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Abstract

Recent generative models can synthesize “views” of ar-

tificial images that mimic real-world variations, such as

changes in color or pose, simply by learning from unla-

beled image collections. Here, we investigate whether such

views can be applied to real images to benefit downstream

analysis tasks such as image classification. Using a pre-

trained generator, we first find the latent code correspond-

ing to a given real input image. Applying perturbations to

the code creates natural variations of the image, which can

then be ensembled together at test-time. We use StyleGAN2

as the source of generative augmentations and investigate

this setup on classification tasks involving facial attributes,

cat faces, and cars. Critically, we find that several design

decisions are required towards making this process work;

the perturbation procedure, weighting between the augmen-

tations and original image, and training the classifier on

synthesized images can all impact the result. Currently, we

find that while test-time ensembling with GAN-based aug-

mentations can offer some small improvements, the remain-

ing bottlenecks are the efficiency and accuracy of the GAN

reconstructions, coupled with classifier sensitivities to arti-

facts in GAN-generated images.

1. Introduction

Image datasets are the backbone of learning-based vi-

sion problems, but images are only sparsely-sampled dis-

crete snapshots of the underlying continuous world. How-

ever, recent generative adversarial networks (GANs) [18]

have shown promise in learning to imitate the real-image

manifold, mapping random samples from a latent distribu-

tion to realistic image outputs. A heavily exploited property

of these models is that the latent space is locally smooth:

samples nearby in latent space will appear perceptually sim-

ilar in image space [42]. Therefore, GANs can be viewed

as a type of “interpolating mechanism” that can blend and

recombine images in a continuous manner. From individ-

ual image samples, can we use a GAN to generate nearby

alternatives on the image manifold, or “views,” giving us

unlimited variants of a given image?
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Figure 1: We project an input image into the latent space of a

pre-trained GAN and perturb it slightly to obtain modifications of

the input image. These alternative views from the GAN are ensem-

bled at test-time, together with the original image, in a downstream

classification task.

Here, we investigate using GAN outputs as test-time

augmentation for classification tasks. In the standard classi-

fication pipeline, passing an image through a trained classi-

fier yields predictions of the image belonging to one of sev-

eral classes. However, performance is often improved using

more than one sample – if we have multiple views of an im-

age, we can use the classifier to obtain predictions for each

view and average the results together as an ensemble. The

classic approach to generating additional views has been to

crop the image at different locations before classification.

Using a GAN, we have an orthogonal, data-driven method

of generating additional views of a given image, such as al-

tering its pose, shape, or color based on the directions of

variation that a GAN learns.

A secondary advantage of unconditional GANs is that

they can be trained on image collections without requiring

image labels. As data labeling is often vastly more expen-

sive than data collection, GANs learn from much larger

datasets compared to tasks involving manual annotation,

such as classification. Training on large datasets allows sev-
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eral interesting properties to emerge, where the generator

learns meaningful variations in data without requiring an

explicit training objective to do so [21, 53, 12].

A challenge in using GANs to generate augmented sam-

ples is the potential domain gap between real images and

GAN outputs – the generated samples must be of sufficient

quality to be used in classification tasks, and must ade-

quately reconstruct the target image sample while preserv-

ing the relevant visual patterns for accurate discrimination.

If this condition is not met, the classifier may behave dif-

ferently on the generated samples than the natural images,

which is undesirable for data augmentation. To reconstruct

image samples using the GAN, we use a hybrid encoder and

optimization approach [69]: the encoder network initializes

the latent code, which is further optimized to improve the

similarity between the target image and the reconstruction.

In addition to high-quality reconstruction, we also desire

that the generated variations of an image do not cross clas-

sifier boundaries; i.e., it cannot modify visual appearance

that affect its classification. To this end, we experiment with

a variety of possible image modifications using the GAN

generator, ranging from coarse pose and shape changes to

finer-grained color changes.

