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In contrast, V+L datasets are limited in two ways.

First, the effective sizes of popular V+L datasets are low.

The number of images in these datasets range from fewer

than a few hundred thousands [64, 11, 31, 18] to sev-

eral millions [54], with lower text quality as the scale in-

creases. Second, many of the small-sized datasets share the

same, limited visual domain; COCO-Captions [11], Visual

Genome [31], and VQA2 [17] are (mostly) based on sev-

eral hundreds thousand of COCO images [39]. The lack

in scale and diversity of visual concepts (with respect to

vision/language-only counterparts) makes it hard for V+L

models to perform adequately in the wild.

One major reason for these gaps is the difficulty in

collecting such datasets. Unlike in image classification,

“text” in V+L datasets is longer and less likely to be

agreed upon, making the annotation process more costly

and time-consuming. One approach to remedy this is to

make use of large amounts of the alt-texts accompanying

images on the Web. For instance, Sharma et al. intro-

duced Conceptual Captions (CC3M) [54], a dataset of 3.3M

〈image, caption〉 pairs that result from a filtering and post-

processing pipeline of those alt-texts. Despite being au-

tomatically collected, CC3M is shown to be effective in

both image captioning in the wild [54, 10] and V+L pre-

training [42, 36, 12, 58, 2, 56, 66, 35, 43]. In other words, it

provides a promising start for large-scale V+L annotations.

In this paper, we explore pushing the limits of V+L data

using this approach. Our key insight is that specific down-

stream V+L tasks (e.g., VQA, image captioning) can be

overly restrictive if the goal is to collect large-scale V+L an-

notations. For instance, CC3M was collected to favor high-

precision texts that are fit for the downstream task of image

captioning. Yet, we have witnessed this dataset being in-

creasingly adopted for V+L pre-training [42, 12, 2, 56, 66,

35, 43], arguably beyond its original purpose.

We hypothesize that the V+L field could benefit from

such an insight, and therefore we introduce Conceptual

12M (CC12M), a high(er)-recall V+L dataset for the pur-

pose of V+L pre-training. By relaxing multiple image and

text filters used in CC3M, we obtain a less precise but 4x

larger V+L set of 〈image, text〉 pairs. We perform an anal-

ysis of this dataset and show that it covers a wider range of

visual concepts.

We test our hypothesis by benchmarking the effective-

ness of CC12M as a pre-training data source on several V+L

tasks, in comparison to CC3M. We explore two main pre-

training strategies (and more in the Supplementary mate-

rial): one for vision-to-language generation and the other

for vision-and-language matching. Our experiments indi-

cate that scaling up pre-training V+L has a dramatic pos-

itive effect on image captioning, novel object captioning,

and (zero-shot) image retrieval.

In summary, our main contributions are:

(a) A public larger-scale V+L pre-training dataset that cov-

ers a much wider range of concepts than existing ones.

(b) Evaluation on downstream vision-to-language genera-

tion and vision-and-language matching with an empha-

sis on long-tail recognition that consistently shows the

superiority of this dataset over CC3M.

(c) State-of-the-art results on the nocaps (novel object cap-

tioning) and Conceptual Captions benchmarks.

2. Vision-and-Language Pre-Training Data

We first review the data collection pipeline for the Con-

ceptual Captions 3M (CC3M) outlined in Sect. 3 of [54],

which we followed closely. We then describe a series of

relaxation and simplification to the pipeline that results in

CC12M, a much larger set of image-text pairs. Finally, we

perform an analysis of CC12M in comparison with CC3M

and other existing V+L datasets.

