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Abstract

High-definition maps (HD maps) are a key component of

most modern self-driving systems due to their valuable se-

mantic and geometric information. Unfortunately, building

HD maps has proven hard to scale due to their cost as well

as the requirements they impose in the localization system

that has to work everywhere with centimeter-level accuracy.

Being able to drive without an HD map would be very bene-

ficial to scale self-driving solutions as well as to increase the

failure tolerance of existing ones (e.g., if localization fails or

the map is not up-to-date). Towards this goal, we propose

MP3, an end-to-end approach to mapless1 driving where

the input is raw sensor data and a high-level command (e.g.,

turn left at the intersection). MP3 predicts intermediate

representations in the form of an online map and the current

and future state of dynamic agents, and exploits them in a

novel neural motion planner to make interpretable decisions

taking into account uncertainty. We show that our approach

is significantly safer, more comfortable, and can follow com-

mands better than the baselines in challenging long-term

closed-loop simulations, as well as when compared to an

expert driver in a large-scale real-world dataset.

1. Introduction

Most modern self-driving stacks require up-to-date high-

definition (HD) maps that contain rich semantic information

necessary for driving such as the topology and location of

the lanes, crosswalks, traffic lights, intersections as well as

the traffic rules for each lane (e.g., unprotected left, right turn

on red, maximum speed). These maps are a great source of

knowledge that simplify the perception and motion forecast-

ing tasks, as the online inference process has to mainly focus

on dynamic objects (e.g., vehicles, pedestrians, cyclists).

Furthermore, the use of HD maps significantly increases the

safety of motion planning as knowing the lane topology and

geometry eases the generation of potential trajectories for

*Denotes equal contribution
1We note that by mapless we mean without HD maps. A coarse road

network like the ones available in off-the-shelf services such as Google

Maps or OpenStreetMap is assumed available for routing towards the goal.

Driving with an HD map Mapless driving

       “Turn Right”

Figure 1: Left: a localization error makes the SDV follow

a wrong route when using an HD map, driving into traffic.

Right: mapless driving can interpret the scene from sensors

and achieve a safe plan that follows a high-level command.

the ego-vehicle that adhere to the traffic rules. In addition,

progressing towards a specific goal is much simpler when

the desired route is defined as a sequence of lanes to traverse.

Unfortunately, building HD maps has proven hard to

scale due to the complexity and cost of generating the maps

and maintaining them. Furthermore, the heavy reliance on

HD maps introduces very demanding requirements for the

localization system, which needs to work at all times with

centimeter-level accuracy or else unsafe situations like Fig. 1

(left) might arise. This motivates the development of mapless

technology, which can serve as the fail-safe in the case of

localization failures or outdated maps, and potentially unlock

self-driving at scale at a much lower cost.

Self-driving without HD maps is a very challenging task.

Perception can no longer rely on the prior that is more likely

to find vehicles on the road and pedestrians on the sidewalk.

Motion forecasting of dynamic objects becomes even more

challenging without having access to the lanes that vehicles

typically follow or the location of crosswalks for pedestrians.

Most importantly, the search space to plan a safe maneuver

for the SDV goes from narrow envelopes around the lane cen-

ter lines [1, 45, 46, 50] to the full set of dynamically feasible

trajectories as depicted in Fig. 1 (right). Moreover, without

a well-defined route as a series of lanes to follow, the goal

that the SDV is trying to reach needs to be abstracted into

high-level behaviors such as going straight at an intersec-

tion, turning left or turning right [11], which require taking
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different actions depending of the context of the scene.

Most mapless approaches [5, 11, 19, 37, 39], focus on im-

itating the controls of an expert driver (e.g., steering and

acceleration), without providing intermediate interpretable

representations that can help explain the self-driving vehicle

decisions. Interpretability is of key importance in a safety-

critical system particularly if a bad event was to happen.

Moreover, the absence of a mechanism to inject structure

and prior knowledge makes these methods very brittle to

distributional shift [44]. While methods that perform online

mapping to obtain lane boundaries or lane center lines have

been proposed [2, 16, 18, 21, 37], they either are overly sim-

plistic (e.g., assume lanes are close to parallel to the direction

of travel), have only been demonstrated in highway scenar-

ios which are much simpler than city driving, have not been

shown to work when coupled with any existing planner, or

involve information loss through discrete decisions such as

confidence thresholding to output the candidate lanes. The

latter is safety-critical as a lane can be completely missed

in the worst case, and it makes it difficult to incorporate

uncertainty about the static environment in motion planning,

which is important to reduce risk.

