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Abstract

3D object detection is vital for many robotics applica-

tions. For tasks where a 2D perspective range image exists,

we propose to learn a 3D representation directly from this

range image view. To this end, we designed a 2D convo-

lutional network architecture that carries the 3D spherical

coordinates of each pixel throughout the network. Its layers

can consume any arbitrary convolution kernel in place of the

default inner product kernel and exploit the underlying local

geometry around each pixel. We outline four such kernels: a

dense kernel according to the bag-of-words paradigm, and

three graph kernels inspired by recent graph neural network

advances: the Transformer, the PointNet, and the Edge Con-

volution. We also explore cross-modality fusion with the

camera image, facilitated by operating in the perspective

range image view. Our method performs competitively on

the Waymo Open Dataset and improves the state-of-the-art

AP for pedestrian detection from 69.7% to 75.5%. It is also

efficient in that our smallest model, which still outperforms

the popular PointPillars in quality, requires 180 times fewer

FLOPS and model parameters.

1. Introduction

Deep-learning-based point cloud understanding has in-

creased in popularity in recent years. Numerous architec-

tures [9, 11, 14, 19, 17, 22, 21, 28, 30, 33] have been pro-

posed to handle the sparse nature of point clouds, with

successful applications ranging from 3D object recognition

[4, 25, 29], to indoor scene understanding [6, 23] and au-

tonomous driving [2, 8, 24].

Point clouds may have different properties based on the

way they are acquired. For example, point clouds for 3D

object recognition are often generated by taking one or many

depth images from multiple views around a single object. In

other applications such as robotics and autonomous driving,

a device such as a LiDAR continuously scans its surround-

ings in a rotating pattern, producing a 2D scan pattern called

the range image. Each pixel in this image contains a range

value and other features, such as each laser return’s intensity.

The operating range of these sensors has significantly

improved over the past few years. As a result, state-of-the-art

methods [11, 21, 30, 33] that require projecting points into a

dense 3D grid have become less efficient as their complexity

scales quadratically with the range. In this work, we propose

a new point cloud representation that directly operates on

the perspective 2D range image without ever projecting the

pixels to the 3D world coordinates. Therefore, it does not

suffer from the efficiency scaling problem as mentioned

earlier. We coin this new representation perspective point

cloud, or PPC for short. We are not the first to attempt to

do so. [12, 14] have proposed a similar idea by applying a

convolutional neural network to the range image. However,

they showed that these models, despite being more efficient,

are not as powerful as their 3D counterparts, i.e. 3D grid

methods [9, 11, 21, 30, 33] and 3D graph methods [19, 22].

We believe that this quality difference traces its root to the

traditional 2D convolution layers that cannot easily exploit

the range image’s underlying 3D structure. To counter this

deficiency, we propose four alternative kernels (Fig. 1: c,

d) that can replace the scalar product kernel at the heart of

the 2D convolution. These kernels inject much needed 3D

information to the perspective model, and are inspired by

recent advances in graph operations, including transformers

[26], PointNet [18] and Edge Convolutions [28].

We summarize the contributions of this paper as follows:

1) We propose a perspective range-image-based 3D model

which allows the core of the 2D convolution operation to

harness the underlying 3D structure; 2) We validate our

model on the 3D detection problem and show that the re-

sulting model sets a new state-of-the-art for pedestrians on

the Waymo Open Dataset, while also matching the SOTA on

vehicles; 3) We provide a detailed complexity/model-size-
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Figure 1: Overview of existing 3D detectors and our proposed perspective point cloud representation. a) 3D grid-based methods [9, 11, 21, 33]

first voxelizes the 3D space, feeds the 3D dense structure to a 3D convolution network or a 2D top-down network, and make the final

prediction based on 3D voxels. b) 3D graph models [19, 22] builds a graph neural network on top of the sparse point cloud and makes

predictions based on points. c) Our method, PPC, operates directly on the perspective range image view and predicts from pixels. d) It

utilizes a set of specialized 2D convolution layers in the perspective 2D view. We propose four improved kernels in addition to the traditional

inner product kernel (2D conv).

vs.-accuracy analysis, and show that we can maintain the

efficiency benefits from operating on the 2D range image.