2.1. Conceptual Captions 3M: Pipeline for extract-
ing and cleaning Image Alt-Text from the Web

The Conceptual Captions dataset consists of about

3.3M Web images and their corresponding cleaned, hyper-

nymized Alt-texts [54]. This approach leverages a promis-

ing source of (weak) supervision for learning correspon-

dance between visual and linguistic concepts: once the

pipeline is established, the data collection requires no ad-

ditional human intervention. It consists of the following 4

steps: (i) image-based filtering based on size, aspect ratio,

encoding format and offensive content, (ii) text-based fil-

tering based on language, captialization, token frequency,

pre-defined unwanted phrases, as well as part-of-speech

(POS), sentiment/polarity, and adult content detection (us-

ing Google Cloud Natural Language APIs), (iii) image-

text–based filtering based on the number of image tags (as

predicted by Google Cloud Vision APIs) that overlap with

the existing text, (iv) text transformations, most notably hy-

pernymization of named entities, including proper names

of persons, organizations and locations (e.g., both “Harri-

son Ford” and “Calista Flockhart” are replaced by “actor”),

deletion of time-related spans, and digit replacement (using

# as a digit abstraction).

The large scale nature and the high degree of textual and

visual diversity make this dataset particularly suited to V+L

pre-training [42, 12, 56, 66, 35, 43].

2.2. CC12M: Relaxing filters for higher recall

Conceptual Captions has been created to work out-of-

the-box for training image captioning models, and thus it

involves substantial image, text, and image-text filtering and

processing to obtain clean, high-precision captions. As a re-

sult, this approach comes at the cost of low recall (many po-

tentially useful 〈image, Alt-text〉 pairs are discarded). How-

ever, this trade-off may not be optimal if the dataset is to
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Dataset # examples token/type caption length

CC3M train 3,318,333 804.8 10.3 ± 4.5

CC12M 12,423,374 370.0 20.2 ± 16.3

Table 1: Basic statistics of CC12M vs. CC3M

be used primarily for V+L pre-training. Motivated by this,

we follow a similar procedure as the one described in [54]

but relax some of its filters, and construct the dataset called

Conceptual 12M (CC12M), as detailed below.

Filtering. As described above, the construction of CC3M

used three main filtering types [54]: image-based, text-

based, and image-text–based. To arrive at CC12M, we keep

the image-text filtering intact, and relax the unimodal fil-

ters only. First, for image-based filtering, we set the maxi-

mum ratio of larger to smaller dimension to 2.5 instead of

2. We still keep only JPEG images with size greater than

400 pixels, and still exclude images that trigger pornogra-

phy detectors. Second, in text-based filtering, we allow text

between 3 and 256 words in the alt-text. We still discard

candidates with no noun or no determiner, but permit ones

without prepositions. We discard the heuristics regarding

high unique-word ratio covering various POS tags and word

capitalization. We set the maximum fraction of word repe-

tition allowed to 0.2. Given a larger pool of text due to the

above relaxations, the threshold for counting a word type as

rare is increased from 5 to 20.

Text transformation. The main motivation for CC3M to

perform text transformation is that a majority of candidate

captions contain ultrafine-grained entities such as proper

names (people, venues, locations, etc.), making it extremely

difficult to learn as part of the image captioning task. In

contrast, we are not restricted by the end task of image cap-

tion generation. Our intuition is that relatively more dif-

ficult pre-training data would lead to better transferability.

We thus do not perform hypernimization or digit substitu-

tion as in [54]. The only exception to the “keep alt-texts as

raw as possible” rule is performing person-name substitu-

tions, which we identify as necessary to protect the privacy

of the individuals in these images. For this step, we use the

Google Cloud Natural Language APIs to detect all named

entities of type Person, and substitute them by a special to-

ken 〈PERSON〉. Around 25% of all the alt-texts in CC12M

are transformed in this fashion.

2.3. Characteristics of CC12M

We provide an analysis of CC12M along multiple dimen-

sions, focusing on comparing it to the most relevant CC3M.

Additional analyses are in the supplementary material.

Basic statistics. As seen in Table 1, CC12M consists of

12.4M image-text pairs2, about 4x larger than CC3M. It has

a much lower token (word count) to type (vocab size) ratio,

2Extracted as of May 2020.

Figure 2: Word clouds of top 100 tokens in CC3M (the top cloud)

and in CC12M (the bottom cloud).

indicating a longer-tail distribution and a higher diversity

degree of the concepts captured. Lastly, the average caption

length of CC12M is much longer. This is overall achieved

by our relaxation of the filters, especially the text one.