To address these challenges, we propose an end-to-end

approach to mapless driving that is interpretable, does not

incur any information loss, and reasons about uncertainty in

the intermediate representations. In particular, we propose

a set of probabilistic spatial layers to model the static and

dynamic parts of the environment. The static environment is

subsumed in a planning-centric online map which captures

information about which areas are drivable and which ones

are reachable given traffic rules. The dynamic actors are cap-

tured in a novel occupancy flow that provides occupancy and

velocity estimates over time. The motion planning module

then leverages these representations without any postpro-

cessing. It utilizes observational data to retrieve dynamically

feasible trajectories, predicts a spatial mask over the map to

estimate the route given an abstract goal, and leverages the

online map and occupancy flow directly as cost functions for

explainable, safe plans. We showcase that our approach is

significantly safer, more comfortable, and can follow com-

mands better than a wide variety of baselines in challenging

closed-loop simulations, as well as when compared to an

expert driver in a large-scale real-world dataset.

2. Related Work

We cover previous works on online mapping, perception

and prediction, and motion planning, particularly analyzing

their fitness to the downstream task of end-to-end driving.

Online Mapping: While there are many offline mapping

approaches [4, 22, 33], these rely on satellite imagery or

multiple passes through the same scene with a data collec-

tion vehicle to gather dense information, and often involve

a human-in-the-loop. For these reasons, such approaches

are not suitable for mapless driving. As a consequence, pre-

dicting map elements online has recently been proposed.

In [16, 18] a network is presented to directly predict the 3D

layout of lanes in a traffic scene from a single image. Con-

versely to the methods above, [2] argues that accurate image

estimates do not translate to precise 3D lane boundaries,

which are the input required by modern motion planning

algorithms. To tackle this, LiDAR and camera are used to

predict estimates of ground height and lanes directly in 3D

space. Alternatively, [21] proposes a hierarchical recurrent

neural network for extraction of structured lane boundaries

from LIDAR sweeps. Notably, all the works above are

geared toward highway traffic scenes and involve discrete

decisions that could be unsafe when driving as they lose

valuable uncertainty information. Contrary to these methods,

we leverage dense representations of the map that do not in-

volve information loss and are suitable for use in the motion

planner as interpretable cost functions.

Perception and Prediction: Most previous works per-

form object detection [15, 25, 34, 52, 55] and actor-based

prediction to reason about the current and future state of

a driving scene. As there are multiple possible futures,

these methods either generate a fixed set of trajectories

[6, 8–10, 26, 28, 30, 36, 54], draw samples to characterize

the distribution [7, 41, 47] or predict temporal occupancy

maps [23, 27, 43]. However, these pipelines can be unsafe

since the detection stage involves confidence thresholding

and non-maximum suppression which can remove unconfi-

dent detections of real objects. In robotics, occupancy grids

at the scene-level (in contrast to actor-level) have been a

popular representation of free space. Different from the

methods above, [13, 48] estimate occupancy probability of

each grid-cell independently using range sensor data. More

recently, [20] directly predicts an occupancy grid to replace

object detection, but it does not predict how the scene might

evolve in the future. [45] improves over such representation

by adding semantics as well as future predictions. However,

there is no way to extract velocity from the scene occupancy,

which is important for motion planning. While [51] con-

siders a dense motion field, their parameterization cannot

capture multi-modal behaviors. We follow the philosophy

of [13,20,45,48,51] in predicting scene-level representations,

but propose an improved occupancy flow parameterization

that can model multi-modal behavior and provides a consis-

tent temporal motion field.

Motion Planning: There is a vast literature on end-to-end

approaches for self-driving. The pioneering work of [39]

proposes to use a single neural network that directly outputs

a driving control command. Subsequent to the success of

deep learning, direct control based methods have advanced

with deeper networks, richer sensors, and scalable learning

methods [5, 11, 24, 35]. Although simple and general, such
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Figure 2: MP3 predicts probabilistic scene representations that are leveraged in motion planning as interpretable cost functions

methods of directly generating control command from sensor

data may have stability and robustness issues [12]. More re-

cently, cost map-based approaches have been shown to adapt

better to challenging environments, which recover a trajec-

tory by looking for local minima on the cost map. The cost

map may be parameterized as a simple linear combination

of hand crafted costs [14,46], or in a general non-parametric

form [53]. To bridge the gap between interpretability and ex-

pressivity, [45] proposed a model that leverages supervision

to learn an interpretable nonparametric occupancy that can

be directly used in motion planner, with hand-crafted sub-

costs. In contrast to all methods above which rely on an HD

map, [31] proposes to output a navigation cost map without

localization under a weakly supervised learning environment.

