ReMix method achieve significant im-

provements.

1. Introduction

In recent years, Generative Adversarial Networks

(GANs) [11] have shown much progress in numerous tasks

including image-to-image translation. Well-designed adver-

sarial losses [11, 27, 25, 1, 12, 26] provide effective domain-

level supervision, making the translated results indistin-

guishable from the real samples. The GAN-based methods

heavily rely on vast quantities of training examples. For

instance, Karras et al. [19, 20] use 70K high-quality face

images to train their models. However, collecting a large

amount of image data can be prohibitively expensive or im-

plausible (e.g., for masterpieces by artists). This issue high-

lights the importance of training GANs with limited data.

Unfortunately, reducing the amount of training data often

leads to severe model overfitting. Recent findings [18, 42]

reveal that GANs easily memorize a small training set and

then render drastically degraded results in the testing set.

∗corresponding author

Figure 1. Overview of the proposed data augmentation method.

We use the image reconstruction task as an example. The input

x is first encoded into representation e and then decoded into the

output y, and superscript indicates the index of samples. The in-

terpolated data e
′ is the convex combination of e1 and e

2. In this

case, we have d(e′, e1) < d(e′, e2), where d denotes the disc-

tance function. We propose to maintain s(y′,x1) > s(y′,x2),
where s is the similarity measure. Here we omit the outputs from

x
1 and x

2 for clarity.

Some efforts have recently been made to tackle this prob-

lem. The adaption-based approaches [24, 30] use exter-

nal datasets as an alternative. They first learn a semanti-

cally related translation and then adapt it to the translation

of interest. Despite the effectiveness, these approaches re-

quire additional image collection. Several data augmenta-

tion schemes [40, 18, 35, 42, 43] tailored for GANs have

been developed to alleviate the need for additional datasets.

They use groups of image transformations (e.g., cropping,

resizing, and cutout [10]) to augment the inputs of the dis-

criminator. Even with limited data, these methods can pre-

vent the discriminator from overfitting, allowing effective

adversarial supervision. However, augmenting data for the

generator is infeasible due to the problem of leaking [18].

For the image-to-image translation tasks, these methods

cannot prevent the generator from memorizing how to trans-
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late the given source images.

To facilitate training GANs with limited data in image-

to-image translation, we propose a data augmentation strat-

egy named ReMix. We mix source images in the feature

space using convex combinations. The generator learns to

map the mixed samples to the target space against over-

fitting. In addition, the discriminator is improved in the

process of distinguishing the augmented fake samples. We

present a novel content loss that maintains the perceptual

relations among the samples. The proposed loss avoids

the model from producing ambiguous results from the aug-

mented data. In Figure 1, the image reconstruction task is il-

lustrated as an example. We aim to reconstruct two samples

x1 and x2, and synthesize a virtual input e′ by interpolating

the intermediate features e1 and e2. However, the recon-

struction target for the input e′ is unknown, so the corre-

sponding output y′ requires additional constraints on image

content. To this end, we propose to constrain the perceptual

relationships among {x1, x2, y′} based on the relationships

among {e1, e2, e′}. Concretely, if e′ is closer to e1 (or e2),

we then enforce the output y′ to be more similar to x1 (or

x2) than the other one. In this manner, we provide effec-

tive supervision and neatly sidestep estimating the targets

for the interpolated inputs.

The ReMix method can be incorporated into existing

methods easily. Only a few lines of codes are required to

modify the original loss function. In the experiments, we

evaluate the proposed method on several tasks, including

cross-spectrum face translation on the CASIA dataset [23],

animal face translation on the AFHQ dataset [7], and im-

age synthesis from semantic label maps on the Cityscapes

dataset [8]. We use the state-of-the-art models [37, 28,

7, 20] on these tasks as the baselines. Experimental re-

sults demonstrate that the models equipped with the ReMix

method achieve significant improvements. We also train

these models with 10% available data and still get compa-

rable performances.

The main contributions are summarized as follows:

• We propose a data augmentation strategy based on

feature-level interpolation. Our method reduces the

overfitting problem of GANs, particularly for the

image-to-image translation tasks.

• We propose to maintain the perceptual relations among

samples to optimize the interpolated translations. Our

scheme reduces the ambiguity of generation and forces

the model to learn content-preserving translations.

• We achieve significant improvements in multiple im-

age synthesis tasks. In addition, we produce plausible

results with only 10% training data.

