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Abstract

Whether what you see in Figure 1 is a “flamingo” or a

“bird”, is the question we ask in this paper. While fine-

grained visual classification (FGVC) strives to arrive at

the former, for the majority of us non-experts just “bird”

would probably suffice. The real question is therefore –

how can we tailor for different fine-grained definitions un-

der divergent levels of expertise. For that, we re-envisage

the traditional setting of FGVC, from single-label clas-

sification, to that of top-down traversal of a pre-defined

coarse-to-fine label hierarchy – so that our answer becomes

“bird” ⇒ “Phoenicopteriformes” ⇒ “Phoenicopteridae”

⇒ “flamingo”.

To approach this new problem, we first conduct a com-

prehensive human study where we confirm that most partic-

ipants prefer multi-granularity labels, regardless whether

they consider themselves experts. We then discover the

key intuition that: coarse-level label prediction exacerbates

fine-grained feature learning, yet fine-level feature betters

the learning of coarse-level classifier. This discovery en-

ables us to design a very simple albeit surprisingly effective

solution to our new problem, where we (i) leverage level-

specific classification heads to disentangle coarse-level fea-

tures with fine-grained ones, and (ii) allow finer-grained

features to participate in coarser-grained label predictions,

which in turn helps with better disentanglement. Experi-

ments show that our method achieves superior performance

in the new FGVC setting, and performs better than state-

of-the-art on the traditional single-label FGVC problem as

well. Thanks to its simplicity, our method can be easily im-

plemented on top of any existing FGVC frameworks and is

parameter-free.

1. Introduction

Fine-grained visual classification (FGVC) was first in-

troduced to the vision community almost two decades ago

*indicates corresponding author.
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Figure 1: Definition of what is fine-grained is subjective.

Your “flamingo” is my “bird”.

with the landmark paper of [2]. It brought out a critical

question that was largely overlooked back then – that can

machines match up to humans on recognising objects at

fine-grained level (e.g., a “flamingo” other than a “bird”).

Great strides have been made over the years, starting with

the conventional part-based models [51, 14, 1, 3], to the re-

cent surge of deep models that either explicitly or implic-

itly tackle part learning with or without strong supervision

[26, 34, 52, 55, 57, 48]. Without exception, the focus has

been on mining fine-grained discriminative features to bet-

ter classification performances.

In this paper, we too are interested in the fine-grained

rationale at large – yet we do not set out to pursue per-

formance gains, we instead question the very definition

of fine-grained classification itself. In particular, we ask

whether the fine-grained expert labels commonplace to cur-

rent FGVC datasets indeed convey what end users are ac-

customed to – i.e., are the “Florida scrub jay”, “Fisker

Karma Sedan 2012”, “Boeing 737-200” are indeed the de-

sired, or would “bird”, “car”, “aircraft” suffice for many –

my “flamingo” can be just your “bird”. The answer is of

course subjective [31], and largely correlates with expert

knowledge – the more you are a bird lover, the more fine-

grained labels you desire, some might even look for “Amer-

ican flamingo” other than just “flamingo”. The follow-up

question is therefore, how can we tailor for the various sub-
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jective definitions of what is fine-grained, and design a sys-

tem that best accommodates practical usage scenarios of

FGVC.

To answer this, we first conduct a human study on the

popular CUB-200-2011 bird dataset [42] with two questions

in mind (i) how useful are the pre-defined fine-grained la-

bels to a general user, and (ii) whether a single label output

is in fact a preferred solution. We first build a hierarchical

taxonomy of bird, by tracing existing fine-grained labels in

CUB-200-2011 to its parent sub-category, all the way to the

super node of “bird” using Wikipedia. We then recruited

50 participants with various background of bird knowledge,

each of whom rated 100 bird photos by (i) picking a la-

bel amongst fine- and coarse-grained ones relating to the

bird, and (ii) indicating whether more label choices are de-

sirable other than just the single label previously selected.

We find that (i) participants do not necessarily choose the

pre-defined fine-grained (bottom) labels as their preferred

choice, (ii) only 36.4% of all returned choices prefer just

a single label, and (iii) although domain experts tend to

choose finer-grained labels while amateurs prefer coarser

ones, close to 80% of choices from experts also turn to the

option of multi-granularity labels.