Using the recent StyleGAN2 generator [28], we apply

our method on several classification tasks involving facial

attributes [33, 26], cat faces [39], and cars [29]. Given the

relative simplicity of the face domain, we find test-time en-

sembling with GAN samples helps even when the classifier

is trained only on real images; however, training the classi-

fier on generated samples offers further improvements, par-

ticularly for the more difficult car and cat domains. Code

is available on our website: https://chail.github.

io/gan-ensembling/.

2. Related Work

Latent manipulation in GANs. Advances in generative

adversarial networks have allowed them to create increas-

ingly realistic images [14, 42, 26, 7, 63, 27, 28], and fur-

thermore, the generated outputs mimic the variations found

in their training data. For example, Radford et al. [42]

demonstrate linear separability in latent space and use it

to modify attributes of interest in GAN-generated samples.

This linear separability has been exploited in a number of

subsequent works, including for faces [52], for camera at-

tributes [24, 41], and for quantifying disentanglement of

the latent space [27]. While these manipulations require

a supervised or self-supervised objective, another direction

of interest involves learning meaningful editing directions

without direct supervision. One set of approaches aims to

uncover primary directions of variation in an intermediate

latent space [21, 53, 12], while another enforces distinctness

of optimized directions during training [58]. Apart from lin-

ear edit directions, recent works [67, 36] learn latent editing

operations that control the 3D appearance of generated im-

ages. Interestingly, the architecture of a GAN itself may

lend itself to natural edits; for example, StyleGAN, which

we use [27, 28], provides a hierarchical latent code that con-

trols visual patterns at various scales.

GANs for real image editing. While GANs are able to gen-

erate interesting variations of synthetically generated im-

ages, one is often more interested in editing a given real

image. To do this, we first need to find the latent code that

best reconstructs the image [69, 8], a challenging problem

due to the generator’s inherent limitations and the complex

optimization landscape through a deep network. Optimiz-

ing in an intermediate layer or an expanded latent space al-

lows the generator to reconstruct a greater variety of real

images [1, 2, 5], which relaxes the former restriction. How-

ever, one runs the risk of overfitting or drifting off the man-

ifold of natural latent codes; as such, works [68, 61] pro-

pose regularizers to constrain the optimized code to the la-

tent manifold. To speed up the optimization process, several

methods [69, 68, 6, 46] propose to train an encoder to ini-

tialize latent optimization. To further improve the genera-

tor’s flexibility and reconstruction capability, Pan et al. [37]

and Bau et al. [4] finetune the generator weights towards

a particular target image, while Huh et al. [23] propose to

spatially transform the image due to the generator’s inherent

biases. As a fast and accurate image projection is critical to

our pipeline, we directly draw upon the insights from these

works in our method.

Data augmentation with generative models. Genera-

tive models’ ability to create realistic variations of images

opens up the possibility of using them as data augmenta-

tion in downstream tasks, as acquiring images from a gen-

erative model is vastly cheaper than collecting additional

data. Several works investigate using generative samples as

data augmentation in an image translation setting, in which

an autoencoder-style network is trained to produce varia-

tions of an input image, on a variety of domains such as

face attribute editing [57], gaze estimation [54], emotion

classification [70], and honeybee tracking [55]. Rather than

taking an image-to-image translation approach, we use pro-

jection into a pretrained generator, which allows us to use

emergent variations from this generator rather than directly

training for a specified transformation. Instead of a genera-

tive model for images, Ratner et al. [43] formulates a gen-

erator to select from a sequence of predefined image aug-

mentations used to train a downstream classifier. Specif-

ically in the medical community, synthesizing additional

images to augment limited-size datasets has been benefi-

cial for classification [40, 60, 17, 22, 48] or segmentation

tasks [32, 11, 20]. However, using GANs for data augmen-

tation is limited by the possible domain gap between gen-

erated samples and dataset images [45, 44]. Studies show
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that despite their rapid improvement, the generative mod-

els do, in fact, still exhibit artifacts, exploitable for reliable

detection of GAN-generated imagery [59, 10, 62, 66, 16].