This work, however, does not explicitly predict the static and

dynamic objects and hence lacks safety and interpretability.

Similarly, [3] improves sampling in complex driving envi-

ronments without the consideration of dynamic objects, and

is only demonstrated in simplistic static scenarios. In con-

trast, our autonomy model leverages retrieval from expert

demonstrations to achieve an efficient trajectory sampler that

does not rely on the map, predicts a spatial route based on

the probabilistic map predictions and a high-level driving

command, and stays safe by exploiting an interpretable dy-

namic occupancy field as a summary of the scene free space

and motion.

3. Interpretable Mapless Driving

In this section, we introduce our end-to-end approach to

self-driving that operates directly on raw sensor data. Im-

portantly, our model produces intermediate representations

that are designed for safe planning, decision-making and

interpretability. Our interpretable representations estimate

the current and future state of the world around the SDV,

including the unknown map as well as the current and future

location and velocity of dynamic objects. In the remainder

of this section, we first describe our backbone network that

extracts meaningful geometric and semantic features from

the raw sensor data. We then introduce our intermediate

interpretable representations, and show how they can be ex-

ploited to plan maneuvers that are safe, comfortable, and

explainable. An overview of our model can be seen in Fig. 2

3.1. Extracting Geometric and Semantic Features

Our model exploits a history of LiDAR point clouds to

extract rich geometric and semantic features from the scene

over time. Following [30], we voxelize Tp=10 past LiDAR

point clouds in bird’s eye view (BEV), equivalent to 1 second

of history, with a spatial resolution of a = 0.2 meters/voxel.

We exploit odometry to compensate for the SDV motion,

thus voxelizing all point clouds in a common coordinate

frame. Our region of interest is W=140m long (70m front

and behind of the SDV), H=80m wide (40 to each side of the

SDV), and Z=5m tall. Following [9], we concatenate height

and time along the channel dimension to avoid using 3D

convolutions or a recurrent model, thus saving memory and

computation. The result is a 3D tensor of size (H
a
, W

a
, Z
a
·Tp),

which is the input to our backbone network. This network

combines ideas from [9, 52] to extract geometric, semantic

and motion information about the scene. More details can

be found in the appendix.

3.2. Interpretable Scene Representations

Human drivers are able to successfully navigate complex

road topologies with high-density of traffic by exploiting

their prior knowledge about traffic rules and social behavior

such as the fact that vehicles should drive on the road, close

to a lane centerline, in the direction of traffic and should not

collide with other actors. Since we would like to incorporate

such prior knowledge into the decisions of the SDV, and

these to be explainable through interpretable concepts, it

is important to predict intelligible representations of the

static environment, which we refer here as an online map,

as well as the dynamic objects position and velocity into the

future, captured in our dynamic occupancy field. We refer

the reader to Fig.3 for an example of these representations.

Since the predicted online map and dynamic occupancy field

are not going to be perfect due to limitations in the sensors,

occlusions and the model, it is important to reason about

uncertainty to assess the risk of each possible decision the

SDV might take. Next, we first describe the semantics in our

interpretable representation of the world, and then introduce
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Figure 3: Interpretable Scene representations. For occu-

pancy and motion, we visualize all time steps and classes in

the same image to save space, differentiating with colors.

our probabilistic model.

Online map representation: In order to drive safely it is

useful to reason the following elements in BEV:

- Drivable area: Road surface (or pavement) where vehicles

are allowed to drive, bounded by the curb.

- Reachable lanes: Lane center lines (or motion paths) are

defined as the canonical paths vehicles travel on, typically

in the middle of 2 lane markers. We define the reach-

able lanes as the subset of motion paths the SDV can get

to without breaking any traffic rules. When planning a

trajectory, we would like the SDV to stay close to these

reachable lanes and drive aligned to their direction. Thus,

for each pixel in the ground plane we predict the unsigned

distance to the closest reachable lane centerline, truncated

at 10 meters, as well as the angle of the closest reachable

lane centerline segment.

- Intersection: Drivable area portion where traffic is con-

trolled via traffic lights or traffic signs. Reasoning about

this is important to handle stop/yield signs and traffic lights.