Following results from the human study, we propose to

re-instantiate the FGVC problem by extending it from a

single-label classification problem, to that of multiple la-

bel predictions on a pre-defined label hierarchy. The central

idea is while people tend to feel baffled facing a single ex-

pert label, a chain of coarse-to-fine labels that describe an

object can potentially be more practical – we leave it to the

users to decide which fine-grained level along the hierar-

chy best suits their needs. Compared with a single label

telling you it is a “flamingo” (as per conventional FGVC),

our model offers a coarse-to-fine series of labels such as

“bird” ⇒ “Phoenicopteriformes” ⇒ “Phoenicopteridae” ⇒
“flamingo” (See Figure 1).

On the outset, classifying an image into multiple cross-

granularity labels seems an easy enough extension to the

well-studied problem of FGVC with single-label output.

One can simply train a single model for classifying all nodes

in the hierarchy, or better yet use separate classifiers for

each hierarchy level. Although these do work as baselines,

they do not benefit from the inherent coarse-fine hierarchi-

cal relationship amongst labels – we show exploring these

relationships not only helps to solve for the new FGVC set-

ting, but also in turn benefits the learning of fine-grained

features which then helps the conventional task.

Our design is based on the discovery of two key obser-

vations on the label hierarchy: (i) coarse-level features in

fact exacerbates the learning of fine-grained features, and

(ii) finer-grained label learning can be exploited to enhance

the discriminability of coarser-grained label classifier. Our

first technical contribution is therefore a multi-task learn-

ing framework to perform level-wise feature disentangle-

ment, with the aim to separate the adverse effect of coarse

feature from fine-grained ones. To further encourage the

disentanglement, we then resort to the clever use of gra-

dients to reflect our second observation. Specifically, dur-

ing the forward pass only, we ask finer-grained features to

participate in the classification of coarser-grained labels via

feature concatenation. We, however, constrain the gradi-

ent flow to only update the parameters within each multi-

task head. Our method is generic to any existing FGVC

works and experiments show that it yields stronger classi-

fiers across all granularities. Interestingly, our model also

delivers state-of-the-art result when evaluated on the tradi-

tional FGVC setting, while not introducing any additional

parameters.

Our contributions are as follows: (i) we re-envisage the

problem setting of FGVC, to accommodate the various sub-

jective definitions of “fine-grained”, where we advocate

for top-bottom traversal of a coarse-to-fine label hierarchy,

other than the traditional single-label classification; (ii) we

discover important insights on the inherent coarse-fine hi-

erarchical relationship to drive our model design, and (iii)

we show by disentangling coarse-level feature learning with

that of fine-grained, state-of-the-art performances can be

achieved both on our new problem, and on the traditional

problem of FGVC.

2. Related Work
Fine-grained image classification Deep learning has

emerged as powerful tool that led to remarkable break-

throughs in FGVC [53, 50, 46, 27, 8, 59, 22]. Compared

with generic image recognition task [10, 43], FGVC re-

quires a model to pay special attention on the very subtle

and local image regions [50, 5], which are usually hard to

notice in human eyes. A major stream of FGVC works thus

undergoes two stages by first adopting a localisation sub-

network to localise key visual cues and then a classifica-

tion subnetwork to perform label prediction. Earlier works

on localisation module rely heavily on additional dense

part/bounding box annotations to perform detection [1, 4],

and gradually move towards weakly supervised setting that

only requires image labels [50, 5]. Relevant techniques in-

cluding unsupervised detection/segmentation, utilisation of

deep filters and attention mechanism have been proposed

to guide the extraction of the most discriminative image re-

gions [49, 45, 21]. Another line of FGVC research focuses

on end-to-end feature encoding [13, 39, 38]. This saves the

effort of explicit image localisation but asks for extra effort

to encourage feature discriminability, e.g., high-order fea-

ture interactions [26, 56]. In this paper, we study a different

setting for FGVC that generates multiple output labels at

different granularities for an image.