Outputs from a generative model can also be used in ad-

versarial settings: Samangouei et al. [49] demonstrate pro-

jecting adversarial images through a generator on MNIST

and Fashion-MNIST, while other works [51, 25, 19] train

models using the generator to improve robustness. Aug-

mentation using GANs can be applied at training time for

robustness or test-time for ensembling; while we primarily

focus on the latter, concurrent works [35, 50] investigate

the benefits of the former approach while [56] investigates

intermediate GAN representations for few-shot segmenta-

tion.

3. Method

Our goal is to leverage a generative model to synthesize

useful variations of a given image. As summarized in Fig. 1,

the first step is to “project” the image to the latent code of

a generator. From there, we explore different methods for

producing variations. Finally, we show how these variations

can be effectively used by a downstream classifier.

3.1. GAN preliminaries

A generative network maps a low-dimensional code z

to an image x. Specifically, we use the StyleGAN2 gener-

ator [28]. A useful property of the architecture is the in-

termediate feature space w ∈ R
B×D, which contains B

blocks of dimension D, designed to control the “style” of

the image [28].1 Earlier and later blocks affect the image

on coarser and finer scales, respectively. Combining the

mapping network M and backbone generator G produces

image x = G(w) = G(M(z)). Previous work [1] finds that

the intermediate w space is better able to represent images

than the original code z, while moving in this space offers

controllable and interesting effects [21]. As such, work on

StyleGAN2 inversion [2, 52, 68] typically uses this interme-

diate space, and we refer to it as the “latent code”. Follow-

ing StyleGAN [27], we subdivide w ∈ R
B×D into “coarse”

styles (first four style codes), “middle” styles (next six style

codes), and “fine” styles (the remaining style codes). As we

find that changing the “middle” layers can alter object iden-

tity, we focus on modifying the “coarse” and “fine” styles

to produce image variations.

3.2. Projecting Images into GAN Latent Space

To edit a real image x, we must first find the latent code

w that generates the image. As an exact match cannot usu-

ally be found, this problem is relaxed to finding the closest

1Previous work [1] refers to this as the w+ space, with a separate, more

constrained w space. We do not need to make this distinction, so we refer

to it as w for simplicity.

image by solving the following optimization problem over

an image distance metric:

w∗ = argmin
w

Limg(G(w), x)

= argmin
w

ℓ1(G(w), x) + Lpercep(G(w), x).
(1)

We use ℓ1 and LPIPS [65] distances, denoted as Lpercep.

Solving this projection problem directly via optimization is

challenging due to the difficult optimization landscape, and

tends to heavily depend on the initialization. This has been

the subject of active research [69, 1, 6, 2, 23]. Furthermore,

optimization can be slow to converge to a reasonable recon-

struction of the target image x. We follow best practices,

with the needs of our problem in mind. Specifically, a pro-

jection algorithm that is very computationally-intensive is

not tenable for our use-case, as our approach must be fea-

sible across a full dataset. To balance reconstruction qual-

ity and optimization time, we use a two-step approach to

project images into the GAN latent space.

Preprocessing by alignment. As GANs have a tendency to

accentuate spatial biases and generate centered objects [23],

we shift the image to center the target object prior to image

projection (Fig. 2 left). As this may cause some missing

pixels around the edges of the image, we use spatial masks

in the projection objective, so that unknown edge pixels do

not contribute to the loss. Please refer to the supplement for

additional details.

Encoder initialization. As a first step, we train an encoder

network E, to initialize the latent code with a single forward

pass. The encoder network is trained using the objective:

L(x,w,E) = Limg(x,G(E(x))) + λLlatent(w,E(x)). (2)

The Llatent is an ℓ2 reconstruction loss for supervision. For

this stage, we set λ = 1.0. The encoder E is trained across

randomly drawn, corresponding latent codes and images:

E∗ = argmin
E

Ew,xL(x,w,E). (3)

Iterative optimization. Given a specific image x, a forward

pass through the trained encoder yields an initialization. A

closer match can be obtained by further optimization:

w∗ = argmin
w

L(x,w,E∗). (4)