Quality. We compute a rough estimate of precision on

100 examples by asking two annotators to rate how well

the given alt-text fits the image on a 1–5 scale: 1 (no fit),

2 (barely fit), 3 (somewhat), 4 (good fit, but disfluent lan-

guage), 5 (perfect). We define precision as the fraction of

captions with a score 4 or above. We see a drop in preci-

sion, 76.6% vs. 90.3% as reported for CC3M (Table 2 in

[54]). This analysis points to the precision/recall tradeoff in

transitioning from CC3M to CC12M. Fig. 1 illustrates such

a tradeoff: the “jellyfish” example would have been filtered

out from CC3M (due to a high percentage of nouns and a

lack of proprositions), but it is included in CC12M.

Visual concept distribution. We use the caption text to-

kens to represent the visual concepts. The long tail of visual

concepts that emerge in CC12M spans many categories, and

can be attributed to (1) a dramatic increase in scale, and (2)

the absence of fine-grained entity hypernymization. We list

some of them here to illustrate this point, in the format of

“〈word〉 〈frequency in CC3M〉 −→ 〈frequency in CC12M〉”:

luffy 0 −→ 152, mangosteen 0 −→ 212, zanzibar 0 −→ 1138,

sumo 1 −→ 661, pokemon 1 −→ 8615, chevrolet 1 −→ 12181,

mehndi 3 −→ 9218, pooh 4 −→ 7286, cyberpunk 5 −→ 5247,

keto 6 −→ 6046, hound 9 −→ 3392, quiche 50 −→ 1109, durian

61 −→ 552, jellyfish 456 −→ 2901.

We also visualize the head of the distribution in Fig. 2.

We observe that “person” becomes much more frequent due

to person substitution with the token “〈PERSON〉”. More-

over, there are fewer “actor”, “artist”, “(football) player”, as

a result of removing hypernymization.

Finally, we inspect tokens that are unseen in CC3M.
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and CC12M, we also explore using the Open Images Local-

ized Narratives dataset (LocNar) [49], as an alternative “in-

domain” (from a visual standpoint) pre-training data source.

Localized Narratives (LocNar) [49] is a collection of

datasets with images that are paired with captions obtained

by converting speech to text via ASR and manual post-

processing it3. Inspired by the setting in nocaps, we use

the COCO[39] portion (train split of around 130K images)

for training/fine-tuning, and Open Images [32] portion of

evaluation (val split of around 40K images). Note that the

LocNar captions are much longer than standard captioning

datasets (41.8 words/caption), setting it apart from nocaps.

Conceptual Captions 3M [54] is our main reference for

V+L pre-training data source. At the same time, the image

captioning task on this dataset itself is a valuable bench-

mark for vision-to-language generation in the wild. Thus,

we adopt it as a downstream task for CC12M. This means

that, in the case of CC3M, from-scratch and pre-training

settings collapse.

Evaluation metrics. To measure the performance on im-

age caption generation, we consider the standard met-

rics BLEU-1,4 [47], ROUGE-L [38], METEOR [8],

CIDEr-D [60], and SPICE [3].

3.2. Vision-and-Language Matching

3.2.1 Pre-training Tasks

In visual-linguistic matching (vlm), the task takes as input

both image and text features and predicts whether the input

image and text are matched. To train the model’s parame-

ters, we use a contrastive softmax loss, for which the origi-

nal image-text pairs are used as positive examples, while all

other image-text pairs in the mini-batch are used as negative

examples [42, 58].

3.2.2 Downstream Tasks

The task of caption-based image retrieval (IR) is to iden-

tify a relevant image from a pool given a caption describing

its content. The Flickr30K dataset [48] consists of 31,000

images from Flickr, each associated with five captions. Fol-

lowing existing work [34, 42], we use 1,000 images for val-

idation, 1,000 images for testing, and use the rest of image-

text pairs for model training.

We further consider zero-shot caption-based image re-

trieval [42] on the Flickr30K dataset. The term “zero-shot”

refers to the setting in which we discard training data and

apply pre-trained models “as-is”, i.e., without fine-tuning

on the target task.

Finally, we further evaluate our retrieval system on the

Localized Narratives dataset [49] (see Sect. 3.1.2). We use

3This dataset also contains mouse traces synchronized with the text, but

we do not use the traces here.

the LocNar Flickr30K portion (train split of 30,546 images,

and test split of 1000 images) for training and evaluation.