2. Related Work

Unsupervised image-to-image (I2I) translation. These

methods aim to learn the mapping from the source domain

to the target domain without paired data. Since this prob-

lem is inherently ill-posed, the translated results will be am-

biguous without additional constraints. To tackle this issue,

existing I2I methods are constrained to preserve the image

content based on pixel-level values [4, 31], semantic fea-

tures [34, 15, 22], or attribute labels [4]. The proposed

loss functions, e.g., reconstruction loss and cycle consis-

tency loss [44], serve as the objective for content-preserving

translation. Existing I2I methods heavily rely on large col-

lections of high-quality images. In this work, we propose

an interpolation-based augmentation scheme for image-to-

image under limited data. To avoid ambiguous generations

from the interpolated input, we develop a new loss function

to preserve image content.

Data augmentation. Numerous methods have been devel-

oped to increase the amount of data for training deep learn-

ing models without overfitting. Applying some content-

preserving operations (e.g., flipping, rotation, and cropping)

has become a routine data pre-processing step. To aug-

ment data for GANs, some recent approaches use adap-

tive [18, 40] or automatic [42] strategies to combine these

operations. However, these schemes can only be applied to

the discriminator and do not address the overfitting problem

of the generator.

Interpolation-based augmentation methods [5, 9, 39, 2,

3] focus on mixing training samples at the feature-level

or image-level. Linear interpolation is simple but power-

ful in improving the generalization. For image synthesis,

generating plausible interpolated results is also a desired

property. However, it remains difficult to determine su-

pervisory signals for the interpolated inputs. The mixup

method [39] assumes that the relationship between the train-

ing data and supervisory signal is linear. KNN interpo-

lation algorithms [5, 36] only choose the neighbors from

the same class to interpolate. The regularization [33] and

penalty [29] methods can also be applied to estimate the su-

pervisory signals. For the image-to-image translation prob-

lems where the supervision signal is high-dimensional data,

these estimations can be prone to errors. In contrast, our

method maintains the perceptual relation among samples,

which does not require the estimation of supervisory sig-

nals.

3. Proposed Method

We aim to learn the mapping function from the source

domain X to the target domain Y. First, we train a genera-

tor, G : X !→ Y, for this task. Our goal is two-fold: 1) given

x ∈ X, G(x) should be indistinguishable from the samples

in Y, and 2) G(x) should preserve certain content informa-

tion. To this end, we optimize the adversarial loss Lgan and

content loss Lcon. We formulate the objective functions for
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Figure 2. Illustration of the proposed ReMix method. We use col-

ors to indicate different samples. (a) For each feature e extracted

from a real input x, we minimize the distance between the output s

and corresponding content target t. (b) For the interpolated feature

e
′ = λ · e1 + (1− λ) · e2, we constrain the relative similarity of

the output s′. Concretely, if e′ is closer/further to e
1 than e

2, we

enforce φ(s′) to be closer/further to φ(t1) than φ(t2). We let φ

denote the function to extract content representations. In addition,

we enforce φ(s′) to be closer to φ(t2) than φ(trand), and t
rand is an

arbitrary sample except t1 and t
2.

the generator G and the discriminator D as:

LG =
∑

(x,t)∼X, y∼Y

Lgan(G(x),y) + Lcon(φ(G(x)),φ(t)),

(1)

LD =
∑

x∼X, y∼Y

−Lgan(G(x),y), (2)

where φ denotes the function to extract content representa-

tions. The generator is trained to produce realistic samples

that confuse the discriminator. In addition, we enforce the

content of G(x) to match the content of t, as illustrated in

Figure 2(a). Assigning t identical to x is the most common

scheme for unpaired image-to-image translation, whereas

other choices are also permitted by our method. The forms

of Lgan and Lcon are determined according to specific tasks.

In the following, we introduce the ReMix method to aug-

ment training data for the GAN-based framework.

3.1. Interpolation-Based Data Augmentation

We augment the training data based on the interpolation

at the feature-level. Let G = G2 ◦ G1, where ◦ denotes

function composition. We mix the intermediate features ex-

tracted by G1. The interpolated data is given by:

e′ = λ · e1 + (1− λ) · e2, (3)

where e1 = G1(x
1) and e2 = G1(x

2). Here, x1 and x2 are

two random samples from the source domain, and λ ∈ [0, 1]
is the interpolation weight. Note that directly interpolating

on the raw input x is a particular case in our method.