Note that nearly the same objective can be used as for train-

ing the encoder. We reduce λ to 0.5, as here, the latent loss

serves as a regularizer to the encoder-provided initializa-

tion, rather than as ground truth supervision. We optimize

for 500 iterations using an L-BFGS optimizer [31] taking

30-45 seconds per image on a V100 GPU, depending on

the generator resolution. As this optimization is performed

for each image, we limit the optimization time to be short

enough so that computation is tractable over the dataset, yet

long enough to reasonably match the target image.
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Figure 2: Synthesizing deep generative views. We first align (Aligned Input) and reconstruct an image by finding the corresponding latent

code in StyleGAN2 [27] (GAN Reconstruction). We then investigate different approaches to produce image variations using the GAN, such

as style-mixing on fine layers (Style-mix Fine), which predominantly changes color, or coarse layers (Style-mix Coarse), which changes

pose. We show additional perturbations in supplementary material.

3.3. Image Augmentations using Pretrained GANs

Once we optimize for a latent code w∗ matching a given

target image, we then perturb it to obtain image variations.

We try local perturbations using an isotropic Gaussian and

PCA directions, along with a “style” swapping operation.

Isotropic Gaussian. One approach is to simply sample

from an isotropic Gaussian ball centered at the optimized

latent:

w̃ ∼ N (w∗, σI), (5)

where σ scales variance of the sampled points. We obtain

hyperparameter σ by cross-validating over the validation

set, and ultimately report on the test set. Note that using

σ = 0 yields the reconstructed image, while a large σ cor-

responds to randomly drawing a generated image with little

regard to the original image x. We conduct experiments

adding noise to either the “coarse” or “fine” style codes.

Principal directions. Alternatively, we also experiment

with sampling according to principal directions; these di-

rections were found to correspond well with interpretable

controls in GANspace [21]. We perform PCA on random

samples in the latent space to obtain principal directions

v̂d, which are unit vectors, and eigenvalues λd. To pro-

duce perturbations, we randomly sample a principal compo-

nent direction d uniformly among n principal components,

d ∼ U [1, n], and a perturbation factor β from a uniform

distribution β ∼ U [−σ, σ]. In practice, as only the top di-

rections have a visible effect, we restrict ourselves to the top

n = 20 principal components:

w̃ = w∗ + βλdv̂d. (6)

We modify either the “coarse” or “fine” style codes while

holding the remaining layers fixed.

Style-mixing. Recall that a property of StyleGAN2 is that

w∗ ∈ R
B×D where the early layers correspond to the

coarse visual patterns, while later layers correspond to fine

details. The third method of perturbation corresponds to

“style-mixing”, which swaps in a randomly generated la-

tent code w at some granularity (e.g., the “fine” styles),

while preserving the remaining layers from the optimized

w∗ ([28]; Fig. 2-right). Geometrically, rather than jitter-

ing locally, this corresponds to jumping onto a vertex on a

hypercube defined by the two latent codes. Visually, this

enables us to achieve greater changes in the appearance of

the perturbed output, compared to local jittering.

3.4. Ensembling deep generative views

In typical classification, feeding an image x through a

trained classifier C yields the prediction logits for that im-

age y = C(x) ∈ R
L, where L is the number of classes.

Ensembling. By perturbing the optimized latent codes,

we obtain additional samples, which can be ensembled at

test-time. We jitter the optimized latents to obtain a se-

ries of latent codes w̃1 · · · w̃N and then run these codes

through the generator to obtain variations of the target im-

age: G(w̃1) · · ·G(w̃N ) to as inputs to a trained classifier C.

To ensemble the classifier predictions, we find that an ap-

propriate weighting between the original image x and the

generated samples {G(w̃n)} improves results. Therefore,

we ensemble the end classifier decision using:

yens = (1− α)C(x) +
α

N

N∑

n=1

C(G(w̃n)). (7)

The hyperparameter α ∈ [0, 1] is selected using the valida-

tion data, and the optimal value in validation is applied to

the test partition. Note that α = 0 means that the pertur-

bations actually reduce validation performance. This could
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be due to (a) a poor reconstruction of the input image or (b)

overaggressive perturbations that do not preserve the prop-

erty of interest in the image. On the other hand, α = 1
means that the ensembled variations are entirely able to cap-

ture necessary properties for the classification task.

