
A Closer Look at Fourier Spectrum Discrepancies

for CNN-generated Images Detection

Keshigeyan Chandrasegaran Ngoc-Trung Tran Ngai-Man Cheung

Singapore University of Technology and Design (SUTD)

{ keshigeyan, ngoctrung tran, ngaiman cheung } @sutd.edu.sg

Abstract

CNN-based generative modelling has evolved to produce

synthetic images indistinguishable from real images in the

RGB pixel space. Recent works have observed that CNN-

generated images share a systematic shortcoming in repli-

cating high frequency Fourier spectrum decay attributes.

Furthermore, these works have successfully exploited this

systematic shortcoming to detect CNN-generated images

reporting up to 99% accuracy across multiple state-of-the-

art GAN models.

In this work, we investigate the validity of assertions

claiming that CNN-generated images are unable to achieve

high frequency spectral decay consistency. We meticu-

lously construct a counterexample space of high frequency

spectral decay consistent CNN-generated images emerging

from our handcrafted experiments using DCGAN, LSGAN,

WGAN-GP and StarGAN, where we empirically show that

this frequency discrepancy can be avoided by a minor ar-

chitecture change in the last upsampling operation. We

subsequently use images from this counterexample space to

successfully bypass the recently proposed forensics detector

which leverages on high frequency Fourier spectrum decay

attributes for CNN-generated image detection.

Through this study, we show that high frequency Fourier

spectrum decay discrepancies are not inherent character-

istics for existing CNN-based generative models—contrary

to the belief of some existing work—, and such fea-

tures are not robust to perform synthetic image de-

tection. Our results prompt re-thinking of using high

frequency Fourier spectrum decay attributes for CNN-

generated image detection. Code and models are avail-

able at https://keshik6.github.io/Fourier-

Discrepancies-CNN-Detection/

1. Introduction

With serious concerns over Deepfakes being widely used

for malicious purposes [18, 19, 30, 37, 2, 36, 9, 32], detec-

tion of deepfake multimedia content has become an impor-

tant research field. With substantial improvement of CNN-

based generative modelling in the recent years [22, 45, 23,

24, 21, 35, 8, 3, 46, 33, 27, 1, 4, 16, 38, 39], it is becom-

ing more and more difficult to assess the “fakeness” of such

synthetic content in the RGB pixel space.

1.1. Fourier spectrum discrepancies in CNN
generated images

Recent research suggests that CNN-based generation

methods are unable to reproduce high frequency distribu-

tion of real images. Existing work tends to conclude that

this incompetency is an intrinsic property of CNN-based

generative models [12, 10, 25]. While Zhang et al. [44] and

Wang et al. [42] report that CNN generated images have

frequency artifacts, Dzanic et al. [12] and Durall et al. [10]

suggest spectrum discrepancies in high frequency: CNN-

generated images at the highest frequencies do not decay

as usually observed in real images (Figure 1). In particular,

• Dzanic et al. [12] analyze high frequency of real and

deep network generated images, and conclude that

“deep network generated images share an observable,

systematic shortcoming in replicating the attributes of

these high-frequency modes”.

• Durall et al. [10] observe that “CNN based generative

deep neural networks are failing to reproduce spectral

distributions”, and “this effect is independent of the

underlying architecture”.

• Dzanic et al. [12] take a step further and propose to

exploit this frequency discrepancies for detection of

deep network generated images, claiming an accuracy

of up to 99.2% across multiple state-of-the-art GAN

and VAE models.

Some works also propose different techniques to

disguise these high frequency discrepancies via post-

processing the deep network generated images [12, 25], or

modifying the GAN training objective to avoid these dis-

crepancies [10].
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Figure 1. The curves show the average azimuthal integration over

the power spectrum. (See section 3). Top row shows the evalua-

tion on DCGAN [34], LSGAN [31], WGAN-GP [17]. Note the

discrepancies at the highest frequencies, the same as reported in

recent works. Note also that these models use transpose convolu-

tions. The bottom row shows the evaluation after replacing the last

feature map scaling operation with nearest and bilinear interpola-

tion methods. Refer to table 1 for experiment codes. All evaluation

are done using CelebA [29] (128x128). We observe that spectral

consistent GANs are obtained when using nearest and bilinear in-

terpolation methods for the last feature map scaling operation.