Our smallest model with only 24k parameters has higher

accuracy than the popular PointPillars [11] model with over

4M parameters.

2. Related Work

We focus on 3D object detection tasks where a perspective

range image view is available, such as a LiDAR scan for

autonomous driving. We group most of existing works in

this field into 3 categories (see Fig. 1 a,b,c):

3D Grid. The key component for these methods is the vox-

elization stage, where the projected sparse point cloud in 3D

is voxelized into a 3D dense grid structure that is friendly to

dense convolution operations in either 3D or 2D top-down.

Popular works in this category include [11, 30, 33], all of

which apply a PointNet-style [18] encoding for each voxel in

the 3D grid. 3D grid methods have been performing the best

in recent years and appear in some of the top entries on sev-

eral academic and industrial leaderboards [2, 8, 24], thanks

to its strong generalization and high efficiency due to the use

of dense convolutions. There are three major drawbacks to

3D grid methods. 1) Needing a full dense 3D grid poses a

limitation to handle long-range, since both the complexity

and the memory consumption scale quadratically with the

range. 2) The voxel representation has a limited resolution

due to the scalability issue mentioned above. Therefore, the

detection of thin objects such as the pedestrian or signs can

be inaccurate. 3) There is no special handling in the model

for treating occluded areas than true empty areas.

3D Graph. This line of methods differs from the voxelized

grid counterparts in that there is no voxelization stage after

the 3D point cloud projection. Without voxelization, dense

convolutions can no longer apply. Therefore, these meth-

ods resort to building a graph neural network (GNN) that

preserves the points’ spatial relationship. Popular methods

include [16, 19, 28, 22]. Although these methods can scale

better with range, they lag behind the quality of voxelized

grid methods. Moreover, the method requires a nearest neigh-

bor search step to create the input graph for the GNN. Finally,

like in the 3D grid case, these methods also cannot model

occlusion either.

Perspective 2D Grid. There has been minimal prior work

that tries to solve the 3D point cloud representation problem

with a 2D perspective range image alone. [12, 14] applied a

traditional 2D convolution network to the range image. Op-

erating in 2D is more efficient than in 3D because compute

is not wasted on empty cells as in the 3D grid case, nor do
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we need to perform a nearest-neighbor search for 3D points

as in the 3D graph case. Additionally, occlusion is implicitly

encoded in the range image, where for each pixel, the ray

to its 3D position is indeed empty, and the area behind it

is occluded. Unfortunately, perspective 2D grid methods

often cannot match the quality of 3D methods. Our proposed

method also belongs to this category, and the goal of this

paper is to improve the perspective 2D models to match the

accuracy of 3D methods.

Finally, a few wildcard methods do not categorize into

any of the three groups above. F-PointNet [17] generates

proposals via the camera image and validates the proposals

using a point-level rather than scene-level PointNet encoding

[18]. StarNet [15] shares a similar mechanism for proposal

validation, but the proposals generation use farthest-point-

sampling instead of relying on the camera.

3. Perspective Point Cloud Model

In this section, we look at the proposed perspective point

cloud (PPC) model. The heart of the model is a set of

perspective 2D layers that can exploit the underlying 3D

structure of the range-image pixels (Sec. 3.1). Because the

range image can have missing returns, we need to handle

down- and up-sampling differently than in a traditional CNN

(Sec. 3.2). Finally, we outline the backbone network, a

cross-modality fusion mechanism with the camera, and the

detector head in Sec. 3.3, Sec. 3.4 and Sec. 3.5.

3.1. Perspective Point-Set Aggregation Layers

As shown in Fig. 1, we propose a generalization of the

2D convolution network that operates on a 2D LiDAR range

or RGB-D image. Each layer takes inputs in the form of a

feature map Fi of shape [H, W, D], a per-pixel spherical polar

coordinates map Xi of shape [H, W, 3], and a binary mask

Mi of shape [H, W] that indicates the validity of each pixel,

since returns may be missing. The three dimensions in the

spherical polar coordinates {✓,�, r} describe the azimuth,

the inclination, and the depth of each pixel from the sensor’s

view. The layer outputs a new feature map Fo of shape [H,

W, D’].