Classifier training. Due to the domain gap between real

images and their generated counterparts, we find that train-

ing the classifier on generated images often improves re-

sults. Given tuples of images, optimized latents, and labels

(x,w∗, y), we train the classifier using images generated

from the latents and standard cross entropy loss Lcls:

C∗ = argmin
C

Lcls(C(G(w∗), y)). (8)

We also experiment with training on perturbed w̃ using

the methods in Sec. 3.3, thus replacing C(G(w∗)) with

C(G(w̃)) in Eqn. 8. We provide details on classifier archi-

tecture and training parameters in supplementary material.

4. Experiments

We use the previously described approach of projecting

images into a GAN’s latent space and then modifying the

latent code to create alternative views. We conduct experi-

ments on facial attribute, car, and cat face classification.

4.1. Facial Attribute Classification

Human faces are one of the most successful domains

for recent GAN architectures, as aligned faces reduce the

amount of variation that the GAN needs to model. Fur-

thermore, large datasets exist of labeled facial attributes,

which can be subsequently used for classification. We start

by investigating this setting by pairing the StyleGAN2 [28]

face model with the CelebA-HQ dataset [33, 26], contain-

ing 30,000 images with 40 labeled binary attributes.

Ensemble weighting. As described in Sec. 3.4, a soft

weighting between the real image and its GAN-generated

variants is necessary. Since the GAN reconstructions may

not exactly approximate the ground-truth image, this causes

the classifier to behave differently on the real images com-

pared to their GAN-generated counterparts. We visualize

this effect in Fig. 3, where we plot accuracy as a function of

the ensemble weight α and find that an intermediate weight-

ing yields the highest accuracy.

GAN perturbation variations. Next, we investigate the ef-

fect of the different types of perturbations – isotropic Gaus-

sian perturbations (Eqn. 5), principal component directions

(Eqn. 6), or swapping layers of the optimized latent code

(style-mixing; Sec. 3.3). We start with a subset of 12 out

of 40 facial attributes, and investigate each type of pertur-

bation on the resulting ensemble classification accuracy. In

Fig. 2, we show qualitative examples of the latent code per-

turbations for the style-mixing operation on fine and coarse
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Figure 3: Selecting ensemble weight α by cross-validation; α =

0 corresponds to the standard test accuracy, while α = 1 corre-

sponds to discarding the original image. We find that often using

an intermediate value of α yields the highest accuracy, trading off

the additional views provided by the GAN with potential imperfec-

tion in reconstruction; we show validation accuracy as a function

of α in blue, and test accuracy in orange for the Smiling attribute.

We select the value of α based on the validation split and apply the

same value to the test split (shown in the dotted black line); note

that this may not be the same as the optimal α for the test split.
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Figure 4: Investigating GAN perturbation methods. On a subset

of 12 face attributes, we first investigate test-time ensembling us-

ing each type of latent code perturbation. The ensemble weight hy-

perparameter α is selected from the validation split. Therefore, we

find that all types of perturbation can increase validation accuracy.

However, the style-mixing perturbation on fine layers performs the

best at both validation and test time, and only the fine style-mixing

operation yields robust improvements at test time. Error bars indi-

cate standard error over the 12 attributes.

layers, and visualize the remaining types of perturbations

in the supplementary material. While perturbations in the

coarse layers preserve color attributes, they do not always

preserve the facial identity. We find that style-mixing in

the fine layers offers the most robust improvements at test

time; while all types of perturbations offer improvements

on the validation split (using the previous ensemble weight

α selected on validation data), only the fine style-mixing

method offers reliable improvements at test time (Fig. 4).

Therefore, we primarily focus on this type of perturbation

for the remaining face experiments.