It should be noted that the cause of this discrepancy1

has not been agreed upon. Zhang et al. [44] and Durall

et al. [10] suggest that this discrepancy could be caused by

transposed convolution. As transposed convolution is used

throughout the generator architectures, it is difficult to re-

place them. Therefore, Durall et al. [10] propose spectral

regularization to counteract this throughout the GAN train-

ing. Meanwhile, Dzanic et al. [12] attribute this discrepancy

to the linear dependencies in the spectrum of convolutional

filters [25], which hinder learning of high frequencies.

1.2. CNNgenerated Image Detectors

Many works have addressed the possibilities of creat-

ing detectors to identify synthetic images apart from real

images. Though synthetic image detectors (CNN-based)

1The terms spectral discrepancies and spectral inconsistency are used

invariably where we refer to high frequency spectral decay discrepancies.

We also use the terms CNN-generated and synthetic invariably.

worked reasonably with RGB inputs [42, 5], with spec-

tral discrepancies being observed, several works have pro-

posed to use the corresponding Fourier representation to

train these detectors [44, 13]. In particular, Frank et al. [13]

showed that detectors using frequency domain yielded bet-

ter results compared to using the RGB counterpart.

Though observations corresponding to distinguishable

frequency footprints being left by CNN-generated images

remained mostly qualitative, Dzanic et al. [12] and Durall

et al. [10, 11] studied the spectral decay attributes and quan-

tified this behaviour via averaging the power spectrum over

frequencies radially to represent them as 1D information.

Through this, they observed high frequency spectral decay

inconsistencies in CNN-generated images. Furthermore,

Dzanic et al. [12] proposed to use a simple KNN classi-

fier using high frequency spectral attributes (3 features ex-

tracted per image) that surprisingly obtained very high ac-

curacy in identifying synthetic images only with very small

amount of training data. Similarly, Durall et al. [11] used

the entire 1d-power spectrum (contains all frequency infor-

mation) as features to perform detection using Logistic re-

gression, SVM and K-means clustering algorithms. These

detectors [12, 11] rely on the belief that high frequency de-

cay discrepancies are intrinsic in CNN-generated images.

1.3. Our contributions

In this work, we take a closer look at the high frequency

decay discrepancies in CNN-generated images. Analysis

of CNN-generated images is a daunting task: a large num-

ber of different architectures, algorithms and objective func-

tions have been proposed to train generators. Instead, our

study focuses on the last layer of the generators. Our jus-

tification is as follows. Based on Sampling Theorem [20],

the frequency contents of the outputs of individual layers

are limited by the sampling resolution of the corresponding

outputs. As previous work has reported the discrepancies

between real and CNN-generated images at the highest fre-

quencies, we hypothesize that inner generator layers (which

produce lower resolution outputs) are not directly responsi-

ble for the high frequency discrepancies. Therefore, we fo-

cus on the last upsampling layer of generative CNN models.

Due to our focus being localized at the last layer, we

are able to pinpoint the component that is related to this

discrepancy across multiple GAN loss functions, architec-

tures, datasets and resolutions. Our candidate GANs are

similar to Durall et al. [10]: DCGAN [34], LSGAN [31],

WGAN-GP [17] and we also extend to StarGAN [7]. Our

experiments suggest that the frequency discrepancies can be

largely avoided by simply modifying the feature map scal-

ing of the last layer. Importantly, using the same training

algorithms, objective functions and network architectures

(except using a different scaling in the last layer) as in stan-

dard GAN models, we are able to avoid the spectral dis-
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crepancies. Therefore, our work provides counterexamples

to argue that high frequency discrepancies are not intrinsic

for CNN-generated images. Furthermore, we are able to

successfully bypass the synthetic image detector proposed

by Dzanic et al. [12] with only such change in the last scal-

ing step, showing that such approach may not be reliable

for detection of deep network generated images. The key

takeaway from our work is:

• High frequency spectral decay discrepancies are not

intrinsic for CNN-generated images. Therefore, we

urge re-thinking in using such features for CNN-

generated image detection.

2. Related Work

Dzanic et al. [12] show that CNN-generated images

(GANs and VAEs) demonstrate different Fourier spectrum

decay characteristics. Since the spectra of natural images

tend to behave following the power law [41], Dzanic et al.

[12] show that the Fourier modes of deep network gener-

ated images at the highest frequencies did not decay as seen

in real images, but instead stayed approximately constant.