For instance, if a traffic light is red, we should wait to en-

ter the intersection. Following [42], we assume a separate

camera-based perception system detects the traffic lights

and recognizes their state as this is not our focus.

Dynamic occupancy field: Another critical aspect to

achieve safe self-driving is to understand which space is

occupied by dynamic objects and how do these move over

time. Many accurate LiDAR-based object detectors have

been proposed [25, 34, 52, 55] to localize dynamic obstacles

followed by a motion forecasting stage [7, 10, 30, 41, 47] to

predict the future state of each object. However, all these

methods contain unsafe discrete decisions such as confi-

dence thresholding and non-maximum suppression (NMS)

O
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Figure 4: The motion field warps the occupancy over time.

Transparency denotes probability. Color differences the pre-

dicted layers by the network and the future occupancy. We

depict the particular case of unimodal motion (K = 1).

that can eliminate low-confidence predictions of true objects

resulting in unsafe situations. [45] proposed a probabilis-

tic way to measure the likelihood of a collision for a given

SDV maneuver by exploiting a non-parametric spatial repre-

sentation of the world. This computation is agnostic to the

number of objects. However, this representation does not

provide velocity estimates, and thus it is not amenable to

car-following behaviors and speed-dependent safety buffer

reasoning. Moreover, the decision making algorithm cannot

properly reason about interactions, since for a given future

occupancy its origin cannot be traced back.

In contrast, in this paper we propose an occupancy flow

parameterized by the occupancy of the dynamic objects at

the current state of the world and a temporal motion field into

the future that describes how objects move (and in turn their

future occupancies), both discretized into a spatial grid on

BEV with a resolution of 0.4 m/pixel, as depicted in Fig. 4:

- Initial Occupancy: a BEV grid cell is active (occupied)

if its center falls in the interior of a polygon given by an

object shape and its current pose.

- Temporal Motion Field: defined for the occupied pixels

at a particular time into the future. Each occupied pixel

motion is represented with a 2D BEV velocity vector (in

m/s). We discretize this motion field into T = 11 time

steps into the future (up to 5s, every 0.5s).

Since the SDV behavior should be adaptive to objects

from different categories (e.g., extra caution is desired

around vulnerable road users such as pedestrians and bi-

cyclists), we consider vehicles, pedestrians and bikes as

separate classes, each with their own occupancy flow.

Probabilistic Model: We would like to reason about un-

certainty in our online map and dynamic occupancy field.

Towards this goal, we model each semantic channel of the

online map M as a collection of independent variables per

BEV grid cell. This assumption makes the model very sim-

ple and efficient. To simplify the notation, we use the letter i

to indicate a spatial index on the grid instead of two indices

(row, column) from now on. We model each BEV grid cell

in the drivable area and intersections channels as Bernoulli
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random variables, MA
i and MI

i respectively, as we consider

a grid cell is either part these elements or not. We model the

truncated distance transform to the reachable lanes centerline

MD
i as a Laplacian, which we empirically found to yield

more accurate results than a Gaussian, and the direction of

the closest lane centerline in the reachable lanes Mθ
i as a

Von Mises distribution since it has support between [π, π].
We model the occupancy of dynamic objects Oc for

each class c ∈ {vehicle, pedestrian, bicyclist} as a collec-
tion of Bernoulli random variables Oc

t,i, one for each spatio-
temporal index t, i. Since an agent future behavior is highly
uncertain and multi-modal (e.g., a vehicle going straight
vs. turning right), we model the motion for each class at
each spatio-temporal location as a categorical distribution
Kc

t,i over K BEV motion vectors {Vc
t,i,k : k ∈ 1 . . .K}.

Here, each motion vector is parameterized by the continu-
ous velocity in the x and y directions in BEV. To compute
the probability of future occupancy under our probabilistic
model, we first define the probability of occupancy flowing
from location i1 to location i2 between two consecutive time
steps t and t+ 1 as follows:

p(Fc
(t,i1)→(t+1,i2)) =

∑

k

p(Oc
t,i1)p(K

c
t,i1 = k)p(Vc

t,i1,k = i2)

where p(Vt,i1,k = i2) distributes the mass locally and is
determined via bilinear interpolation if i2 is among the 4
nearest grid cells to the head of the continuous motion vec-
tor, and 0 for all other cells, as depicted in Fig. 4. With
this definition, we can easily calculate the future occupancy
iteratively, starting from the occupancy predictions at t = 0.
This parameterization ensures consistency by definition be-
tween future motion and future occupancy, and provides an
efficient way to query how does some particular initial occu-
pancy evolve over time, which will be used for interaction
reasoning in our motion planner. Specifically, to get the
occupancy that flows into cell i at time t+ 1 from all cells
j at time t, we can simply compute the probability that no
occupancy flow event occurs, and take its complement

p(Oc
t+1,i) = 1−

∏

j

(

1− p(Fc
(t,j)→(t+1,i))

)

We point the reader to the appendix for further details on the
mapping and perception and prediction network architecture.