Each pixel in the output feature map Fo[m,n] is a func-

tion of the corresponding input feature and its neighbor-

hood Fi[m
0, n0] where m0 2 [m � kH/2,m + kH/2] and

n0 2 [n � kW/2, n + kW/2]. kH and kW are neighbor-

hood/kernel sizes along the height and width dimensions:

Fo[m,n] = f({Fi,Xi,Mi}[m
0, n0], 8m0, n0) (1)

where f(.) is the Point-Set Aggregation kernel that re-

duces information from multiple pixels to a single one. A

layer equivalent to the conventional 2D convolution can be

constructed by applying the 2D convolution kernel f2D:

f2D :=
X

m0,n0

W[m0 �m,n0 � n] · Fi[m
0, n0] (2)

where W are a set of trainable weights. Please note that we

omit the depth dimension D and D’ in the kernel definitions

for writing simplicity.

f2D does not depend on the 3D coordinates Xi. There-

fore, it cannot reason about the underlying geometric pattern

of the neighborhood. Next, we will present four kernels that

can leverage this geometric pattern.

Range-quantized (RQ) 2D convolution kernel. Inspired

by the linearization idea in the bag-of-words approach, one

of the simplest ways of adding the range information to

the layer is to apply different sets of weights to the input

feature depending on the relative depth difference of each

neighboring pixel to the center pixel:

f2D+ :=
X

m0,n0

Wr[m
0 �m,n0 � n] · Fi[m

0, n0] · � (3)

Wr =
X

k2K

[↵k  ∆r < �k] ·Wk

∆r = Ri[m
0, n0]�Ri[m,n]

where we define K sets of weights Wk, each with a prede-

fined scalar range [↵k,�k]. These ranges differ from layer

to layer and are computed using histograms over many input

samples. Different weights are applied depending on the

range difference ∆r. Ri denotes the range channel and is

part of Xi. is the indicator function and has the value 1

if the expression is true and 0 otherwise. � is an indicator

function based on the validity of each the participating pixels,

defined as:

� = Mi[m
0, n0] ·Mi[m,n] (4)

� also appears in subsequent kernels.

While f2D+ takes the range information into account, it

is very inefficient in that the number of parameters increases

by K-fold, which can be significant and cause overfitting.

Moreover, the amount of computation also increases by K-

fold.

Self-attention kernel. Given the sparse nature of the range

image data in the 3D space, graph operation are a more natu-

ral choice than projecting to a higher-dimensional space. The

transformer [26] is one of the most popular graph operators.

It has found success in both NLP [7] and computer vision

[3]. In its core, the transformer generates weights depending

on the input features and spatial locations of the features,

and therefore does not require a set of weights in a dense

form. A transformer-inspired kernel looks like follows:

fSA :=
X

m0,n0

softmax(Fi[m,n]T ·WT
q · (Wk · Fi[m

0, n0] + r))

·Wv · Fi[m
0, n0] · � (5)
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r = Wr�(Xi[m,n],Xi[m
0, n0])

where Wq, Wk, Wv and Wr are four sets of trainable

weights. �(., .) is an asymmetric positional encoding be-

tween two points. It is defined as:

�(x,x0) := {r0 · cos(∆✓) · cos(∆�)� r,

r0 · cos(∆✓) · sin(∆�),

r0 · sin(∆✓)} (6)

∆✓ = ✓0 � ✓, ∆� = �0 � �

where x = {✓,�, r}, x0 = {✓0,�0, r0} are the azimuth, in-

clination and depth of the points. �(., .) is also used in

subsequent kernels.