Comparing to image augmentations. Standard image

augmentations used during training, such as random flip-

ping or cropping, can also be ensembled together at test
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Figure 5: Traditional vs. generative ensembling. Averaged over

40 facial attributes, we plot the accuracy increase from test-time

ensembling with various forms of augmentation. While ensem-

bling with image augmentations (Color, Crop) or deep generative

views (Style-mix) improves over no ensembling (Single Image),

more importantly, they provide orthogonal benefits; combining

them works best. Errorbars show standard error over 40 attributes.

time to obtain a more robust classification result. We com-

pare the GAN-based augmentations to these image-based

augmentation techniques, including (1) color jitter with hor-

izontal flip or (2) spatial jitter with horizontal flip (as faces

are aligned, we use small spatial perturbation by resizing

to 1056px before taking a random 1024px crop). Averaged

across all 40 facial attributes, we find that ensembling with

color jitter offers small improvements over single-image

classification. Adding the style-mixing perturbation pro-

vides similar benefits to spatial jittering. However, classi-

fication improves even more when combining all three aug-

mentation methods: we show the difference between each

type of test-time augmentation and single-image classifica-

tion accuracy in Fig. 5.

Training with GAN-generated views. Due to the rela-

tive simplicity of the face domain and the GAN’s ability to

reasonably reconstruct aligned facial images, adding GAN-

generated augmentations at test time is beneficial even when

the classifier is not trained on the GAN domain. In the sup-

plementary material, we investigate training the classifiers

on GAN reconstructions (Eqn. 8) and reconstructed latent

code perturbations as additional augmentation.

Investigating dependency on ensemble-size. While we

use an ensemble size of 32 images (1 dataset image and

31 GAN views) for all prior experiments, here we investi-

gate how the number of samples used in the ensemble im-

pacts classification accuracy. Using the Smiling classifier

trained on dataset images (rather than GAN images), we

plot accuracy as a function of the number of GAN samples

in the ensemble (zero indicates only the real image is used

for classification, corresponding to standard test accuracy)

in Fig. 6. We find that accuracy increases as the number

of views used for classification increases but plateaus after

a certain point, after which increasing the number of GAN

samples has limited returns.
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Figure 6: Classification accuracy as a function of the number of

ensembled deep generative views on the Smiling attribute. Zero

corresponds to using the original input image. Even adding a cou-

ple of views increases accuracy. Generally, adding more views fur-

ther increases accuracy. We use ensemble size of 32 in our experi-

ments, as performance saturates. We show additional attributes in

the supplement.
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Figure 7: Robustness to adversarial attacks. We show accu-

racy on a corrupted image (Image), the GAN reconstruction (Re-

construction), ensembling with GAN style-mixing (Style-mix En-

semble), and ensembling over both traditional and GAN views

(Combined Ensemble), on the Smiling attribute. Adversarial at-

tacks (FGSM, PGD, CW) greatly reduce accuracy. On all cases,

just GAN reconstruction recovers significant performance, and for

FGSM and PGD attacks, ensembling with GAN views further im-

proves accuracy. We show additional attributes and experiments

on untargeted corruptions in the supplementary material.

Ensembling on corrupted images The GAN generator is

trained only on clean images, and a projection step through

the latent code can potentially map off-manifold images

back to the image manifold, serving as a useful intermediary

prior to a classification task. Here, we investigate these sce-

narios using a set of targeted image corruptions, which ad-

versarially change the output prediction of the classifier. We

test against FGSM [18], PGD [34], and CW attacks [9]. Our

initial step, projecting the corrupted images through the la-

tent code of the generator, corresponds to the DefenseGAN

method [49]. Classifying the corrupted images results in a

large decrease in classification accuracy, which the projec-

tion step can partially recover. Next, we perturb the opti-
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Figure 8: Effect of ensembling deep generative views. Classification accuracy for cars (left) and cats (right), as a function of training

distribution (original images, GAN reconstructions, and GAN style-mixing, on x-axis) and test procedure (original images, and isotropic,

PCA, and mixing-based GAN augmentations, as colored bars). The dotted line is the baseline, trained and tested on real image crops.