For the interpolated inputs to be useful for training, we

need to translate them into content-preserving results. But

calculating the content loss Lcon for the interpolated input e′

requires the unknown content target t′. We only know t1

and t2, which are the corresponding content targets of e1

and e2, respectively. Instead, let s′ = G2(G1(e
′)), and we

constrain the perceptual relationships among {t1, t2, s′} in

the metric space. Without loss of generality, we assume that

e1 weighs more in Equation 3. We then enforce the result

s′ to satisfy the following constraint:

Lcon

(

φ(s′),φ(t1)
)

< Lcon

(

φ(s′),φ(t2)
)

. (4)

That is, the interpolated e′ is closer to e1 than e2 in in-

terpolation space, and we enforce the outputs to have an

analogous relation: the corresponding output s′ should be

closer to t1 than t2 in the metric space. Figure 2(b) shows

a visualized illustration.

Although Equation 4 provides supervision to generate

content-preserving results, the term Lcon

(

φ(s′),φ(t2)
)

does

not have an upper bound yet. This means simply pushing

the output s′ away from t2 can satisfy the constraint, which

is less desirable. Let erand = G1(x
rand), where xrand is an

arbitrary sample other than x1 or x2. We further propose

the following constraint:

Lcon

(

φ(s′),φ(t2)
)

< Lcon

(

φ(s′),φ(trand)
)

, (5)

where trand is the content target of xrand. Since xrand does

not contribute to the interpolation, trand should be irrelevant

to the output s′. Therefore, we enfore s′ to be closer to t2

than trand.

We refer to the above-described scheme as ReMix for

data augmentation. We constrain the relative position of the

output based on the perceptual relations among the inputs.

Our approach provides effective supervision while allow-

ing diverse generations. The translated results can be multi-

modal as long as the content constraints are satisfied.

3.2. Learning GAN Models with Limited Data

We show how to apply the proposed ReMix method to

the batch-wise training of GAN models. For each iteration,

we feed an interpolated data batch to the model with a prob-

ability of p. If the batch is not interpolated, we directly train

the model with the original settings. Otherwise, we draw

two data batches,
{

(x1
i , t

1
i )
}n

i=1
and

{

(x2
i , t

2
i )
}n

i=1
, where

n denotes the batch size. Similar to the mixup method [39],

we calculate the interpolation weight by:

µ = Beta(α,α), (6)

λ = max(µ, 1− µ), (7)
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where Beta(α,α) denotes the beta distribution parameter-

ized by α. We then obtain the augmented inputs {e′i}
n

i=1

by the interpolation scheme formulated in Equation 3. Note

that e1i always weighs more in the interpolation because we

have λ ≥ 0.5.

We compute the adversarial loss Lgan using the aug-

mented batch for domain-level supervision. For the content

supervision described in Equations 4 and 5, we have:

Lp =
∑

i

max
{

0, Lcon

(

φ(s′i),φ(t
1
i )
)

− Lcon

(

φ(s′i),φ(t
2
i )
)}

,

(8)

Ln =
∑

i

max
{

0, Lcon

(

φ(s′i),φ(t
2
i )
)

− ā}. (9)

We minimize L′

con = Lp + Ln for the interpolated in-

puts, which is referred to as the relative form of Lcon. We

initialize ā to 0 and update it dynamically during training.

Concretely, we first compute:

a =
∑

i

Lcon

(

φ(s′i),φ(t
2
j )
)

, (10)

where j ∕= i, so e2j does not contribute to the interpola-

tion of e′i. Hence, a denotes the mean distance of the unre-

lated output-target pairs within the training batch. Then, we

adopt a momentum update of ā:

ā ← m · ā+ (1−m) · (a− ā), (11)

where we set the momentum coefficient m to 0.99. Algo-

rithm 1 shows the main step to train the generator with the

ReMix data augmentation method. For the discriminator,

the process is similar. We compute one single content loss

in the relative form, whereas the ReMix method can also be

applied to the case with multiple content losses. Each loss

can be calculated in the relative form independently.

3.3. Comparison with Existing Methods

In contrast to existing approaches, the ReMix method

does not rely on estimating the corresponding target t′ for

each interpolated input e′. For example, the scheme by

Zhang et al. [39] assumes the relationship between the train-

ing data and supervision signal is linear. Hence, given the

interpolation weight λ for the inputs, this scheme [39] com-

putes:

t′ = λ · t1 + (1− λ) · t2. (12)

In addition, this method proposes to directly use the su-

pervisory signal of the sample that weighs more with:

t′ =

{

t1, if λ ≥ 0.5,

t2, otherwise.
(13)

Furthermore, regularizations can be used in the estima-

tion the content target. For instance, based on the LSR

Algorithm 1 Pseudocode of the ReMix method.