3.3. Motion Planning

The goal of the motion planner is to generate trajectories
that are safe, comfortable and progressing towards the goal.
We design a sample-based motion-planner in which a set
of kinematically-feasible trajectories are generated and then
evaluated using a learned scoring function. The scoring
function utilizes the probabilistic dynamic occupancy field
to encode the safety of the possible maneuvers encouraging
cautious behaviors that avoid occupied regions, and maintain
a safe headway to the occupied area in front of the SDV.
The probabilistic layers in our online map are used in the
scoring function to ensure the SDV is driving on the drivable
area, close to the lane center and in the right direction, being

cautious in uncertain regions, and driving towards the goal
specified by the input high-level command. The planner
evaluates all the sampled trajectories in parallel and selects
the trajectory with the minimum cost:

τ
∗ = argmin

τ∈T (x0)

f(τ,M,O,K,V;w)

with f the scoring function, w the learnable parameters

of our models, M the map layers, O,K,V the occupancy

and motion mode-probability and vector layers respectively,

and T (x0) represents the possible trajectories which are

generated conditioned on the current state of the SDV x0.

3.3.1 Trajectory Sampling

The lane centers and topology are strong priors to construct

the potential trajectories to be executed by the SDV. When an

HD map is available, the lane geometry can be exploited to

guide the trajectory sampling process. A popular approach,

for example, is to sample trajectories in Frenet-frame of the

goal lane-center, limiting the samples to motions that do not

deviate much from the desired lane [1, 45, 46, 50]. However,

in mapless driving we need to take a different approach as

the HD map is not available. We thus use retrieval from a

large-scale dataset of real trajectories. This approach pro-

vides a large set of trajectories from expert demonstrations

while avoiding random sampling or arbitrary choices of ac-

celeration/steering profiles [36, 53]. We create a dataset of

expert demonstrations by binning based on the SDV initial

state, clustering the trajectories of each bin, and using the

cluster prototypes for efficiency. During online motion plan-

ning, we retrieve the trajectories of the bin specified by the

velocity, acceleration and curvature (vx, ax, κx) associated

with the current state of the SDV x. However, the retrieved

trajectories may have marginally different initial velocity and

steering angle than the SDV. Hence, instead of directly using

those trajectories, we use the acceleration and steering rate

profiles, (a, κ̇)t, t = 0, ..., T , to rollout a bicycle model [38]

starting from the initial SDV state. This process generates

trajectories with continuous velocity and steering. This is

in contrast to the simplistic approach of, e.g., [37] where a

fixed set of template trajectories is used, ignoring the initial

state of SDV.

3.3.2 Route Prediction

When HD maps are available, the input route is typically

given in the form of a sequence of lanes that the SDV should

follow. In mapless driving however, this is not possible. In-

stead, we assume we are given a driving command as a tuple

c = (a, d), where a ∈ {keep lane, turn left, turn right} is a

discrete high-level action, and d an an approximate longitu-

dinal distance to the action. This information is similar to

what an off-the-shelf GPS-based navigation system provides

to human drivers. To simulate GPS errors, we randomly
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sample noise from a zero-mean Gaussian with 5m standard

deviation. We model the route as a collection of Bernoulli

random variables, one for each grid cell in BEV. Given the

driving command c and the predicted map M, a routing

network predicts a dense probability map R in BEV. The

routing network is composed of 3 CNNs that act like a switch

for the possible high-level actions a. Note that only the one

corresponding to the given driving command will be run

at inference. Together with the predicted map layers, we

“rasterize” the longitudinal distance d to the action as an

additional channel (i.e., repeated spatially), and leverage

CoordConv [29] to break the translation invariance of CNNs.

3.3.3 Trajectory Scoring

We use a linear combination of the following cost functions

to score the sampled trajectories. More detailed explanations

about the individual costs can be found in the appendix.