When the classifier is trained on the dataset images, GAN-generated views ensembled at test offers improvements only in the Car dataset.

Fine-tuning the classifier on GAN-generated views improves the effects of test-time ensembling, and outperforms the baseline (error bars

indicate standard error over bootstrapped samples from the ensemble). Fine layer style-mixing at test time is the best perturbation type on

the cars domain, and coarse layer style-mixing is the best on the cats domain. The benefit of GAN augmentations on cat classification is

weaker compared to cars; this is perhaps because cat classification is a harder problem (12-way vs. 3-way), resulting in a more constrained

space of useful perturbations. We show results on additional classifier training distributions in the supplement.

mized latent code by applying style-mixing, and ensemble

together these alternative views for classification. For the

FGSM and PGD attacks, ensembled images from the GAN

can boost classification beyond the single reconstructed im-

ages, and applying standard image augmentations in con-

junction with the GAN-generated augmentations can offer

an additional increase. In supplementary material we in-

vestigate targeted attacks on additional facial attributes and

also untargeted corruptions, although we find that ensem-

bling with GAN views offers stronger benefits in the tar-

geted case compared to the untargeted scenario.

4.2. Classifying Cars

Due to its binary nature, the face classification problem

is a relatively simple task, and given the success of re-

cent GANs at imitating aligned faces, we find that adding

views from the GAN at test time, without training on GAN-

generated images, offers improvements. We next aim to

investigate a slightly more difficult scenario of classifying

types of cars, namely the ‘SUV’, ‘Sedan’, and ‘Cab’ super-

classes derived from [29] (note that we use these super-

classes, rather than the original 196 fine-grained classes, as

the GAN reconstruction cannot recover fine details such as

make and model of a car). Following best practices, we cen-

ter the car using a bounding box prior to GAN projection,

as GAN reconstruction tends to be better on centered ob-

jects [23]. After projecting the images into the GAN latent

space, we try isotropic, PCA, or style-mixing pertubations

(Sec. 3.3). Fig 2 shows qualitative examples of fine and

coarse style-mixing perturbations; the remaining perturba-

tion methods are shown in supplementary material, along

with additional dataset and classifier training details.

With a classifier trained on car images, ensembling the

predicted classes over multiple random crops at test time

boosts accuracy over a single crop (95.8% vs. 96.6% accu-

racy). Adding additional GAN augmentations at test time

offers a small benefit, with the fine style-mixing augmen-

tation increasing accuracy to 96.9%. However, due to im-

perfect reconstructions there can be a domain gap between

the training domain of the classifier and the reconstructed

images from the GAN. If we finetune this initial classifier

using the GAN reconstructions or perturbed GAN recon-

structions, the addition of GAN augmentations offers fur-

ther benefits, increasing accuracy to 97.9%. In Fig. 8 we re-

port classification accuracy on these training variations, and

show results on additional training variations in supplemen-

tary material. For this domain, since using random image

crops improves classification, we combine 16 random im-

age crops and 16 random crops of the GAN-generated views

at test time to form the ensemble; we average the classifier

predictions on the random image crops with weight 1 − α

and average the predictions on GAN outputs with weight α

(Eqn. 7).

4.3. Classifying Cats

We next investigate a 12-way classification task on

aligned cat faces from [39]. Since the cat images are

aligned, we find that ensembling with random image crops

performs similarly to using a single center-cropped im-

age, so we combine the real image with 31 random GAN-
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generated variants (32 images in total) following Eqn. 7.

As this task is more difficult than the previous two scenar-

ios, we find that adding GAN augmentations does not im-

prove accuracy when the classifier is only trained on real

images. However, ensembling with GAN-generated views

helps when the classifier is finetuned on the GAN domain.

We note that training with the perturbed GAN reconstruc-

tions also benefits standard image classification as well,

increasing from 92.3% when trained only with images to

93.2% when trained with GAN perturbations on the image

dataset (shown in supplementary material), to which adding

GAN augmentations at test time further increases to 93.3%.