Multi-task learning Multi-task learning (MTL) aims to

leverage the common information among tasks to improve
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Figure 2: Human study on CUB-200-2011 bird dataset. Order, family, species are three coarse-to-fine label hierarchy for a

bird image. A higher group id represents a group of people with better domain knowledge of birds, with group 5 interpreted

as domain experts. (a) Human preference between single and multiple labels. (b) Impact of human familiarity with birds on

single-label choice. (c) Impact of human familiarity with birds on multi-label choice.

Choice Order Family Species None

Percentage 29.2% 30.4% 36.4% 4%

Table 1: Human preference between labels at different gran-

ularity on CUB-200-2011 bird dataset.

the generalisability of the model [6, 7, 28, 58]. Under the

context of deep learning, MTL translates to designing and

optimising networks that encourage shared representations

under multi-task supervisory signals. There are two types

of parameter sharing. The hard way is to divide the param-

eter set into shared and task-specific operators [24, 23, 9].

In soft parameter sharing, however, each task is assigned its

own set of parameters and further regularisation technique

are introduced to encourage cross-task talk [30, 35, 15].

Joint learning of multiple tasks is prone to negative trans-

fer if the task dictionary contains unrelated tasks [24, 19].

This problem triggers another line of MTL research with

numerous solutions proposed, including reweighing the in-

dividual task loss [23, 37], tailoring task-specific gradient

magnitudes [9] and disentangling features between irrele-

vant tasks [17, 54]. We approach the multi-task learning in

FGVC following a similar underlying motivation - by iden-

tifying impacts of transfer between label predictions at dif-

ferent granularities. More specifically, we propose a novel

solution to simultaneously reinforce positive and mitigate

negative task transfer.

3. Human Study

To inform the practical necessity of our multiple cross-

granularity label setting, we conduct a human study [16] on

the CUB-200-2011 bird dataset. This is in order to show (i)

single fine-grained label generated by existing FGVC mod-

els does not meet the varying subjective requirements for

label granularity in practice; (ii) multiple label outputs cov-

ering a range of granularity are able to bridge the perceived

gaps amongst different populations.

Data & Participant Setup CUB-200-2011 is a bird

dataset commonly used by the FGVC community. It con-

tains 11, 877 images each labelled as a fine-grained bird

species by the domain expert. We extend it by adding two

new hierarchy levels on top of the species with reference

to Wikipedia pages, i.e., identifying the family and order

name for a bird image. This makes each image annotated

with three labels at different granularity, in an increasing

fineness level from order to species. We performed an ini-

tial test amongst 200 participants across different ages, gen-

ders and education levels, to find out their familiarity with

birds. We discover that there exists a considerable “long

tail” problem in their distribution of scores – there are nat-

urally less bird experts. This motivates us to manually filter

for a population that serves as a better basis for statistical

analysis. We therefore sample 50 participants from the orig-

inal 200 and encourage the distribution of their expertise

(scores) to follow a Gaussian-like shape. We then divide

them into 5 groups ([group 1, group 2, ..., group 5]) based

on their scores, where a higher group id corresponds to a

population of better domain knowledge. These 50 partici-

pants are included for the task below.

Experiment setting Designing experiments to validate

people’s preference on one single label across all granular-

ities is straightforward. But it requires extra consideration

for making comparative choices between single and multi-

ple labels. For example, it would not be ideal if we show

participants an image with two options of single and multi-

ple labels, since people are naturally biased towards multi-

ple labels as they contain more information [40]. We there-

fore design a two-stage experiment, with both stages show-

ing a participant the same image but with different ques-

tions.

Stage 1: This is a bird. Which one of the labels further

defines this bird? You can only choose one option. [A] or-

der name [B] family name [C] species name [D] none of

above

Stage 2: At stage 1, do you have the impulse to choose more

than one label? [A] yes [B] no

Note that participants selecting option D in stage 1 will be
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Figure 3: A schematic illustration of our FGVC model with multi-granularity label output. BP: backpropagation.

directly guided to the next image, skipping stage 2 all to-

gether.