Furthermore, they propose to exploit these discrepancies to

detect CNN-generated synthetic images by fitting a decay

function to the reduced spectra, and using the parameters of

the fitted decay function to build a simple kNN classifier.

Durall et al. [10] show that popular GAN image gener-

ators fail to approximate the spectral distributions of real

data, and they attribute this to the use of transpose convo-

lutions for upsampling. They show that this effect is inde-

pendent of the underlying architecture using 1-dimensional

spectral characteristics of images generated from DCGAN

[34], LSGAN [31], WGAN-GP[17] and DRAGAN [26].

Since transpose convolutions are used in the entire genera-

tor models, the propose to counteract their effects by adding

a spectral regularization term to the Generator, thereby pe-

nalizing the generator for spectral distorted samples.

Khayatkhoei and Elgammal [25] suggest the presence of

a systematic bias in GANs against learning high frequen-

cies. They specifically show that for a given kernel size,

as resolution increases, the correlation/ dependency of the

kernel’s spectrum increases thereby systematically prevent-

ing GANs to learn high frequencies without affecting the

adjacent frequencies. To alleviate this shortcoming, they

propose frequency shifted generators whose frequencies are

shifted towards specific high frequencies.

3. Background

The 2D discrete Fourier transform F (kx, ky) of a M×N

2D image f(x, y) can be written as,

F (kx, ky) =
1

MN

M−1∑

u=0

N−1∑

v=0

f(u, v)e−i2π( kxu

M
+

kyv

N
) (1)

for kx ∈ {0, 1, 2, ...,M − 1}, ky ∈ {0, 1, 2, ..., N − 1}.

We follow the convention in [12, 10] and compute the az-

imuthally average of the magnitude of Fourier coefficients

over radial frequencies to obtain the reduced spectrum and

normalize it. The reduced spectra indicates the strength

of the signal with respect to different spatial frequencies.

Since our study focuses on high frequency Fourier at-

tributes, we pay attention to the last 25% of the spatial fre-

quencies (0.75 - 1.0 normalized spatial frequencies) similar

to [12].

The Sampling Theorem ([20], chapter 4.2) states that:

A bandlimited image f(x, y) with bandwidths ξx0, ξy0 can

be recovered without error from the sample values pro-

vided the sampling rate is greater than the Nyquist rate:

2ξx0, 2ξy0. The image f(x, y) with bandwidths ξx0, ξy0
means that there is no frequency content outside a bounded

region in the frequency plane defined by ξx0, ξy0. Details

and mathematical proofs can be found in [20] chapter 4.2.

4. Last Upsampling Operation and Fourier

Discrepancies

Based on last section, the maximum frequency repre-

sented by a discrete 2D signal is constrained by the spa-

tial resolution (sampling) of the signal. Previous work has

consistently reported discrepancies in the highest frequen-

cies [10, 12]. Therefore, we hypothesize that inner genera-

tor layers that produce lower resolution outputs may not be

directly responsible for the high frequency discrepancies.

Therefore, we focus on the last upsampling step. In partic-

ular, we split the last step into 2 operations, 1) Feature map

scaling and 2) Convolution.

4.1. Feature Map Scaling

Feature map scaling is a non-parametric operation that

scales the input in both dimensions by some factor (Usually

2 in most GAN architectures). In this work, we focus on

3 common feature map scaling techniques. 1) Zero-insert

scaling inserts zero between every row and column, scaling

the input in both dimensions which is also used by transpose

convolutions. 2) Nearest interpolation scales the input by

inserting nearest neighbour values. 3) Bilinear interpola-

tion scales the input by inserts new values by taking the

weighted average of adjacent values.

From frequency perspective, zero-insertion introduces

the largest amount of high frequency content as it replicates

the low frequency spectrum for the high frequencies [44],

followed by billinear and nearest interpolation. We focus

more on the “spectral trend” than the frequency values, and

show a schematic example of these upsampling effects on

the normalized reduced spectra in Figure 2 by upsampling

a reference image of 128x128 from CelebA. [29]
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Figure 2. Example showing normalized spectral effects of upsam-

pling an image. Vertical line at 88 shows the maximum radial

frequency of reference image.

4.2. Convolution

The subsequent convolution operation learns kernels in

order to satisfy the optimization objective. Convolutional

kernels are capable of suppressing/ amplifying high fre-

quencies. e.g. A Gaussian kernel suppresses high fre-

quencies and a bilateral kernel amplifies high frequencies.