# D : Discriminator, (N * C * H * W) -> N
# G: Generator, which consists of G1 and G2
# G1: (N * C * H * W) -> (N * C’ * H’ * W’)
# G2: (N * C’ * H’ * W’) -> (N * C * H * W)
# gan : the adversarial loss, N -> N
# phi: extracting content, (N * C * H * W) -> (N * E)
# con: the content loss, (N * E) -> N

for batch1, batch2 in data_loader:
# the probability of augmentation is p
if p > rand(0, 1):

# x, t : input and target, (N * C * H * W)
x1, t1 = batch1
x2, t2 = batch2
e1, e2 = G1.forward(x1), G1.forward(x2)

# interpolating the input
mu = beta.draw() # the beta distribution
lambda = max(mu, 1-mu)
e_prime = lambda * e1 + (1 - lambda) * e2

# calculating the adversarial loss
s_prime = G2.forward(e_prime)
prediction = D.forward(s_prime)
loss_gan = gan(prediction).mean()

# calculating the relative content loss
d1 = con(phi(s_prime), phi(t1))
d2 = con(phi(s_prime), phi(t2))
# clamp : clamp all elements into [0, Infinity]
l_p = clamp(d1 - d2).mean()
l_n = clamp(d2 - a_mean).mean()
loss_con = l_p + l_n

# update of Generator
loss = loss_gan + loss_con
loss.backward()
update(G.parameters)

# momentum update of a_mean
# shuf : shuffle data along the batch axis
a = con(phi(s_prime), phi(shuf(t2))).mean()
a_mean = m * a_mean + (1 - m) * (a - a_mean)

method [33], we can clamp the weight λ into a prede-

fined range [λmin,λmax] to interpolate the content target.

Other tricks like noise injection, nearest-neighbor interpo-

lation [5, 36] can also be used.

The approaches described above use the estimated input-

target pairs to augment the training data. For the classifica-

tion tasks where the target t′ is a label, they are shown to

be effective. However, in the image-to-image translation

tasks, we use raw images or high-dimensional features as

supervision signals, which are substantially more difficult

to estimate. Inaccurate estimations may negatively affect

the quality of the augmented training data. We evaluate the

ReMix method against these schemes for multiple image-

to-image translation tasks.

4. Experiments and Analysis

We consider three practical tasks, i.e., NIR-to-VIS face

translation, animal face translation, and image synthesis

from semantic label maps. We first introduce the datasets

and implementation details.

The Animal Faces-HQ dataset (AFHQ) [7] provides an-

imal faces of three domains: cat, dog, and wildlife. Each
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Figure 3. Visual examples synthesized by different methods with 10 % training data on the AFHQ dataset [7]. The left part is the results

of reference-guided translation, and the right part is the results of latent-guided translation. The column of results are (a) StarGAN v2 [6]

(baseline), (b) baseline + WM (Equation 13), (c) baseline + mixup [39], and (d) baseline + ReMix (ours).

category contains about 5,000 images. We aim to train a

single model to learn the translations among these domains.

The StarGAN v2 [7] is used as the baseline for this task.

We interpolate the output of the style encoder in the base-

line model [7]. In our ReMix method, we modify the style

reconstruction loss to the relative form.

The CASIA NIR-VIS 2.0 Face Dataset [23] contains

near-infrared (NIR) and visible (VIS) images of 725 sub-

jects. There are large variations of the same identity, in-

cluding lighting, expression, pose, and accessories. For

the NIR-to-VIS face translation, we use the LightCNN-

29v2 [37] and StyleGAN2 [20] to build an encoder-decoder

network. The LightCNN 1 is pre-trained, and we choose to

interpolate its outputs. We train the StyleGAN from scratch

using the default settings [20]. In addition, we add the L1

distance loss [16] in the pixel space as the content super-

vision. When learning GAN models with the interpolated

data, we use the relative form of the L1 distance loss.

The Cityscapes dataset [8] contains 3,500 street scene

images and the corresponding semantic label maps. We

use the SPADE Net [28] for translating the label maps to

scenes. We directly interpolate the raw inputs in this task.

The baseline model uses the perceptual loss [17] guided by

VGGNet [32]. For ReMix, we modify this loss to the rela-

1https://github.com/AlfredXiangWu/LightCNN

tive form.

We only modify the mentioned losses for the ReMix

method, and the other losses remain the same. We set the

probability of augmentation to 0.25 for each iteration. Sim-

ilar to the mixup method [39], we set the hyper-parameter

α = 0.2 for the beta distribution.