Evaluation metrics. To measure the performance on image

retrieval, we consider the standard metrics Recall@1 (R1),

Recall@5 (R5), and Recall@10 (R10).

3.3. Implementation Details

Representing images and texts. We use Graph-RISE [27,

28] to featurize the entire image. We train a Faster-

RCNN [52] on Visual Genome [30], with a ResNet101 [19]

backbone trained on JFT [20] and fine-tuned on Ima-

geNet [53]. We select top-16 box proposals and featurize

each of them with Graph-RISE, similar to [10]. Inspired by

[37], we obtain up to 16 image tags from the Google Cloud

Vision APIs, and treat them as text inputs to our model.

These global, regional, and tag features end up being repre-

sented as a bag of 1+16+16 vectors, serving as bottom-up

features [6] for our model.

Model and Learning. For ic-based pre-training and

downstream tasks, we follow the state-of-the-art architec-

ture that heavily rely on self-attention [59] or similar mech-

anisms [54, 65, 10, 23, 13]. We implement a Transformer-

based encoder-decoder model, using [10] as a starting point.

In addition, we encode each feature vector with a deeper

embedding layer and apply layer normalization [7]. Follow-

ing [42], we encode the corners and the area of bounding

boxes and apply layer normalization when combining geo-

metric and regional semantic features. These modifications

lead to an improved CIDEr score of 100.9 on the CC3M dev

benchmark (Table 7), vs. 93.7 as reported by [10]. We de-

scribe additional details in the supplementary material, in-

cluding infrastructure description, runtime, model size, hy-

perparameter ranges and tuning methods, and the configu-

ration of the best-performing model.

For the vlm-based pre-training and downstream tasks,

we reuse the architecture above but discard the decoder. We

use mean pooling to obtain a fixed-length vector for each

modality, and compute the product of the transformed (last-

layer Transformer encoder representation) image and the

transformed text before applying softmax.

4. Experimental Results

4.1. Vision-to-Language Generation

Table 3 shows our results on nocaps. We report in

Row 1 the performance of our baseline model without pre-

training. Rows 2-3 show the performance of off-the-shelf

captioning systems trained on CC3M and CC12M, respec-

tively. This indicates the “raw” power (zero-shot setting)

of the pre-trained network in generating captions out of

the box. We note that, without fine-tuning on COCO Cap-

tions, the model underperforms our baseline numbers on all
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nocaps val

Method in-domain near-domain out-of-domain overall

CIDEr SPICE CIDEr SPICE CIDEr SPICE CIDEr SPICE

UpDown [1] 78.1 11.6 57.7 10.3 31.3 8.3 55.3 10.1

UpDown + CBS [1] 80.0 12.0 73.6 11.3 66.4 9.7 73.1 11.1

UpDown + ELMo + CBS [1] 79.3 12.4 73.8 11.4 71.7 9.9 74.3 11.2

OscarL [37] 79.9 12.4 68.2 11.8 45.1 9.4 65.2 11.4

OscarL + CBS [37] 78.8 12.2 78.9 12.1 77.4 10.5 78.6 11.8

OscarL + SCST + CBS [37] 85.4 11.9 84.0 11.7 80.3 10.0 83.4 11.4

VIVO [22] 88.8 12.9 83.2 12.6 71.1 10.6 81.5 12.2

VIVO + CBS [22] 90.4 13.0 84.9 12.5 83.0 10.7 85.3 12.2

VIVO + SCST + CBS [22] 92.2 12.9 87.8 12.6 87.5 11.5 88.3 12.4

pretrain ic on CC12M 88.3 12.3 86.0 11.8 91.3 11.2 87.4 11.8

pretrain ic on CC3M+CC12M 92.6 12.5 88.3 12.1 94.5 11.9 90.2 12.1

Human 84.4 14.3 85.0 14.3 95.7 14.0 87.1 14.2

nocaps test

UpDown [1] 74.3 11.5 56.9 10.3 30.1 8.1 54.3 10.1

UpDown + ELMo + CBS [1] 76.0 11.8 74.2 11.5 66.7 9.7 73.1 11.2

VIVO + SCST + CBS [22] 89.0 12.9 87.8 12.6 80.1 11.1 86.6 12.4

pretrain ic on CC12M 82.9 11.9 85.7 12.0 85.3 11.3 85.3 11.8

pretrain ic on CC3M+CC12M 87.2 12.3 87.4 12.1 87.2 11.4 87.3 12.0

Human 80.6 15.0 84.6 14.7 91.6 14.2 85.3 14.7

Table 4: Comparison between our best model (in italics, pre-trained on CC12M with ic and fine-tuned on COCO Captions) and existing

models, on the nocaps val (top) and test (bottom) splits. Bold indicates best-to-date, underline indicates second-best.