So when designing upsampling blocks in GANs, the gen-

eral intuition is that irrespective of the feature map scaling

method, the kernels will learn to manipulate the scaled fea-

ture maps to satisfy the objective function.

5. Experiments

Here we discuss the main experiments. Additional ex-

periments and analysis can be found in Supplementary.

In order to investigate the effects of these 2 operations,

we design a rigorous test bed that can address feature map

scaling, kernel size and number of kernels independently.

Our aim is to isolate the effects of these 2 operations and

understand their roles (if any) in causing the high frequen-

cies discrepancies. We use celebA [29] dataset at 128x128

resolution and use 3 GANs with identical architectures but

different loss functions namely 1) DCGAN [34], 2) LS-

GAN [31] and 3) WGAN-GP [17]. All baseline models

consist of transpose convolutions with kernel size 4 iden-

tical to most out of the box GAN architectures including

CycleGAN [46], StarGAN [7] and VQ-VAE [40].

Proposed Test Bed. Table 1 summarizes our test bed.

All baseline experiments using transpose convolutions of

kernel size 4 are indicated by the experiment code Base-

line and our handcrafted experiments are indicated using

the 3 character code: An experiment code of X.Y.Z indi-

cates X type of feature map scaling (Possible values are Z

: Zero-insertion, N: Nearest interpolation, B: Bilinear inter-

polation), Y number of convolutional blocks and Z sized

convolutional kernels for the last upsampling step. e.g. A

code of N.1.5 indicates nearest interpolation feature map

scaling with a single convolutional block of 5x5 kernel for

the last upsampling step. Note that we focus on up scaling

Code Details

Baseline Transpose convolution (4x4 kernel)

N.1.5 Nearest Upsampling + 1 conv block of 5x5 kernel

Z.1.5 Zero insert Upsampling + 1 conv block of 5x5 kernel

B.1.5 Bilinear Upsampling + 1 conv block of 5x5 kernel

N.1.3 Nearest Upsampling + 1 conv block of 3x3 kernel

N.1.7 Nearest Upsampling + 1 conv block of 7x7 kernel

Z.1.3 Zero insert Upsampling + 1 conv block of 3x3 kernel

Z.1.7 Zero insert Upsampling + 1 conv block of 7x7 kernel

B.1.3 Bilinear Upsampling + 1 conv block of 3x3 kernel

B.1.7 Bilinear Upsampling + 1 conv block of 7x7 kernel

N.3.5 Nearest Upsampling + 3 conv blocks of 5x5 kernel

Z.3.5 Zero insert upsampling + 3 conv blocks of 5x5 kernel

B.3.5 Bilinear upsampling + 3 conv blocks of 5x5 kernel

Table 1. Test Bed to study the effect of feature map scaling and

convolution in the last upsampling step of the generator, for dif-

ferent GANs: DCGAN, LSGAN, WGAN-GP, StarGAN. “Base-

line” refers to public released code of the GAN model, which uses

transpose convolution of 4×4 kernel. For other models, we replace

the last transpose convolution in Baseline with the corresponding

configurations shown. We emphasize that we only modify the last

step specified as above; the algorithms, learning objectives and ar-

chitectures (except the last step) are kept identical as the public

released code for different GAN models.

by a factor of 2 as used in most GAN models. Our test bed

summary is shown in table 1 and it contains experiments

addressing the following factors:

Feature Map scaling. In order to investigate the effect

of feature map scaling on high frequency Fourier attributes,

we use experiments Z.1.5, N.1.5 and B.1.5. We explicitly

conduct experiments using zero-insert feature map scaling

as sanity check experiments to verify the effects of trans-

pose convolutions. Do note that we had to use odd size

kernel to maintain the spatial size after scaling, and hence

we use kernels of size 5 for the last convolutional block.

Kernel Size. We use experiments x.1.3, x.1.5 and x.1.7

to investigate the kernel size effects on high frequency

Fourier behaviour. Here x refers to Z, N or B for different

types of scaling as discussed.

Number of kernels. Further, we use experiments x.1.5

and x.3.5 to study the effect of number of kernels on the

high frequency Fourier behaviour.