Results We select 1000 images from CUB-200-2011 and

from which, a set of random 100 images is assigned to each

participant. Images received less then three responses are

excluded for statistical significance. We analyse the results

as follows:

Your label is not mine Table 1 shows the percentage of

each option being selected in Stage 1. We can see that

(i) participants have varying demands for label granularity;

and (ii) The single fine-grained labels (Species option) op-

timised by existing FGVC models only constitute 36.4%
of participant choices in our experiment, while leaving the

rest 59.6% (order + family) potentially catered for under a

multi-label setting.

Multiple labels work In Figure 2(a), we show the dis-

tribution of preference between single and multiple labels

in the second stage. It can be seen that no matter what la-

bel (excluding “None”) is chosen in the first stage, the ma-

jority of participants turn to embrace multiple labels. This

is especially true for participants once selecting species as

their single choice, who are the target audience under tradi-

tional FGVC setting, and yet still consider multiple cross-

granularity labels a better way to interpret an image.

Further analysis Figure 2(b) and (c) further show how

populations with different familiarity levels with birds lead

to different choices in stage 1 and stage 2 respectively. We

can see that (i) participants with more domain knowledge

(e.g., group 4) tend to choose finer-grained single labels

while amateurs (e.g., group 1) prefer more interpretable

coarser-grained counterparts; (ii) choices under multiple la-

bels have greatly converged regardless of the gaps of do-

main knowledge. In summary, it is hard to have one level of

label granularity that caters to every participant. Multiple

cross-granularity labels, however, are found to be meaning-

ful to the many.

4. Methodology

Conclusions from our human study motivate us to go

beyond the single label output as found in most exist-

ing FGVC works, and move towards generating multi-

granularity labels. This makes our new setting fall naturally

under the multi-task learning framework. Our first goal is

to investigate the impact of transfer between label predic-

tion tasks at different granularities. We next build on the

insight gained and propose a simple but effective solution

that improves the accuracy of label prediction at all granu-

larities. A schematic illustration of our model is shown in

Figure 3.

Definition Suppose for each image x, we have one fine-

grained label yK from the existing FGVC dataset. To tailor

it for our new FGVC setting, we build upon yK to form

(K − 1) label hierarchies by finding its superclasses in the

Wikipedia pages. This gives us a re-purposed dataset where

each image x is annotated with a chain of K labels defined

across different granularities, y1, y2, ..., yk, ..., yK . We de-

note the number of categories within each label granularity

as C1, C2, ..., Ck, ..., CK , so that yk is a one-hot vector of

length Ck. Given any CNN-based network backbone F(·),
We feed x as input to extract its feature embedding f =
F(x). Our goal is then to correctly predict labels across

K independent classifiers, G1(·),G2(·), ...,Gk(·), ...,GK(·)
based on f , i.e., ŷk = yk, where ŷk = Gk(f). Our op-

timisation objective is K independent cross-entropy loss∑K

k=1
LCE(ŷ

k, yk), and during inference, we take the max-

imum output probability from each classifier as its label,

lk = argmax
Ck

ŷk.
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(a) (b)

Figure 4: Joint learning of two-granularity labels under different weighting strategy on CUB-200-2011 bird dataset. (a)

x-axis: β value that controls the relative importance of a fine-grained classifier; y axis: performance of the coarse-grained

classifier. (b) x-axis: α value that controls the relative importance of a coarse-grained classifier; y axis: performance of the

fine-grained classifier.

4.1. Cooperation or Confrontation?

To explore the transfer effect in the joint learning of

multi-granularity labels, we design an image classification

task for predicting two labels at different granularities, i.e.,

K = 2. We form our train/test set from CUB-200-2011 bird

dataset and assign each image with two labels at order and

family level. During training, we introduce two weights as

hyperparameters to control the relative importance of each

task. This is formulated as:

αLCE(ŷ
1, y1) + βLCE(ŷ

2, y2) (1)

where a larger value of α and β then prioritise feature learn-

ing towards predicting coarse-grained and fine-trained la-

bels respectively.