We implement these baselines using the released source

codes. The input resolution is 512× 256 on the Cityscapes

dataset [8] and 256 × 256 for the others. We change the

dimension of the input latent in StyleGAN2 [20] to 256.

Except for this point, we do not make any modifications to

the network architectures. We use the recommended train-

ing settings in the original work for each baseline model,

including the batch size, optimizer, training iterations, and

loss weights. To determine the value of the augmentation

probability in our ReMix method, we conduct a grid search

on the AFHQ dataset and use the FID score as the met-

ric. We use the found value for all the experiments without

hyper-parameter tuning.

4.1. Animal Face Translation

The first task is to change the species of the given ani-

mal face. If a reference image is available, an encoder ex-

tracts the style representation from it. Then, the generator

mixes the style with the content of the input, producing the
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Table 1. Fréchet Inception Distance (FID, lower is better) and Learned Perceptual Image Patch Similarity (LPIPS, higher is better) of

different methods on the AFHQ dataset [7]. The WM method is described in Equation 13.

Method

Latent-guided translaion Reference-guided translation

100% data 10% data 100% data 10% data

FID↓ LPIPS↑ FID↓ LPIPS↑ FID↓ LPIPS↑ FID↓ LPIPS↑

Baseline : StarGAN v2 [7] 16.18 0.450 46.02 0.431 19.78 0.432 38.42 0.402

Baseline + WM 20.03 0.484 41.36 0.477 23.64 0.475 45.88 0.455

Baseline + mixup [39] 15.91 0.453 28.15 0.466 18.67 0.453 27.34 0.451

Baseline + ReMix (ours) 15.22 0.491 21.82 0.471 15.56 0.481 22.92 0.460

Figure 4. Diverse translation results on the AFHQ dataset [7]. Our model can learn to generate diverse high-quality results using only

10% data in the training set.

translated result. Otherwise, given a one-hot class label, the

generator draws a latent code from a prior distribution as

the style representation. The two types of tasks are referred

to as reference-guided translation and latent-guided transla-

tion, respectively.

We randomly choose 500 images for each class, which

is about 10% of the full training set. Then, we train the

models under the 10% data settings. We evaluate our

method against existing interpolation approaches, including

the mixup [39] and WM (Equation 13) schemes. Figure 3

shows some synthesized images by the evaluated methods.

The baseline model suffers from the overfitting problem and

generates some unrealistic texture details. Overall, the pro-

posed method synthesizes images with higher visual qual-

ity than other schemes. Figure 4 shows diverse translation

results by our method. Given a source image, we gener-

ate diverse results by randomly sampling multiple reference

images. These results show that our approach can generate

distinctive styles while preserving content information.

We also evaluate the quality of synthesized images using

Fréchet Inception Distance (FID) [14] and Learned Percep-

tual Image Patch Similarity (LPIPS) [41]. The FID met-

ric [14] measures the Wasserstein distance between two im-

age sets. We extract the features from the last average pool-

ing layer of the Inception-v3 model [33] to calculate the

FID score. The LPIPS score [41] measures the diversity of

images using the L1 distance in the feature space, and the

pre-trained AlexNet [21] is used as the feature extractor. We

compute the FID and LPIPS scores for every pair of the im-

age domains (e.g., dog→cat, cat→wildlife) and report the

average values.

Table 1 shows the FID and LPIPS scores. We evaluate

the methods under both the 10% and 100% data settings.

Our approach performs favorably against existing augmen-

tation methods in terms of these quantitative metrics. The

FID scores indicate that our results are more similar to the

real data. The LPIPS score of our method with 10% data is

higher than that of the baseline trained with the full train-

ing set. These results demonstrate the proposed method is

effective for diverse and realistic image translation.

4.2. Cross-Spectrum Face Translation

The second task is to translate the input NIR face into

the VIS domain and preserve the identity (content) infor-

15023



Table 2. Rank-1 accuracy (%) and verification rate (%, VR) of different methods on the CASIA NIR-VIS 2.0 dataset (the first fold).

FAR denotes the false acceptance rate. The performances are evaluated according to the “recognition via generation” protocol [13]. We

use LightCNN-29v2 [37] and StyleGAN2 [20] to build an encoder-decoder network as the baseline. The WM method is described in

Equation 13. “raw input” means we directly use the LightCNN model to match the NIR faces with the VIS faces.