This asymmetric positional encoding has a geometric

meaning. Namely, it is in an oblique Cartesian frame

viewed from the sensor’s location. For each pixel, after

rotating the sphere by �✓ and ��, x has the spherical po-

lar coordinates {0, 0, r}, while x0 is at {∆✓,∆�, r0}. We

project them to Cartesian, which yields {r, 0, 0} for x and

{cos(∆✓) ·cos(∆�) ·r0, cos(∆✓) ·sin(∆�) ·r0, sin(∆✓) ·r0}
for x0. The encoding is then their element-wise difference.

Note that the oblique Cartesian frame is different from pixel

to pixel, but does not depend on the weights of each layer,

and therefore can be pre-computed once for all layers per

sample. This positional encoding is also used for the subse-

quent kernels.

PointNet kernel. While the transformer has seen great suc-

cess in NLP and computer vision, PointNet [18] on the other

hand has laid the groundwork to the majority of works for

3D point cloud understanding in the past years. It is widely

used in robotics, thanks to VoxelNet [33], PointPillars [11]

and PointRCNN [22]. The PointNet formulation is yet quite

simple. It learns a multi-layer perceptron (MLP) that en-

codes the neighboring features and their relative coordinates

to the center, and pools the encodings via max-pooling. Our

PointNet-inspired kernel looks as follows:

fPN := max
m0,n0

MLP(

[Fi[m
0, n0], �(Xi[m,n],Xi[m

0, n0])],Θ) · � (7)

where Θ are trainable weights for the MLP.

EdgeConv kernel. The edge convolution proposed by [28]

is very similar to PointNet. In PointNet, the input to the MLP

is the feature itself and a relative positional encoding. The

edge convolution adds one more feature that is the center

feature to the input:

fEC := max
m0,n0

MLP(

[Fi[m
0, n0],Fi[m,n], �(Xi[m,n],Xi[m

0, n0])],Θ) · �
(8)

Although the last three, the Transformer, the PointNet,

and EdgeConv kernels, are inspired by the 3D graph litera-

ture discussed in Sec. 2, they do not result in the inability

to model occlusion and the inefficiency due to the need of

the nearest neighbor search for each point. The perspective

point-set aggregation layer can model occlusion just like

any 2D range image-based method. Moreover, it does not

require the nearest neighbor search, as it selects neighbors

based on the distances in the 2D range image rather than in

3D. Finding neighbors in a dense 2D grid is trivial.

3.2. Smart Down-Sampling

Unlike RGB images, the LiDAR range or RGBD images

can have a noticeable amount of invalid range pixels in the

image. It can be due to light-absorbing or less reflective

surfaces. In the case of LiDAR, quantization and calibration

artifacts can even result in missing returns that form a regular

pattern, where the down-sampling with a fixed stride can

inadvertently further emphasize the missing returns. There-

fore, we define a smart down-sampling strategy to avoid

missing returns as we sample: When we down-sample with

a stride of, for example, 2⇥2, we select 1 pixel from 4 neigh-

boring pixels. But instead of always selecting the first or the

last pixel, we select a valid pixel, if available, which is the

closest to the centroid of all valid pixels among the four.

We define the down-sampling layer as follows (for brevity,

we depict the math for the 1D space here):

Fo[m] = Fi[m̂], Xo[m] = Xi[m̂], Mo[m] = Mi[m̂]

(9)

m̂ = arg min
m02S

kRi[m
0]� µk2, µ =

P

m02S Ri[m
0]

kSk0

where S contains valid s0 2 m · �, . . . , (m + 1) · � � 1
according to the mask Mi, and � is the intended stride. Ri

is the range part of the spherical polar coordinates Xi.

During up-sampling, technically, we would need to gener-

ate new points Xo from the input 3D coordinates Xi, which

is difficult to do. Luckily, an up-sampling usually mirrors a

previous down-sampling and never exceeds the original input

resolution. Therefore, we can remember the coordinates and

the mask from the input of a corresponding down-sampling

layer and reuse them for after up-sampling. We use the

zeros vector as features for the new pixels generated from

up-sampling. The up-sampling layer is the reverse operation

of the down-sampling layer:

Xo =Xi0 , Mo = Mi0

Fo[m] =

(

Fi[m̄], if m = m̂ and m 2 S

0, else
(10)

m̂ =arg min
m02S

kRo[m
0]� µk2, µ =

P

m02S Ro[m
0]

kSk0
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where S contains all valid s0 2 m̄ · �, . . . , (m̄+ 1) · � � 1
according to the mask Mi0 where � is the up-sampling stride.