Figure 4(a) shows that by keeping α = 1.0 and gradually

increasing the value of β from 0.0 to 1.0, coarse-grained

classifier is constantly reinforced when the features is op-

timised towards fineness. This is in a stark contrast with

Figure 4(b) where the performance of fine-grained classifier

becomes consistently worse with the increasing proportions

of coarse-level features. This provides compelling evidence

to the discovery we mentioned earlier: coarse-level label

prediction in fact hurts fine-grained feature learning, yet

fine-level feature betters the learning of coarse-level clas-

sifiers. Such finding is also intuitively understandable be-

cause models optimised towards finer-grained recognition

are forced to interpret and analyse more local and subtle dis-

criminative regions. They thus comprise additional useful

information for coarse-grained classifiers as well. In com-

parison, features optimised for predicting coarse-grained la-

bels are less likely to generalise.

To provide further proof, we visualise the feature embed-

dings learned under four weighting strategies using t-SNE,

i.e., {α = 1, β = 0}, {α = 1, β = 1}, {α = 0, β = 1},

{α = 1, β = 1}. Same conclusions still hold. The decision

boundaries for coarse-grained label classifiers become more

separated with the help of finer-grained features, while fine-

grained classifiers are getting worse in this sense given the

increasing involvement of coarser-grained features.

4.2. Disentanglement and Reinforcement

Observations in Section 4.1 suggests that there involves

both positive and negative task transfer in multi-granularity

label predictions. This leads to our two technical consid-

erations: (i) To restrain from the negative transfer between

label predictions at different granularity, we first explicitly

disentangle the decision space by constructing granularity-

specific classification heads. (ii) We then implement the

potential of positive transfer by allowing fine-grained fea-

tures to participate in the coarse-grained label predictions

and make smart use of gradients to enable better disentan-

glement.

Specifically, We first split f into K equal parts, with each

representing a feature fk independently responsible for one

classifier Gk(·). To allow finer-grained features in jointly

predicting a coarse-grained label yk, we concatenate fea-

ture fk and all the other finer features fk+1, fk+2,...,fK as

input to the classifier Gk(·). One issue remains unsolved.

While we have adopted finer-grained features to improve

coarse-grained label predictions, this risks the fact that fea-

tures belonging to fine-grained classifiers will be biased to-

wards coarse-grained recognition during model optimisa-

tion and undermines our efforts on disentanglement. We

therefore introduce a gradient controller Γ(·). That is dur-

ing the model backward passing stage, we only propagate

the gradients flow of one classifier along its own feature di-

mensions and stop other gradients via Γ(·). This gives us

final representation of predicting a label:

ŷk = Gk(CONCAT (fk,Γ(fk + 1), ...,Γ(fK))) (2)

5. Experimental Settings
Datasets We evaluate our proposed method on three

widely used FGVC datasets. While some dataset only of-
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Method
CUB-200-2011 FGVC-Aircraft Stanford Cars

order acc family acc specie acc avg acc maker acc family acc model acc avg acc maker acc model acc avg acc

Vanilla single 95.38± 0.47 87.70± 0.79 74.24± 0.86 85.77 90.82± 1.02 88.73± 1.17 86.26± 1.37 88.60 95.30± 0.11 88.66± 0.45 91.98

Vanilla multi 95.13± 0.53 89.70± 0.13 78.31± 0.35 87.71 90.69± 0.48 89.23± 0.53 88.10± 0.10 89.34 95.24± 0.20 89.14± 0.16 92.19

Ours single 95.63± 0.27 88.50± 0.15 77.46± 0.10 87.50 90.73± 0.23 89.39± 0.11 87.96± 0.27 89.36 95.23± 0.09 89.12± 0.29 92.18

Ours 96.37± 0.16 90.39± 0.15 77.95± 0.04 88.24 93.04±0.25 90.73± 0.19 88.35±0.18 90.71 95.58± 0.06 89.66± 0.16 92.62

Ours MC 96.58± 0.15 90.36± 0.07 77.85± 0.38 88.26 92.86± 0.12 90.74± 0.11 88.19± 0.11 90.59 95.56± 0.17 89.62± 0.21 92.59

Ours NTS 96.57±0.07 91.58±0.57 80.45±0.68 89.53 92.48± 0.16 90.75±0.07 88.31± 0.23 90.51 95.96±0.39 90.64±0.37 93.30

Ours PMG 97.98±0.12 93.50±0.10 82.26±0.13 91.25 94.57±0.10 92.44±0.07 89.62±0.15 92.21 96.42±0.05 91.05±0.15 93.74

Table 2: Comparisons with different baselines for FGVC task under multi-granularity label setting.

fers one fine-grained label for each of its images, we man-

ually construct a taxonomy of label hierarchy by tracing

their parent nodes (superclasses) in Wikipedia pages. De-

tails are as follows. (i) CUB-200-2011 [42] is a dataset

that contains 11, 877 images belonging to 200 bird species.