COCO nocaps

Method val2017 val

CIDEr CIDEr

UpDown (reference) 116.2 55.3

UpDown + CBS 97.7 73.1

UpDown + ELMo + CBS 95.4 74.3

no pretrain (reference) 108.5 54.7

pretrain ic on CC12M (5K) 108.1 87.4

pretrain ic on CC12M (10K) 110.9 87.1

Table 5: Performance on the in-domain COCO Captions val2017

split along with the nocaps val split. Our methods are in italics

with the number of fine-tuning steps in the parentheses.

Pretraining Finetuning LocNar LocNar

data data COCO val OID val

CIDEr CIDEr

None LocNar COCO 29.6 33.8

CC3M LocNar COCO 29.1 35.7

CC12M LocNar COCO 30.0 38.6

Table 6: Novel object captioning on LocNar.

the one observed for nocaps. We attribute this to the fact

that injecting novel concepts into longer texts is harder, and

also the fact that LocNar does not use priming in their an-

notation process, leading to more generic terms in their an-

notation (“musical instruments” vs. “trumpets”).

Finally, we fine-tune our best pre-trained model (ic on

CC12M) using CC3M in Table 7, and then evaluate on the

dev split. We find that we improve the CIDEr score on the

dev split from 100.9 to 105.4 (+4.5 CIDER points). We note

that the model trained on CC12M and evaluated directly on

the CC3M dev set (without fine-tuning on the CC3M train

CC3M CC3M

Method dev test

CIDEr CIDEr

FRCNN [10] 89.2 94.4

TTIC+BIU (single model) - 98.0

Ultra [10] 93.7 98.4

no pretrain 100.9 -

pretrain ic on CC12M (no ft) 39.3 -

pretrain ic on CC12M 105.4 -

Table 7: Performance on the Conceptual Captions (CC3M)

benchmark. Our methods are in italics. “ft” stands for fine-tuning.

The top two CC3M test CIDEr baseline scores are from the Con-

ceptual Captions Leaderboard as of Nov 15, 2020.

split) obtains a low dev CIDEr of 39.3. This again indicates

that the additional processing steps done for CC3M (e.g.,

hypernimization) result in captions that are different enough

from the ones in CC12M to require a fine-tuning step.

4.2. Vision-and-Language Matching

Table 8 reports zero-shot and default IR performance on

Flickr30K as well as default IR performance on LocNar

Flickr30K. The results are consistent with those in vision-

to-language generation. First, both CC3M and CC12M

are beneficial, improving over “from-scratch” training (Pre-

training data as “None”) by at least 8.6% and 6.6% in R1 on

Flickr30K and LocNar Flickr30K, respectively. Addition-

ally, CC12M significantly outperforms CC3M in all cases.

Finally, combining the two datasets (CC3M+CC12M) re-

sults in even better performance. We provide qualitative

results and additional discussion in the supplementary ma-
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Pretraining Finetuning Flickr30K

data data test

R1 R5 R10

None Flickr30K 43.7 74.8 84.1

CC3M None 35.4 65.2 76.2

CC12M None 42.5 73.1 83.4

CC3M+CC12M None 47.1 76.4 83.4

CC3M Flickr30K 52.3 81.7 88.4

CC12M Flickr30K 58.5 86.6 92.1

CC3M+CC12M Flickr30K 61.5 87.5 92.8

Pretraining Finetuning LocNar Flickr30K

data data test

R1 R5 R10

None LocNar Flickr30K 54.5 85.0 91.0

CC3M LocNar Flickr30K 61.1 88.2 93.7

CC12M LocNar Flickr30K 70.2 92.1 95.6

CC3M+CC12M LocNar Flickr30K 71.0 93.0 97.0

Table 8: Image retrieval on Flickr30K and LocNar Flickr30K

terial.