6. Metrics

Spectral behaviour of synthetic images have been anal-

ysed only qualitatively, not quantitatively in previous works

[12, 10, 11]. Defining a spectral consistency metric is non-

trivial and to be consistent, we will qualitatively analyse

the high frequency spectral distribution in our experiments.

Synthetic images are spectral consistent if they demonstrate

power spectrum decay behaviour similar to their training

data, and if not, vice versa. We use 4000 real and GAN

images to generate spectral distribution curves. To ensure
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that our setups were trained properly, we use FID scores to

assess the quality of samples and make sure that they are

consistent with the FID scores from baseline experiments.

7. Results

7.1. Effect of Feature Map Scaling Methods

Figure 3 illustrates the resulting spectral distributions

when using different feature map scaling methods. We ob-

serve that images from Z.1.5 and Baseline experiments are

spectral inconsistent for all 3 GANs. Nearest and bilinear

interpolation methods are able to replicate the spectral dis-

tribution of real data reasonably across all 3 GAN models.

Since the only change in our models is the feature map

scaling method in the last layer while the algorithms, ob-

jective functions and majority of the network architectures

are identical to public released code, these results qualify to

support our thesis that high frequency Fourier discrepancies

are not inherent to GANs.

7.2. Effect of Kernel Size

From Figure 4, we observe that smaller kernel sizes re-

sult in more turbulent spectral behaviour for N.1.3 and B.1.3

LSGAN experiments. Apart from this observation, experi-

ments using nearest and bilinear interpolation methods are

able to reproduce spectral distributions of real data reason-

ably well, and zero-insertion based methods always result

in high frequency spectral distortions. Further, from Figure

5, we observe that when using larger kernels, all experi-

ments using nearest and bilinear interpolation methods are

able to replicate spectral behaviour of real data, and even

with larger kernels zero-insertion based methods produce

high frequency spectral distortions (Z.1.7).

7.3. Effect of Number of Kernels

Figure 6 illustrates that increasing the number of ker-

nels do not yield spectral consistency by itself. Apart from

N.3.5 DCGAN experiment, we observe that all other ex-

periments using nearest and bilinear interpolation methods

are able to approximate the spectral behaviour of real data.

Also, GAN objective functions do not impose any spectral

requirements. Thus the kernels do not have any direct in-

centive for imposing spectral consistency.

Key observations. Throughout all 39 rigorous exper-

iments, we observe that zero insertion based feature map

scaling methods (including Baseline) are consistently show-

ing high frequency spectral discrepancies, and most experi-

ments (22/24) using bilinear and nearest interpolation meth-

ods are able to avoid these high frequency spectral discrep-

ancies. All these results support our statement that high

frequency spectral discrepancies are not inherent character-

istics to GANs. The FID scores for all experiments were

comparable with the baseline FID, and are included in the

supplementary. We show image samples from WGAN-GP

for Baseline, N.1.5 and B.1.5 setups in Figure 7. Do note

that for all experiments, we use the exact same discrimina-

tor architecture as the Baseline experiment.

8. Fourier Synthetic Image Detector

Dzanic et al. [12] state that the spectral properties of real

and deep network generated images are fundamentally dif-

ferent, and proposed a synthetic image detection method

using a “simple” k-nearest neighbours (KNN) classifier to

emphasize the extent of these spectral differences. We fol-

low the exact procedure as the original authors to train these

classifiers and details can be found in Supplementary.

8.1. Experiment Setup

With nearest and bilinear interpolation methods obtain-

ing spectral consistent GANs for the previous experiments,

we question whether the classifier proposed above would be

robust enough to detect these samples as fake. To investi-

gate this we follow the following steps:

1. We train 3 KNN classifiers, one for DCGAN, LSGAN

and WGAN-GP respectively. For GAN images, we use

images generated from the Baseline experiment (using

transpose convolutions) as training data.

2. We test these classifiers using GAN images generated

from the setups in our test bed to evaluate the robust-

ness of the classifier.

3. We also repeat the experiments using 50% data for

training the classifier (The original work used only

10%) to observe any improvements in accuracy.

8.2. Detection Results

The complete detection results are shown in table 2. We

observe that all setups corresponding to N.x.x and B.x.x

experiments are able to easily bypass the classifier. Even

when 50% training data is used, we are able to bypass the

classifier with ease (Included in Supplementary). The re-

sults clearly demonstrate that the proposed classifier relying

on high frequency Fourier attributes to detect synthetic im-

ages, fails to detect images generated from identical GAN

models with last feature map scaling replaced by nearest

or bilinear interpolation methods. These results are consis-

tent with the observed spectral distributions. By combining

these detection results with the empirical finding that high

frequency spectral discrepancies are not inherent character-

istics of CNN-generated images, we suggest re-thinking of

using such discrepancies to detect synthetic images.