We re-organise this dataset into three-level label hierarchy

with 13 orders (e.g., “Passeriformes” and “Anseriformes”),

38 families (e.g., “Icteridae” and “Cardinalidae” ) and 200
species (e.g., “Brewer Blackbird” and “Red winged Black-

bird”). (ii) FGVC-Aircraft [29] is an aircraft dataset with

10, 000 images covering 100 model variants. It comes

with three-level label hierarchy with 30 makers (e.g., “Boe-

ing” and “Douglas Aircraft Company”), 70 families (e.g.,“

Boeing 767”,“ Boeing 777”), and 100 models (e.g., “767-

200”, “767-300”), which we directly adopt for our setting.

(iii) Stanford Cars [25] contains 8, 144 car images cate-

gorised by 196 car makers. We re-organise this dataset into

two-level label hierarchy with 9 car types (e.g., “Cab” and

“SUV”) and 196 specific models (e.g., “Cadillac Escalade

EXT Crew Cab 2007” and “Chevrolet Avalanche Crew Cab

2012”). We follow the standard train/test splits as laid out in

the original datasets. We do not use any bounding box/part

annotations in all our experiments.

Implementation details For fair comparisons, we

adopted ResNet50 pre-trained on ImageNet as our network

backbone and resize each input image to 224×224 through-

out the experiments unless otherwise specified. We set the

number of hidden units in f as 512 when a single model

is asked to predict one label only, and 600 when that is

adapted for multiple labels. To deal with the imbalance be-

tween ImageNet pre-trained convolutional layers and newly

added fully-connected layers in the classification heads, we

adopt different learning rates starting from 0.01 and 0.1 re-

spectively. Common training augmentation approaches in-

cluding horizontal flipping and random cropping, as well as

colour jittering are applied. We train every single experi-

ment for 100 epochs with weight decay value as 5 × 10−4.

MomentumOptimizer is used with momentum value 0.9
throughout. The code will be made publicly accessible.

Evaluation metrics Following community convention,

FGVC performance is quantified by acc, the percentage

of images whose labels are correctly classified. We use

avg acc to calculate the mean of the performance across la-

bel granularities. Each experiment is run three times. The

mean and standard deviation of the results obtained over

three trials are then reported.

Baselines As our focus is on how to adapt an image clas-

sification model with single label output into multiple ones,

our baselines comprise alternative multi-label classification

models. To show our proposed solution is generic to any ex-

isting FGVC frameworks, we also include three other base-

lines by replacing the backbone of our model with differ-

ent advanced FGVC-specific components. Vanilla single:

this corresponds to one single shared network backbone

with multiple classification heads appended to the end.

Vanilla multi adopts one independent network backbone

for each label prediction. Ours single improves upon

Vanilla single aiming to disentangle the decision space in

multi-granularity label predictions. This is achieved by

splitting f into equal number of segments as that of clas-

sifiers, with each independently responsible for one classi-

fier at one granularity. Ours advances Ours single in better

feature disentanglement by reinforcing coarse-grained clas-

sifiers with fine-grained features. Finally, Ours MC [5],

Ours NTS [50], Ours PMG [12], represent three means

of training our proposed method on top of state-of-the-art

FGVC frameworks.

6. Results and Analysis

6.1. Comparison with Baselines

Our experimental discovery coincides well with our intu-

ition that compared with classifying one fine-grained label,

there exists additional issue that needs to be taken care of in

multi-granularity label predictions. Our proposed method

can not only effectively solve this problem, but also generic

in terms of the network backbone used. Belows is more

detailed analysis of the results with reference to Table 2.