Routing and Driving on Roads: In order to encourage
the SDV to perform the high-level command, we use a scor-
ing function that encourages trajectories that travel a larger
distance in regions with high probability in R. We use the
following score function:

fr(τ,R) = −m(τ) min
i∈m(τ)

Ri

where m(τ) is the BEV grid-cells that overlap with SDV

polygon in trajectory τ . This score function makes sure the

SDV stays on the route and is only rewarded when moving

within the route. We introduce an additional cost-to-go that

considers the predicted route beyond the planning horizon.

This is important when there is a turn at the end of the hori-

zon and the SDV velocity is high. Specifically, we compute

the average value of 1−Rj for all BEV grid-cells j that have

overlap with SDV beyond the trajectory horizon, assuming

that the SDV maintains constant velocity and heading.

The SDV needs to always stay close to the center of the

reachable lanes while on the road. Hence we use the pre-

dicted reachable lanes distance transform MD to penalize

distant trajectory points. In order to promote cautious behav-

ior when there is high uncertainty in MD and Mθ, we use a

cost function that is the product of the SDV velocity and the

standard deviation of the probability distributions of cells

overlapping with SDV in MD and Mθ. This promotes slow

maneuver in the presence of map uncertainty.
The SDV is also required to stay on the road and avoid

encroaching onto the side-walks or the curb. Hence, we use
the predicted drivable area MA to penalize trajectories that
go off the road:

fa(x,M) = max
i∈m(x)

[1− P (MA
i )]

where m(x) is the set of BEV grid-cells that overlap with

SDV at trajectory point x. Similarly, the SDV needs to avoid

junctions with red-traffic lights. Hence. we use the predicted

junction probability map MJ to penalize maneuvers that

violate red-traffic light, similar to the routing cost.

Safety: The predicted occupancy layers and motion pre-

dictions are used to score the trajectory samples with respect

to safety. We penalize trajectories where the SDV overlaps

occupied regions. For each trajectory point, we use the BEV

grid-cell with maximum probability among all the grid-cells

that overlap with SDV polygon and use this probability di-

rectly as collision cost. The max operator ensures that the

worst-case occupancy is considered over the region SDV

occupies.

The above objective promotes trajectories that do not

overlap with occupied regions. However, the SDV needs

to also maintain a safe distance from objects that are in

the direction of SDV motion. This headway distance is

a function of the relative speed of the SDV wrt the other

objects. To compute this cost for each trajectory point x, we

retrieve all the BEV grid-cells in front of the SDV at x and

measure the violation of safety distance if the object at each

of those grid-cells stops with hard deceleration, and SDV

with state xt reacts with a comfortable deceleration.

Comfort: We also penalize jerk, lateral acceleration, cur-

vature and its rate of change to promote comfortable driving.

3.4. Learning

We optimize our driving model in two stages. We first

train the online map, dynamic occupancy field, and routing.

Once these are converged, in a second stage, we keep these

parts frozen and train the planner weights for the linear

combination of scoring functions. We found this 2-stage

training empirically more stable than training end-to-end.

Online map: We train the online map using negative log-

likelihood (NLL) under the data distribution. That means,

Gaussian NLL for reachable lanes distance transform MD,

Von Mises NLL for direction of traffic Mθ and binary cross-

entropy for drivable area MA and junctions MJ .

Dynamic occupancy field: To learn the occupancy O of

dynamic objects at the current and future time stamps, we

employ cross entropy loss with hard negative mining to

tackle the high imbalance in the data (i.e., the majority of

the space is free). To learn the probabilistic motion field, the

motion modes K are learned in an unsupervised fashion via

a categorical cross-entropy, where the true mode is defined

as the one which associated motion vector is closest to the

ground-truth motion in ℓ2 distance. Then, only the associated

motion vector from the true mode is trained via a Huber loss.

Note that because the occupancy at future time steps t > 1
is obtained by warping the initial occupancy iteratively with

14408



Model Success OffRoute L2 Progress per event (m) ↑ Comfort

(%)↑ (%)↓ (m)↓ any

event

collision off-road off-route oncoming jerk(m

s3
) ↓ lat.acc. (m

s2
)↓

IL 0.00 99.39 39.10 15.69 44.49 36.40 30.28 65.18 98.99 0.91

CIL 0.00 99.39 35.53 15.85 38.50 34.68 35.64 54.58 52.88 0.81

TC 12.80 67.07 30.35 51.17 127.87 288.07 105.26 329.90 3.15 0.25

NMP 22.56 64.02 27.95 69.83 331.81 721.74 104.70 1229.82 3.04 0.14

CNMP 21.34 47.56 27.45 74.85 158.85 646.49 198.28 543.32 2.96 0.26

MP3 74.39 14.63 12.95 218.40 1037.08 1136.49 409.34 1465.27 1.64 0.10

Table 1: Closed-loop simulation results

Model Collisions (%) L2 (m) Progress(m) OffRoute(%) OffRoad(%) Oncoming(%) lat.acc.(m

s2
) Jerk (m

s3
)