9. Extended experiments

With observations that high frequency Fourier spectrum

discrepancies are not intrinsic characteristics of GANs, we
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Figure 3. Feature Map Scaling Results. We observe that experiments using nearest and bilinear interpolation methods in the last step are

able to produce spectral consistent GANs. Refer to table 1 for experiment details.
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Figure 4. Smaller Kernel (3x3) Results. We observe that smaller kernels do not substantially deteriorate spectral consistent GANs except

for some turbulent behaviour observed in LSGAN for N.1.3 and B.1.3 experiments. Refer to table 1 for experiment details.

Setup DCGAN LSGAN WGAN-GP

N.1.5 0.09 ± 0.03% 0.34 ± 0.08% 0.14 ± 0.05%

Z.1.5 84.82± 3.72% 88.16± 3.98% 99.75± 0.14%

B.1.5 0 ± 0% 0.1 ± 0% 0.2 ± 0.12%

N.1.3 0 ± 0% 0.06 ± 0.05% 0.24 ± 0.13%

N.1.7 0 ± 0% 0 ± 0% 0.06 ± 0.05%

Z.1.3 98.73± 0.56% 73.09± 3.5% 97.94± 0.87%

Z.1.7 97.23± 1.1% 95.66± 1.93% 99.94± 0.07%

B.1.3 0 ± 0% 0.19 ± 0.1% 0.07 ± 0.05%

B.1.7 0 ± 0% 0.1 ± 0% 0.17 ± 0.13%

N.3.5 0.16 ± 0.05% 0 ± 0% 0 ± 0%

Z.3.5 77.67± 6% 67.66± 11.9% 99.9± 0.19%

B.3.5 0.03 ± 0.05% 0.48 ± 0.04% 0.13 ± 0.05%

Table 2. Detection results for the detectors proposed by Dzanic

et al. [12], using CelebA dataset. We follow exactly the proce-

dure in [12] to train the detector for each GAN model (10% data

for training). Then, the images generated by GAN models using

different Setups are tested on the corresponding detectors. The

table shows the successful detection rates, and we highlight the

cases when the detection rates are inferior (less than 10%). The

results consistently show that when a GAN model is trained with

the last feature scaling method based on nearest or bilinear, a de-

tector trained using high frequency features such as [12] fails to

detect GAN images (Consistent with spectral plot observations).

All reported detection rates are averaged over 10 independent runs

extend our experiments to address different dataset, image

resolution and GAN objective function to further find evi-

dences to support our thesis statement. We select 3 setups

from our test bed Z.1.5, N.1.5 and B.1.5 to conduct ex-

tended experiments since we have observed that kernel size/

number of kernels do not substantially manipulate high fre-

quencies compared to feature map scaling methods. Simi-

lar to previous experiments, we analyze the resulting spec-

tral distributions and evaluate the robustness of the synthetic

detector proposed by Dzanic et al. [12].

9.1. LSUN Bedrooms Dataset

In this experiment we use a subset of LSUN Bedrooms

Dataset [43] (128x128) to train DCGAN [34], LSGAN [31]

and WGAN-GP [17] identical to previous setups. The spec-

tral plots are shown in Figure 8. We observe identical results

to CelebA experiment (Figure 3). That is we observe N.1.5

and B.1.5 are producing spectral consistent GANs and this

further supports our statement that high frequency spectral

discrepancies are not inherent in GANs. We also evalu-

ate the synthetic image detector and observe that N.1.5 and

B.1.5 samples can easily bypass the detector. (See table 3)

9.2. ImagetoImage Translation

We extend our experiments to Image-to-Image trans-

lation domain using StarGAN [7]. Here we use resized

CelebA [29] (256x256) used by the official StarGAN [7]

implementation to study whether spectral consistency can

be achieved by modifying the last feature map scaling oper-
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Figure 5. Larger Kernel (7x7) Results. We observe that larger kernels do not substantially manipulate the discrepancies in Z.1.7 experi-

ments. Refer to table 1 for experiment details.
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Figure 6. Increased number of kernels (3 conv blocks) Results. We see that even with more number of kernels in the last upsampling step,

Z.3.5 experiment is not able to produce spectral consistent GANs. Refer to table 1 for experiment details.