Xi0 and Mi0 are values taken from a previous layer i0 whose

down-sampling with stride S yields the input layer i. Ro is

the range part of the spherical polar coordinates Xo.

3.3. Backbone Architecture

Now that we have both the perspective point-set aggre-

gation layers and the sampling layers defined, we look at

the backbone architecture to chain the layers together into

a network. We performed a low-effort manual architecture

search using the 2D convolution kernel and kept using the

best architecture for the remaining experiments. Our net-

work builds on top of the building blocks proposed in [14]:

the feature extractor (FE) that extracts features with an op-

tional down-sampling, and the feature aggregator (FA) that

merges most features to lower-level features to create skip

connections. Our pedestrian network consists of 4 FE and 1

FA blocks, and predictions are made on half of the input res-

olution. Since the vehicles appear wider in the range image,

we extend the network to 8 FE and 5 FA blocks. Please find

an illustration of the architecture in Supp. Sec. A.

3.4. Point-Cloud-Camera Sensor Fusion

The perspective range image representation provides a

natural way to fuse camera features to point cloud features

since each location in the range image can be projected into

the camera space. For each camera image, we first compute

dense features using a modern convolution U-network [20]

(please see Supp. Sec. B for details). We project it to a

location in its corresponding camera image for each point in

the range image. We then collect the feature vector computed

at that pixel in the camera image and concatenate the feature

vector to the range image features. A zeros feature vector

is appended, should an area be not covered by any camera.

This approach can apply to any layer since there is always a

point associated with each location. We train our networks

end-to-end, with the camera convolution networks randomly

initialized.

3.5. CenterNet Detector

We validate our point cloud representation via 3D object

detection. We extend the CenterNet [31] to 3D: For each

pixel in the backbone network’s output feature map, we

predict both a classification distribution and a regression

vector. The classification distribution contains C + 1 targets,

where C is the number of classes plus a background class.

During training, the classification target is controlled by

a Gaussian ball around the center of each box (see Supp.

Fig. 5): si,j = N (||xi �bj ||2,�), where x are points and b

are boxes. � is the Gaussian standard deviation, set to 0.25

meters for pedestrians and 0.5 meters for vehicles. For 2D

detection in images, where CenterNet was originally pro-

posed, the box center is always a valid pixel in the 2D image.

In 3D, however, points are sparse, and the closest point to the

center might be far away. Therefore, we normalize the target

score by the highest score within each box to ensure that

there is at least one point with a score 1.0 per box. We then

take the maximum over all boxes and get the final training

target score per point: ycls
i = maxj si,j/maxi2Bj

si,j .

The regression target y
reg
i for 3D detection contains 8

targets for 7 degrees-of-freedom boxes: a three-dimensional

relative displacement vector from the point’s 3D location to

the center of the predicted box; another three dimensions

that contain the absolute length, width, and height; and a

single angle split into its sine and cosine forms in order to

avoid discontinuity around 2⇡.

We used the penalty-reduced focal loss for the classifica-

tion, as proposed by [31], and the `1-loss for the regression.

We then train with a batch size of 256 over 300 epochs with

an Adam optimizer. The initial learning rate is set to 0.001,

and it decays exponentially over the 300 epochs.

All of our experiments applies the CenterNet detector

head to the final feature map of the backbone. We have

observed no significant difference in quality between Cen-

terNet and other single-shot detectors such as the SSD [13].

Two-stage methods, such as [22], usually outperform single-

stage methods on vehicles by a significant margin. However,

the impact on pedestrians is less prevalent.