0-3s 0-5s @3s @5s 0-5s 0-5s 0-5s 0-5s 0-5s 0-5s

IL 2.17 9.54 1.36 3.77 23.62 5.05 4.46 3.05 1.00 2.47

CIL 2.20 10.15 1.38 3.79 23.58 5.16 5.28 3.64 1.10 2.60

TC 1.72 6.95 2.02 4.34 22.26 2.68 0.28 0.62 1.47 7.48

NMP 0.83 5.18 1.75 4.47 23.09 1.59 0.00 0.21 1.14 3.98

CNMP 1.03 5.45 1.62 4.02 22.99 0.14 0.07 0.14 1.28 3.97

MP3 0.21 2.07 1.71 4.54 25.15 0.15 0.42 0.09 1.23 1.88

Table 2: Large-scale evaluation against expert demonstrations

the motion field, the whole motion field receives supervision

from the occupancy loss. This is important in practice.

Routing: We train the route prediction with binary cross-

entropy loss. To learn a better routing model, we leverage

supervision for all possible commands given a scene, in-

stead of just the command that the SDV followed in the

observational data. This does not require additional human

annotations, since we can extract all possible (command,

route) pairs from the ground-truth HD map.

Scoring: Since selecting the minimum-cost trajectory

within a discrete set is non-differentiable, we use the max-

margin loss [40, 45] to penalize trajectories that have small

cost but differ from the human demonstration or are unsafe.

4. Experimental Evaluation

In this section we first describe our experimental setup,

and then present quantitative results in both closed-loop and

open-loop. Closed-loop evaluations are of critical impor-

tance since as the execution unrolls, the SDV finds itself in

states induced by its own previous motion plans, and thus

it is much more challenging than open-loop and closer to

the real task of driving. We defer the ablations of several

components from our model to the appendix.

Dataset: We train our models using our large-scale dataset

URBANEXPERT that includes challenging scenarios where

the operators are instructed to drive smoothly and in a safe

manner. It contains 5000 scenarios for training, 500 for

validation and 1000 for the test set. Each scenario is 25

seconds. Compared to KITTI [17], URBANEXPERT has 33x

more hours of driving. Note that the train/validation/test

splits are geographically non-overlapping which is crucial to

evaluate generalization.

Baselines: We compare against many SOTA approaches.

Imitation Learning (IL), where the future positions of the

SDV are predicted directly from the scene context features,

and is trained using L2 loss. Conditional Imitation Learn-

ing (CIL) [11], which is similar to IL but the trajectory is

conditioned on the driving command. Neural Motion Plan-

ner (NMP) [53], where a planning cost-volume as well as

detection and prediction are predicted in a multi-task fashion

from the scene context features, and Trajectory Classifica-

tion (TC) [37], where a cost-volume is predicted similar to

NMP, but the trajectory cost is used to create a probability

distribution over the trajectories and is trained by optimizing

for the likelihood of the expert trajectory. Finally, we ex-

tend NMP to consider the high-level command by learning a

separate costing network for each discrete action (CNMP).

Closed-loop Simulation Results: Our simulated environ-

ment leverages a state-of-the-art LiDAR simulator [32] to

recreate a virtual world from previously collected real static

environments and a large-scale bank of diverse actors. We

use a set of 164 curated scenarios (18 seconds each) that are

particularly challenging and require complex decision mak-

ing and motion planning. These scenarios have no overlap

with URBANEXPERT’s training or validation set. The simula-

tion starts by replaying the motion of the actors as happened

during the real-world capture. In case the scenario diverges

from the original one due to SDV actions (e.g., SDV moving

slower), the affected actors (e.g., rear vehicles) switch to

the Intelligent Driver Model [49] for the rest of the simula-

tion in order to be reactive. We stop the simulation if the
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Figure 5: Qualitative results. We show our predicted scene representations and motion plan for different high-level actions.

execution diverges too far from the commanded route. A

scenario is a success iff there are no events, i.e., the SDV

does not collide with other actors, follows the route, does

not get out of the road nor into opposite traffic. We report

the Success rate. Because the goal of an SDV is to reach

a goal by following the driving commands, we report Off-

route (%), which measures the percentage of scenarios the

SDV goes outside the route. Since all simulated scenarios

are initialized from a real log, we measure the average L2

distance to the trajectory demonstrated by the expert driver.