Setup DCGAN LSGAN WGAN-GP

N.1.5 1.5 ± 2.09% 0.62 ± 0.43% 0.03 ± 0.05%

Z.1.5 97.88± 1.04% 95.79± 2.07% 99.87± 0.13%

B.1.5 3.54 ± 6.15% 0.07 ± 0.09% 0.14 ± 0.13%

Table 3. Detection results for the forensics classifiers proposed by

Dzanic [12], using LSUN dataset (128x128). The table shows the

successful detection rates (10% data for training).

Setup N.1.5 Z.1.5 B.1.5

Accuracy 52.06± 3.77% 64.3± 2.7% 0 ± 0%

Table 4. Detection results for the forensics classifiers proposed

by Dzanic [12], using CelebA dataset (256x256). The table shows

the successful detection rates (10% data for training).

ation. We train StarGANs for Z.1.5, N.1.5 and B.1.5 setups.

The spectral plots are shown in Figure 9. We observe that

only B.1.5 is able to produce spectral consistent GANs and

N.1.5 produces high frequency Fourier discrepancies. We

would not ask ourselves why nearest interpolation method

behaves differently than bilinear, but rather confirm that we

are able to find bilinear interpolation results as more evi-

dence to support our statement that high frequency spectral

discrepancies are not inherent characteristics to GANs. We

further evaluate the synthetic image detector and observe

that B.1.5 samples can bypass the classifier. (See table 4)

10. Spectral Regularization

The recent Spectral regularization (SR) by Durall et al.

[10] proposed to add a regularizer term to the generator loss

to explicitly penalize the generator for spectral distortions.

Using SR, they were able to obtain spectral consistency for

DCGAN [34], LSGAN [31], WGAN-GP [17] and DRA-

GAN [26] using the celebA [29] (128x128). This method

encounters computational overhead due to calculation of re-

duced spectrum for images during training. We show that

by modifying the last feature map scaling operation, we are

able to achieve spectral consistent GANs without SR. Im-

portantly, we show that no change in objective functions is

needed. These results and more discussion on SR can be

found in Supplementary.

11. Discussion

In this study, we investigated the validity of contempo-

rary beliefs that CNN-based generative models are unable

to reproduce high frequency decay attributes of real images.

We employ a systematic study to design counterexamples

to challenge the existing beliefs. With maximum frequency

bounded by the spatial resolution, and Fourier discrepan-

cies reported at the highest frequencies, we hypothesized

that the last upsampling operation is mostly related to this

shortcoming. With carefully designed experiments span-
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Figure 7. WGAN-GP samples for Baseline (Left), N.1.5 (Middle) and B.1.5 (Right) for CelebA [29]. We observe that the visual quality is

comparable when replacing the last transpose convolutions with nearest and bilinear methods. More visual results in supplementary.
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Figure 8. LSUN results. We observe spectral plots identical to CelebA [29] experiments. Refer to table 1 for experiment details

ning multiple GAN architectures, loss functions, datasets

and resolutions, we observe that high frequency spectral

decay discrepancies can be avoided by replacing zero in-

sertion based scaling used by transpose convolutions with

nearest or bilinear at the last step. Note that we do not claim

that modifying the last feature map scaling method will al-

ways fix spectral decay discrepancies in every situation, but

rather the goal of our study is to provide counterexamples

to argue that high frequency spectral decay discrepancies

are not inherent characteristics of CNN-generated images.

Further, we easily bypass the recently proposed synthetic

image detector that exploits this discrepancy information to

detect CNN-generated images indicating that such features

are not robust for the purposes of synthetic image detection.

In Supplementary material, we provide more GAN mod-

els [6, 28] with no high frequency decay discrepancies. We

also investigate whether such high frequency decay dis-

crepancies are found in other types of computational image

synthesis methods (synthesis using Unity game engine2)

[15, 14]. To conclude, through this work we hope to help

image forensics research manoeuvre in more plausible di-

rections to combat the fight against CNN-synthesized visual

disinformation.

2https://unity.com/
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Figure 9. Spectral plots for StarGAN images. We observe that

Bilinear feature map scaling produces spectral consistent GANs.
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