4. Experiments

4.1. Waymo Open Dataset

We conducted experiments on the pedestrians and vehi-

cles of the Waymo Open Dataset [24]. The dataset contains

1000 sequences, split into 780 training, 120 validation, and

100 test. Each sequence contains 200 frames, where each

frame captures the full 360 degrees around the ego-vehicle

that results in a range image of a dimension 64⇥2650 pixels.

The LiDAR has a maximum range of around 100 meters.

Metrics. We use metrics defined by the Waymo Open

Dataset. AP: Average precision at 0.5 IOU for vehicles and

0.7 IOU for pedestrians. APH: Same as AP, but also takes

the heading into account when matching boxes. 3D vs. BEV:

Whether IOU is measured on rotated 3D boxes or projected

top-down rotated 2D boxes. L1 vs. L2: Level of difficulty,

L2 include more difficult boxes.

Results for pedestrians and vehicles detections are high-

lighted in Tab. 1 and Tab. 2. Fig. 3 shows a few example

results. Our method significantly outperforms all recent

works on the pedestrian category, including the 3D grid or

graph representations methods. This boost is not surprising

for two reasons: a) pedestrians are tall so that the perspective

view captures its full shape, b) they are also thin so that the

voxels in the voxel-based methods end up too large and there-

fore cannot accurately make predictions. We perform very
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Method
3D BEV 3D APHL2 by distance

APL1 APHL2 APL1 APHL2 <30m 30-50m >50m

LaserNet CVPR’19 [14]* 62.9 45.4 69.7 50.4 62.6 39.2 17.4

PointPillars CVPR’19 [11]* 61.6 43.0 70.4 49.5 54.2 40.7 25.7

MultiView CORL’19 [32] 65.3 - 74.4 - - - -

StarNet Arxiv’19 [15] 68.3 52.8 73.8 57.3 63.1 52.1 35.5

PPBA-StarNet ECCV’20 [5] 69.7 53.9 74.9 58.4 64.4 53.2 36.6

Pilar-based ECCV’20 [27] 72.5 - 78.5 - - - -

PPC + Conv2D (Ours) 63.4 47.0 71.3 53.1 63.4 42.0 19.0

PPC + RQ-Conv2D (Ours) 68.4 54.3 76.9 61.6 67.1 52.6 32.2

PPC + Self-Attention (Ours) 57.9 43.7 65.3 49.5 60.3 39.8 17.1

PPC + PointNet (Ours) 72.4 57.9 79.3 63.9 70.3 56.3 35.5

PPC + EdgeConv (Ours) 73.9 59.6 80.6 65.6 71.5 58.4 38.1

PPC + EdgeConv + Camera (Ours) 75.5 61.5 82.2 67.6 72.3 61.3 41.3

Table 1: Pedestrians on the Waymo Open Dataset validation set. 3D APHL2 is the primary metric for the dataset. Results denoted with *

are based on our reimplementation. Others are taken from papers or via email communication with paper authors. Our method significantly

improves over recent works.

Method
3D BEV 3D APHL2 by distance

APL1 APHL2 APL1 APHL2 <30m 30-50m >50m

LaserNet CVPR’19 [14]* 56.1 48.4 73.1 63.9 75.1 45.6 21.7

PointPillars CVPR’19 [11]* 56.1 48.2 77.2 67.6 - - -

MultiView CORL’19 [32] 62.9 - 80.4 - - - -

StarNet Arxiv’19 [15] 55.1 48.3 67.7 60.0 79.1 43.1 20.2

PV-RCNN CVPR’20 [21]† 70.3 64.8 83.0 67.6 91.0 64.5 35.7

PPBA-PointPillars ECCV’20 [5] 61.8 53.4 81.4 72.2 - - -

LSTM ECCV’20 [10] 63.4 - - - - - -

Pillar-based ECCV’20 [27]† 67.7 - 86.1 - - - -

RCN CORL’20 [1] 69.5 - 83.4 - - - -

PPC + Conv2D (Ours) 60.3 52.2 78.1 68.9 79.7 49.0 24.3

PPC + RQ-Conv2D (Ours) 56.8 49.2 76.2 67.2 75.7 46.1 22.8

PPC + PointNet (Ours) 64.5 56.2 80.5 71.6 80.7 54.6 31.2

PPC + EdgeConv (Ours) 65.2 56.7 80.8 71.8 81.4 55.1 31.2

Table 2: Vehicles on the Waymo Open Dataset validation set. 3D APHL2 is the primary metric for the dataset. Results denoted with * are