Progress is measured by recording the meters traveled until

an event happens. We summarize this in the metric meters

per event, and show a breakdown per event category. Table 1

shows that our method clearly outperforms all the baselines

across all metrics. MP3 achieves over 3x the success rate,

diverges from the route a third of the times, imitates the

human expert driver at least twice as close, and progresses

3x more per event than any baseline, while also being the

most comfortable.

Open-Loop Evaluation: We evaluate our method against

human expert demonstrations on URBANEXPERT. We mea-

sure the safety of the planner via the % of collisions with the

ground-truth actors up to each trajectory time step. Progress

measures how far the SDV advanced along the route for the

5s planning horizon, and L2 the distance to the human expert

trajectory at different time steps. To illustrate the map and

route understanding, we compute the road violation rate,

oncoming traffic violation rate, and route violation rate. Fi-

nally, jerk and lateral acceleration show how comfortable

the produced trajectories are. As shown in Table 2 our MP3

model produces the safest trajectories that in turn achieve

the most progress and are the most comfortable. In terms

of imitation, IL and CIL outperform the rest since they are

optimized for this metric, but are very unsafe. Our model

achieves similar map-related metrics than the best perform-

ing baselines (NMP/CNMP) in open-loop. We want to stress

the fact that these experiments are open-loop, and thus the

SDV always plans from an expert state. Because of this, it

is very unusual to diverge from the route/road. We consider

this a secondary evaluation that does not reflect very well

the actual performance when executing these plans, but in-

clude it for completeness since previous methods [37, 53]

benchmark this way. Comparing these results to closed-loop,

we can see that MP3 is much more robust than the baselines

to the distributional shift incurred by the SDV unrolling its

own plans over time.

Qualitative Results: Fig. 5 showcases the outputs from

our model. Scenario 1 shows the predictions when our

model is commanded to keep straight at the intersection.

Our model recognizes and accurately predicts the future

motion of pedestrians near the SDV that just came out of oc-

clusion, and plans a safe stop accordingly. Moreover, we can

appreciate the high expressivity of our dynamic occupancy

field at the bottom, which can capture highly multimodal

behaviors such as the 3 modes of the vehicle heading north

at the intersection. Scenario 2 and Scenario 3 show how

our model accurately predicts the route when given turning

commands, as well as how planning can progress through

crowded scenes similar to the human demonstrations. See

our supplementary materials for visualizations of the re-

trieved trajectory samples from the motion planner together

with their cost, as well as a comparison of closed-loop roll-

outs against the baselines.

5. Conclusion

In this paper, we have proposed an end-to-end model for

mapless driving. Importantly, our method produces proba-

bilistic intermediate representations that are interpretable and

ready-to-use as cost functions in our neural motion planner.

We showcased that our driving model is safer, more comfort-

able and progresses the most among SOTA approaches in

a large-scale dataset. Most importantly, when we evaluate

our model in a closed-loop simulator without any additional

training it is far more robust than the baselines, achieving

very significant improvements across all metrics.
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Arnaud de La Fortelle. The kinematic bicycle model: A

consistent model for planning feasible trajectories for au-

tonomous vehicles? In 2017 IEEE Intelligent Vehicles Sym-

posium (IV), pages 812–818. IEEE, 2017. 5

[39] Dean A Pomerleau. Alvinn: An autonomous land vehicle in

a neural network. In NIPS, 1989. 2

[40] Nathan D Ratliff, J Andrew Bagnell, and Martin A Zinkevich.

Maximum margin planning. In ICML, 2006. 7

[41] Nicholas Rhinehart, Kris M Kitani, and Paul Vernaza. R2p2:

A reparameterized pushforward policy for diverse, precise

generative path forecasting. In ECCV, 2018. 2, 4

[42] Nicholas Rhinehart, Rowan McAllister, and Sergey Levine.

Deep imitative models for flexible inference, planning, and

control. arXiv preprint arXiv:1810.06544, 2018. 4

[43] Daniela Ridel, Nachiket Deo, Denis Wolf, and Mohan Trivedi.

Scene compliant trajectory forecast with agent-centric spatio-

temporal grids. IEEE RA-L, 5(2):2816–2823, 2020. 2
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