Method Rank-1 VR@FAR=1% VR@FAR=0.1%

Raw Input 96.84 99.10 94.68

Baseline [37, 19] 93.13 94.22 88.79

Baseline + WM 91.32 92.57 81.27

Baseline + mixup [39] 97.66 99.38 97.59

Baseline + ReMix (ours) 98.18 99.63 98.11

Figure 5. Face cross-spectrum translation results from the testing set of the CASIA NIR-VIS 2.0 dataset [13]. We train models with only

357 pairs of NIR-VIS images. The column of results are (a) the baseline (LightCNN [37] + StyleGAN [20]), (b) baseline + WM (Equation

13), (c) baseline + mixup [39], and (d) baseline + ReMix (ours). “GT” denotes the ground-truth VIS image (not strictly paired).

mation. Prior works evaluate image generation methods

based on the “recognition via generation” protocol [13].

That is, given a NIR face image, we use the translated re-

sult for recognition. Using the same protocol, we use the

357 identities in the training set of the first fold 2 to train

our model. The remaining images are used for testing. Ta-

ble 2 shows Rank-1 accuracy and the verification rates of

different methods. The competing data augmentation meth-

ods are the mixup [39] and WM (Equation 13) methods.

Our method performs favorably against the other schemes

in terms of both rank accuracy and verification rates. These

experimental results show that our method reduces the do-

main gap between the NIR and VIS face images effectively.

We also consider an extreme scenario where only one

NIR-VIS image pair of each identity is used for training.

That is, the training set consists of only 357 pairs of images.

We show the generated samples from the testing set in Fig-

ure 5. We observe that the ReMix method synthesizes plau-

2There are 10 fold experiments on the CASIA NIR-VIS 2.0 Face

Dataset. Image generation methods are usually evaluated on the first fold.

sible results even with limited data. The baseline model and

WM cannot produce satisfactory results due to model over-

fitting. The appearances synthesized by the mixup method

are realistic, but the identities look different from the input

NIR images.

4.3. Image Synthesis from Semantic Label Maps

Given a semantic layout, we train the translation models

to synthesize a photorealistic image. The official training

split of the Cityscapes dataset [8] consists of 3000 pairs of

image and semantic label maps. We train the models un-

der the 10% and 100% data settings for this task. We use

FID to measure the distance between the distributions of

the real images and the distribution of the synthesized re-

sults. In addition, we perform semantic segmentation on

the synthesized images and then evaluate how well the pre-

dicted results match the input label maps. Similar to prior

work [28], we use DRN-D-105 [38] to measure the seg-

mentation accuracy. Table 3 reports the FID scores and the

predicted segmentation accuracy of different methods. In
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Table 3. Semantic segmentation scores (higher is better) and Fréchet Inception Distance (FID, lower is better) of different methods on the

Cityscapes dataset [8]. “mIou” denotes the mean Intersection-Over-Union metric, and “accu” denotes the pixel-wise accuracy. “real data”

denotes the results evaluated on the real images, which is the theoretical upper bound we can achieve.

100% training data 10% training data

Method mIoU↑ accu↑ FID↓ mIoU↑ accu↑ FID↓

Real Data 75.6 84.8 - - - -

Baseline: SPADE Net [28] 62.3 81.9 71.8 48.3 68.2 85.9

Baseline + WM 51.1 80.2 95.5 45.4 57.3 108.8

Baseline + mixup [39] 65.5 82.3 64.7 59.7 72.1 71.5

Baseline + ReMix (ours) 70.3 82.7 50.1 62.1 74.4 68.0

Figure 6. Visual examples synthesized by different methods with 10% training data on the Cityscapes dataset. The columns of results are

(a) SPADE Net [6] (baseline), (b) baseline + WM (Equation 13), (c) baseline + mixup [39], and (d) baseline + ReMix (ours).

Figures 6, we provide samples of the translation results un-

der the 10% data setting. The competing methods in the

table are also the mixup and WM methods. We observe that

the ReMix method performs favorably against the state-of-

the-art methods in terms of the quantitative metrics. Our

method produces results with better visual quality and fewer

artifacts. In contrast, the performances under the 10% data

setting degrade significantly for the other approaches.

5. Conclusion

We introduce an interpolation-based data augmentation

method to tackle the overfitting problem of GANs. In

addition, we present to maintain the perceptual similar-

ity among samples to reduce the ambiguity of generation.

The proposed approach renders content-preserving results

from the interpolated inputs, facilitating the model train-

ing in image-to-image translation. We demonstrate that our

method vastly improves the image quality and quantitative

metrics in numerous tasks, especially when the training data

is limited.
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