based on our reimplementation. Others are taken from papers or via email communication with paper authors. Top two results per column

are marked bold. Our method performs better than most published methods except for PV-RCNN [21]. † PV-RCNN and RCN relies on a

two-stage detection pipeline, and is therefore superior quality but less efficient than the other models in this table.

competitively on vehicles, outperforming recently published

methods, including several published this year.

4.2. Detailed Kernel Analysis

We take a closer look to compare the five kernels intro-

duced in Sec. 3.1. Since different kernels have different

computational complexity, it is unfair to compare them by

their quality alone. Fig. 2a shows a complexity-vs.-accuracy

analysis, while Fig. 2b shows the model-size-vs.-accuracy

analysis. For each kernel, we train multiple models with

each with a different depth multiplier, ranging from 0.25 to

EdgeConv FE1 FE2 FE3 FA FE4 Conv2D

59.6 56.8 54.9 51.7 53.2 55.2 47.0

Table 3: Ablation to determine where the EdgeConv kernels are

most effective. We start with a network of only 2D Conv kernels,

and replace any one of the backbone blocks with EdgeConv. Ex-

periments were done on the pedestrians of Waymo Open Dataset

validation set. The APHL2 metric is reported.
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(a) Complexity vs. accuracy

(b) #Parameters vs. accuracy

Figure 2: Detailed analysis of the different Point-Set Aggregation

Kernels. For each kernel, we train up to 4 models with a depth

multiplier ranging from 0.25 to 2.0. PointPillars [11] and Star-

Net [15] are also plotted for reference. The operating points for

PointPillars and StarNet are from one single model each, but with

different input dimensions. a) Complexity vs. accuracy. b) Model

size vs. accuracy. Experiments done on the Waymo Open Dataset

pedestrians validation set. The kernels with the best accuracy are

PointNet and EdgeConv, while the most efficient kernels are the

baseline 2D convolution and the transformer. We shed some light

to the sub-par quality of the transformer in Sec. 4.2. Note that the

most efficient PointNet kernel outperforms PointPillars in quality,

while needing 180 times fewer FLOPS and model parameters.

2.0. A depth multiplier is a factor that is applied to the num-

ber of channels in each layer in a network and is a simple

way to yield multiple models at different complexity and

accuracy.

Complexity vs. accuracy. The 2D kernel baseline is one

of the least expensive methods, as expected. The Range-

Quantized 2D kernel with quantization of 4 buckets adds

approximately four times to the complexity and improves

EdgeConv baseline 59.6

W/o smart down-sampling 58.2

Cartesian instead of polar 54.2

Table 4: Ablation on the polar vs. Cartesian parametrization and

the smart down-sampling strategy. Experiments done on the pedes-

trians of the Waymo Open Dataset validation set. The APHL2

metric is reported.

significantly over the baseline. Self-attention is fairly cheap

in computation. However, it does not perform as well as any

other kernel. We believe that the reason might be that we kept

the kernel size to be 3⇥3 throughout the network, and the

transformer works better with larger kernel sizes. PointNet

and EdgeConv have a relatively small difference in quality

at around 1-2% at 20-30% difference in computation.

Model size vs. accuracy. PPC has a significant advantage

over existing models in terms of model size. Our smallest

model, a PointNet kernel model with a depth multiplier of

0.25, achieves higher accuracy than the baseline PointPillars,

while only having 24k parameters compared to close to 5M

for PointPillars.

4.3. Mix-and-Match Kernels

In the previous section, we noticed that a network con-

sisting of all EdgeConv kernels delivers the strongest results.

However, we also observed that the EdgeConv kernel with

the same depth multiplier is not as efficient as the 2D kernel.