Is our model effective in solving FGVC problem with

multi-granularity label output? Yes. It is evident that

the proposed model (Ours) outperforms all other baselines

under the metric of avg acc on all three datasets. Fur-

thermore, the consistent performance gain from Our MC

to Ours NTS, and to Ours PMG tells one important mes-

sage: our solution not only supports easy drop-in to existing
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FGVC models, but also does not undermine their original

functionality when adapted.

Are the proposed technical contributions appropriate?

Yes. The significant gap between Vanilla single and

Ours single confirms the severity of feature entanglement

between label granularities - that can be alleviated by sim-

ply splitting a feature into several parts with each corre-

sponding to an independent classifier. The proposed Rein-

force module (Ours single vs. Ours) is effective in boosting

the classification performance at coarse granularity (e.g., or-

der acc and family acc in CUB-200-2011). The fact that it

can also achieve higher accuracy on the finest labels (e.g.,

species acc), a task which has not been explicitly designed

to improve on, provides direct evidence of how better fea-

ture disentanglement is further taking place.

What does Vanilla multi tell us? The performance of

Vanilla multi draws our attention. On one hand, its accu-

racy on the finest label prediction crushes all opponents

by significant margins across the datasets. On the other,

it performs the worst on classifying coarsest labels. Such

contrast, however, echoes our observation that underlies the

technical considerations of this paper: finer-grained classi-

fier performs the best when it is portrayed as a single inde-

pendent task itself, while coarser-level label predictions can

benefit significantly from a multi-granularity task setting.

Note that since Vanilla multi requires equal number of un-

shared network backbones as that for classification tasks, it

is not a strictly fair comparison in terms of its model capac-

ity. The purpose here is to show solving disentanglement

between label prediction at different granularities remains

challenging, albeit we have greatly advanced the problem.

What does it look like? We further carry out model vi-

sualisation to demonstrate that classifiers [G1, ..., GK] un-

der Vanilla single and Ours indeed capture different regions

of interests that are useful for FGVC, and offer insight on

how better disentanglement is taking place. To this end, we

adopt Grad-Cam [36] to visualise the different image sup-

ports for each Gk by propagating their gradients back to x.

It can be seen from the bottom half of Figure 5 that our clas-

sifiers at different hierarchy levels attends to different scales

of visual regions – a clear sign of the model’s awareness on

coarse-fine disentanglement. In contrast, the top half of Fig-

ure 5 shows that Vanilla single appears to focus on similar

un-regularised image parts across label granularity.

6.2. Evaluation on traditional FGVC setting

Our model can be evaluated for FGVC without any

changes – we just need to report classification accuracy for

fine-grained labels at the bottom of the hierarchy. How-

ever, for fair comparison with other state-of-the-art FGVC

works, we also resize image input to a size of 448 × 448.

We leave all other implementation settings unchanged, and

do not perform grid search for performance gain. The re-

Method CUB-200-2011 FGVC-Aircraft Stanford Cars

FT ResNet [45] 84.1 88.5 91.7

DFL [45] 87.4 91.7 93.1

NTS [50] 87.5 91.4 93.9

TASN [57] 87.9 - 93.8

API-Net [59] 87.7 93.0 94.8

MC-Loss [5] 87.3 92.6 93.7

PMG [12] 89.6 93.4 95.1

Ours 86.8 92.8 94.3

Ours PMG 89.9 93.6 95.1

Ours HC 85.0 90.6 92.8

Ours DFT 85.5 91.7 93.2

Table 3: Performance comparisons on traditional FGVC

setting with single fine-grained label output.

sults are reported in Table 3. We can see that by building our

method upon the backbone of PMG, new state-of-the-art re-

sults (Ours PMG) for traditional FGVC setting are gained

on CUB-200-2011 and FGVC-Aircraft datasets. Improve-

ments over state-of-the-art on Stanford Cars dataset is less

significant. We attribute this to the relatively shallow hier-

archy (two levels) on Stanford Cars. Note that we do not

introduce any extra parameters when implemented on top

of traditional FGVC methods.