We show additional training variations in the supplement.

5. Discussion

While GANs show promise in synthesizing alternative

views of a given image, several challenges remain in using

them for downstream classification. Firstly, the GAN must

be able to reconstruct the salient features used for classifica-

tion. Here, we choose the StyleGAN2 generator [27], which

focus on modeling a single object category (such as faces,

cars, and cats), rather than class-conditional models like

BigGAN [7] on 1000 ImageNet categories [47]. Due to the

higher variation in multi-class data, image projection (a crit-

ical part of generating deep augmentations) is still not suffi-

ciently fast and reliable across the full dataset [23, 37, 35].

Even within a single-class StyleGAN2 generator, some as-

pects of the original image cannot be accurately recovered,

such as fine textures, ornate backgrounds, or non-canonical

poses (shown in supplementary material), impacting down-

stream classification.

Related to GAN reconstruction quality is the ability to ef-

ficiently find a latent code that corresponds to a target image.

Longer optimization can better reconstruct the image, but

becomes intractable over a large dataset. In supplementary

material, we investigate classification accuracy as a func-

tion of the number of optimization steps, and also perform

experiments using an alternative inversion method [68] on

a smaller face GAN, obtaining similar results. Moreover,

recent alternative architectures trained specifically for effi-

ciency [30] or invertibility [38] may help further reduce the

computational cost of image reconstruction.

On the classification side, we note that classifiers are sen-

sitive to GAN reconstructions; accuracy on the reconstruc-

tions tends to be lower than that of the dataset images, re-

quiring an ensemble weighting hyperparameter to merge the

predictions of the image and the GAN outputs at test time.

In most cases, we find that GAN transformations that mod-

ify style tend to be more beneficial than those that modify

poses. This is in line with previous works that note the ben-

efits of style-based training augmentations for image classi-

fication [35, 13] and related positional sensitivities of classi-

fiers [64, 3, 15]. In the more difficult Imagenet classification

problem, we found performance degrades substantially dur-

ing image projection, and therefore GAN perturbations of-

fer limited benefits. In supplementary material, we show re-

sults on using the class-conditional CIFAR10 StyleGAN2,

where we also find the GAN reconstructions are more dif-

ficult to classify than the original images, such that adding

GAN-reconstructed views does not benefit classification at

both training and test time. When training classifiers, we

use standard random flip, resize, and crop transformations

on the image, but we further find that the alternative image

augmentation strategies during training can slightly outper-

form using the GAN-based augmentations at test time, also

shown in the supplement.

In our experiments, we find that ensembling images with

GAN views helps in simple classification settings, but gains

are small and are impacted by (1) the quality and efficiency

of GAN reconstructions and (2) classifier sensitivities to the

imperfect GAN outputs. Accordingly, as generative model-

ing technology advances in the future to create better re-

constructions, similar GAN augmentation and ensembling

strategies may yield even greater improvements.

6. Conclusion

We investigate the capability of StyleGAN2 to generate

alternative views of an image for use in downstream clas-

sification tasks. We first project the image into GAN la-

tent space using a hybrid encoder and optimization setup

to balance reconstruction speed and image similarity. Next,

we investigate several types of perturbations in the Style-

GAN2 latent space, such as isotropic Gaussian noise, Prin-

cipal Component directions, or style-mixing the optimized

latent code with a random latent code at certain generator

layers. We find that two adjustments to naive ensembling

are beneficial: (1) appropriately weighting the real image

and the GAN outputs in the ensembled predictions, and (2)

finetuning the classifier on reprojected GAN samples to ac-

count for the domain gap between real images and GAN-

generated variants. We conduct experiments on ensembling

with GAN-generated perturbations on face attribute, cat,

and car classification tasks, and investigate the impacts of

ensemble size and corruptions in the input image. Due to

current limitations in GAN reconstructions and classifier

sensitivities, we are constrained to relatively simple tasks

with small datasets, which may be mitigated with future im-

provements in generative modeling technology.
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