In this ablation, we study if we can keep most of the 2D

kernels while only applying the EdgeConv in a few layers.

Tab. 3 shows the accuracy numbers. Conv2D and Edge-

Conv are networks of only 2D or EdgeConv kernels and

serve as a pair of pseudo upper and lower bounds. We then

replace each of the blocks of the backbone from 2D to Edge-

Conv. Interestingly, replacing either the first or the last block

generates the most benefits. Since our backbone resembles a

U-Net [20], it means that the EdgeConv kernel has the most

impact with larger resolutions.

4.4. Additional Ablation

Point-Cloud-Camera Sensor Fusion. Each frame in the

Waymo Open Dataset comes with five calibrated camera

images capturing views from the front and sides of the car.

We downsize each camera image to 400⇥600 pixels and use

a convolutional neural network to extract a 192-dimensional

feature at each location. These features are concatenated

to one of the layers in the perspective point cloud network.

We experimented with fusing the features at different layers

of the network and found that the model performed better

regardless of the layer we chose to fuse. Our best result in

Tab. 1 is obtained when the camera features fuses at the input

to the first extractor layer.
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Figure 3: (Best viewed in color) Example pedestrian and vehicle detection results of PPC + EdgeConv on the Waymo Open Dataset. White

boxes are groundtruth and blue boxes are our results. Left: Our method performs well when objects are close and mostly visible. Center: It

can also handle large crowds with severe occlusion. Many of the false-negatives in the center bottom image have no points in the groundtruth

boxes. Right: It can also detect objects in the long range where points become sparse. Note in the top right image, the pedestrian on the

right (highlighted in a red box on the image) is sitting in a chair. And in the bottom right example, the there is severe occlusion (green boxes)

for the two cars behind the front two.

Sensor Polar vs. World Cartesian. In (7), the asymmetric

positional encoding is defined in the spherical polar coor-

dinate system around the sensor. It is possible to take the

displacement vector between two points in the projected

world Cartesian frame instead. If so, the method’s overall

concept becomes very similar to PointNet++ [19], with the

main difference being that the neighbors of a point are taken

from the perspective range image grid rather than through

nearest neighbor search. Operating in the polar coordinate

system is natural in the range image. However, the Cartesian

system has a strong prior in the heading since most objects

move perpendicular to the ego-vehicle. In Tab. 4 we show

the ablation of polar vs. Cartesian for the PPC + EdgeConv

model on pedestrians. It appears that the benefits of operat-

ing in the polar coordinate system significantly outweigh the

drawbacks at 59.6% vs. 54.2% APHL2.

Smart Down-Sampling. The smart down- and up-sampling

strategy outlined in Sec. 3.2 allows the down-sampling to

avoid missing returns at the cost that the down-sampling no

longer follows a regular pattern. As shown in Tab. 4, the

smart sampling technique yields 1.4% benefit in APHL2.

5. Conclusion and Limitations

This paper presents a new 3D representation based on the

range image, which leverages recent advances in graph con-

volutions. It is efficient and yet powerful, as demonstrated

on pedestrians and vehicles on the Waymo Open Dataset.

It is not without limitations. Most 3D detection tasks use a

7 degrees-of-freedom that only has a yaw rotation around the

Z-axis in the world coordinate system. Suppose the sensor

has a significant pitch or roll wrt. the world coordinate

system, the boxes no longer appear only yaw-rotated in the

range image. It is an issue for indoor scene datasets but

less of a problem for autonomous driving configurations,

where the rotating LiDAR usually sits upright to the world

coordinate system.

Another challenge is data augmentation. [5] in Tab. 1 and

Tab. 2 shows a significant improvement by applying data

augmentation to PointPillars [11] and StarNet [15]. In 3D,

data augmentation can be diverse and effective. When points

are in the dense range image form, we can no longer apply

most of them without disturbing the dense structure. We also

observed that the EdgeConv kernel network is not sensitive

to strategies that are still reasonable in the range image, e.g.,

random flip and random points drop.
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