The role of label hierarchy To investigate the im-

pact of label hierarchy on the traditional FGVC perfor-

mance, we compare our manual method of constructing la-

bel hierarchy based on Wikipedia pages with two variants,

Hierarchical Clustering (Ours HC) and Deep Fuzzy Tree

(Ours DFT) [44]. These are two clustering methods that

automatically mine hierarchical structures from data, which

mainly differ in how to measure the distance between clus-

ters and whether there are tree structures explicitly mod-

elled. For both methods, we stop the discovery process

when three-level label hierarchy has been formed. From the

last two rows in Table 3, the following observations can be

made: (i) Manual hierarchies achieves the best performance

across all three datasets, suggesting semantically defined

parent-child relationships tend to encourage cross granular-

ity information change. (Ours vs. Ours HC vs. Ours DFT);

(ii) Traditional FGVC problem (FT ResNet) benefits from

multi-granularity label setting, regardless of what label hi-

erarchy is used.

7. Discussions

Here, we offer discussions on some potentially viable fu-

ture research directions, with the hope to encourage follow

up research.

Beyond multi-task learning While our MTL framework

has shown promise as a first stab, other means of encour-

aging information exchange/fusion across hierarchy levels

can be explored. One possible alternative is via meta learn-

ing [20]. In this sense, rather than learning multi-granularity

label prediction task in one shot, we can treat them as a
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Figure 5: We highlight the supporting visual regions for classifiers at different granularity of two compared models. Order,

Family, Species represent three coarse-to-fine classifiers trained on CUB-200-2011 bird dataset.

sequence of related tasks optimised over multiple learning

episodes. An idea could be that in the inner loop, we find a

meta-learner that serves as good initialisation with few gra-

dients away to each task (as per disentanglement). We then

ask the outer task-specific learners to quickly adapt from it

(as per reinforcement).

From classification to retrieval. Formulating the prob-

lem of fine-grained visual analysis as a classification task

itself underlies certain limitations: the fixed number of la-

bels makes it rigid to be applied in some open-world scenar-

ios [47]. By projecting images into a common embedding

space (as per retrieval) however, we will not only grant the

flexibility but also potentially relax the ways of granularity

interpretation into model design. Pretending that we were

to address the goal of this paper from a retrieval perspective,

we can associate label granularity with the model’s recep-

tive field – the finer the label, the more local the regions of

interest. We can also potentially directly use label granular-

ity as an external knowledge to dynamically parameterise

the embedding space (as per hypernetworks [18]). More

importantly, a successfully-trained model now has a chance

to learn a smooth interpolation between label granularities,

which is of great practical value but infeasible under the

formulation of classifiers.

Rethinking ImageNet pre-training FGVC datasets re-

main significantly smaller than modern counterparts on

generic classification [11, 33]. This is a direct result of the

bottleneck on acquiring expert labels. Consequently, almost

all contemporary competitive FGVC models rely heavily on

pre-training: the model must be fine-tuned upon the pre-

trained weights of an ImageNet classifier. While useful in

ameliorating the otherwise fatal lack of data, such practice

comes with a cost of potential mismatch to the FGVC task

– model capacity for distinguishing between “dog”’ and

“cat” is of little relevance with that for differentiating “Giant

Ibis” and “flamingo”. In fact, our paper argues otherwise –

that coarse-level feature learning is best disentangled from

that of fine-grained. Recent advances on self-supervised

representation learning provide a promising label-efficient

way to tailor pre-training approaches for downstream tasks

[32, 41]. However, its efficacy remains unknown for FGVC.

8. Conclusion

Following a human study, we re-envisaged the problem

of fine-grained visual classification, from the conventional

single label output setting, to that of coarse-fine multi-

granularity label prediction. We discovered important in-

sights on how positive information exchange across granu-

larities can be explored. We then designed a rather simple

yet very effective solution following these insights. Exten-

sive experiments on three challenging FGVC datasets val-

idate the efficacy of our approach. When evaluated on the

traditional FGVC setting, we also report state-of-the-art re-

sults while not introducing any extra parameters. We will

release all human study data, and make our code publicly

accessible. Last but not least, we hope to have caused a stir,

and trigger potential discussions on the very title of this pa-

per – that whether my “Flamingo” should or should not be

your “Bird”.
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