Our zero-shot IR results (the three rows in Table 8 with

fine-tuning data as “None”) are also competitive to the state-

of-the-art, despite the fact that our model is much smaller

(6 layers of transformers of hidden layer size 512 with 8

attention heads vs. 12 layers of size 768 with 12 attention

heads) and uses late fusion instead of early fusion. In par-

ticular, our zero-shot IR on CC3M outperforms the one in

ViLBERT [42] (35.4 vs. 31.9 in R1), while the CC12M per-

formance goes up by +7.1% R1 to 42.5, and an additional

+4.6% R1 to 47.1 when using CC3M+CC12M, surpassing

the “from-scratch” setting.

5. Related Work

V+L Pre-training. V+L pre-training research makes use

existing large-scale datasets with image-text pairs. A ma-

jority of these resources are image captioning datasets.

CC3M [54] has been the most popular for pre-training [42,

43, 2, 56, 66, 35, 12, 37]. Smaller but less noisy SBU Cap-

tions [46] (1̃M) and COCO Captions [11] (106K) datasets

are also of high interest. Some work [58, 12, 37] use V+L

resources collected for dense captioning or visual ques-

tion answering (VQA), such as VG [31], VQA2 [17], and

GQA [24]. In contrast, CC12M is not collected for specific

target tasks, and thus it is order-of-magnitude larger than

those datasets.4 Furthermore, it is much more visually di-

verse, especially given the fact that COCO Captions, VG,

VQA2, GQA are built on top of COCO images [39] or its

subsets.

Objectives in V+L pre-training research are largely in-

fluenced by BERT [15]. Masked language modeling has

4Recently appearing after we submitted our paper, ALIGN [26],

CLIP [50], WIT [55], WenLan [25] all explore enlarging Web-scale data

for V+L pre-training with success (albeit with different focuses), further

confirming our intuition that scale is a critical factor.

been extended to visual region inputs, while the next sen-

tence prediction is analogous to vlm. Based directly upon

BERT, V+L pre-training research has largely been focused

on V+L understanding [42, 36, 12, 58, 2, 56, 35, 43], with

classification or regression tasks that do not involve gener-

ation. One exception is UnifiedVL [66], which pre-trains a

unified architecture for both image captioning (generation)

and VQA (understanding). Our work focuses on simpler

objectives and consider one at a time. This allows for a

“clean” study of the effect of pre-training data sources. At

the same time, we also pre-train vision-to-language genera-

tion and encoder-decoder jointly as opposed to an encoder-

only setup. Our work also shows that ic is a strong ob-

jective for vision-to-language generation with respect to the

widely-used masking-based objectives. Consistent with our

results, ic is successfully adopted for learning visual rep-

resentations for lower-level vision tasks [14].

Long-tail Visual Recognition in V+L. Addressing long-

tail distributions of visual concepts is an important com-

ponent of V+L systems that generalize, as long and free-

form texts exhibit a large number of compositional, fine-

grained categories [67, 41, 10]. Our work focuses on down-

stream testbeds for V+L research that require this adapta-

tion ability. For example, the train-test distribution discrep-

ancy in nocaps exists in both visual (COCO vs. Open Im-

ages) and textual domains (80 to object classes vs. 600

classes). The same can be said for zero-shot image re-

trieval [42], in which the model must generalize visually

and textually from the pre-training data sources of CC3M

or CC12M to Flickr30K. Our work identifies pre-training

with large-scale noisy data as a promising solution. In ad-

dition, for the task noval object captioning, our approach

works more robustly across in- and out-of- domain scenar-

ios and is simpler than the state-of-the-art techniques that

utilize constrained beam search (CBS) [4], finite state ma-

chine construction plus CBS [5], generating slot-filling tem-

plates [44, 61], and copying mechanisms [63].

6. Conclusion

We introduce the new V+L pre-training resource

CC12M, obtained by extending the pipeline in [54]. We

show that the scale and diversity of V+L pre-training mat-

ters on both generation and matching, especially on bench-

marks that require long-tail recognition such as nocaps. Our

results indicate leveraging noisy Web-scale image-text pairs

as a promising direction for V+L research.
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