
DexYCB: A Benchmark for Capturing Hand Grasping of Objects

Yu-Wei Chao1 Wei Yang1 Yu Xiang1 Pavlo Molchanov1 Ankur Handa1 Jonathan Tremblay1

Yashraj S. Narang1 Karl Van Wyk1 Umar Iqbal1 Stan Birchfield1 Jan Kautz1 Dieter Fox1,2

1NVIDIA, 2University of Washington
{ychao,weiy,yux,pmolchanov,ahanda,jtremblay,ynarang,kvanwyk,uiqbal,sbirchfield,jkautz,dieterf}@nvidia.com

Figure 1: Two captures (left and right) from the DexYCB dataset. In each case, the top row shows color images simultaneously captured

from three views, while the bottom row shows the ground-truth 3D object and hand pose rendered on the darkened captured images.

Abstract

We introduce DexYCB, a new dataset for capturing hand

grasping of objects. We first compare DexYCB with a re-

lated one through cross-dataset evaluation. We then present

a thorough benchmark of state-of-the-art approaches on

three relevant tasks: 2D object and keypoint detection, 6D

object pose estimation, and 3D hand pose estimation. Fi-

nally, we evaluate a new robotics-relevant task: generating

safe robot grasps in human-to-robot object handover. 1

1. Introduction

3D object pose estimation and 3D hand pose estimation

are two important yet unsolved vision problems. Tradition-

ally, these two problems have been addressed separately,

yet in many critical applications, we need both capabilities

working together [36, 6, 13]. For example, in robotics, a

reliable motion capture for hand manipulation of objects is

crucial for both learning from human demonstration [12]

and fluent and safe human-robot interaction [46].

State-of-the-art approaches for both 3D object pose [37,

20, 34, 27, 40, 26, 19] and 3D hand pose estimation [49,

23, 18, 2, 9, 14, 31] rely on deep learning and thus require

large datasets with labeled hand or object poses for training.

1Dataset and code available at https://dex-ycb.github.io.

Many datasets [48, 49, 16, 17] have been introduced in both

domains and have facilitated progress on these two prob-

lems in parallel. However, since they were introduced for

either task separately, many of them do not contain interac-

tion of hands and objects, i.e., static objects without humans

in the scene, or bare hands without interacting with objects.

In the presence of interactions, the challenge of solving the

two tasks together not only doubles but multiplies, due to

the motion of objects and mutual occlusions incurred by the

interaction. Networks trained on either of the datasets will

thus not generalize well to interaction scenarios.

Creating a dataset with accurate 3D pose of hands and

objects is also challenging for the same reasons. As a re-

sult, prior works have attempted to capture accurate hand

motion either with specialized gloves [10], magnetic sen-

sors [48, 8], or marker-based mocap systems [3, 35]. While

they can achieve unparalleled accuracy, the introduction of

hand-attached devices may be intrusive and thus bias the

naturalness of hand motion. It also changes the appearance

of hands and thus may cause issues with generalization.

Due to the challenge of acquiring real 3D poses, there

has been an increasing interest in using synthetic datasets to

train pose estimation models. The success has been notable

on object pose estimation. Using 3D scanned object models

and photorealistic rendering, prior work [16, 34, 38, 5, 17]

has generated synthetic scenes of objects with high fidelity

in appearance. Their models trained only on synthetic data

9044

https://dex-ycb.github.io

can thus translate to real images. Nonetheless, synthesizing

hand-object interactions remains challenging. One problem

is to synthesize realistic grasp poses for generic objects [4].

Furthermore, synthesizing natural looking human motions

is still an active research area in graphics.

In this paper, we focus on marker-less data collection of

real hand interaction with objects. We take inspiration from

recent work [11] and build a multi-camera setup that records

interactions synchronously from multiple views. Compared

to the recent work, we instrument the setup with more cam-

eras and configure them to capture a larger workspace that

allows our human subjects to interact freely with objects.

In addition, our pose labeling process utilizes human anno-

tation rather than automatic labeling. We crowdsource the

annotation so that we can efficiently scale up the data la-

beling process. Given the setup, we construct a large-scale

dataset that captures a simple yet ubiquitous task: grasp-

ing objects from a table. The dataset, DexYCB, consists of

582K RGB-D frames over 1,000 sequences of 10 subjects

grasping 20 different objects from 8 views (Fig. 1).

Our contributions are threefold. First, we introduce a

new dataset for capturing hand grasping of objects. We em-

pirically demonstrate the strength of our dataset over a re-

lated one through cross-dataset evaluation. Second, we pro-

vide in-depth analysis of current approaches thoroughly on

three relevant tasks: 2D object and keypoint detection, 6D

object pose estimation, and 3D hand pose estimation. To

the best of our knowledge, our dataset is the first that allows

joint evaluation of these three tasks. Finally, we demon-

strate the importance of joint hand and object pose estima-

tion on a new robotics relevant task: generating safe robot

grasps for human-to-robot object handover.

2. Constructing DexYCB

2.1. Hardware Setup

In order to construct the dataset, we built a multi-camera

setup for capturing human hands interacting with objects.

A key design choice was to enable a sizable capture space,

where a human subject can freely interact and perform tasks

with multiple objects. Our multi-camera setup is shown in

Fig. 2. We use 8 RGB-D cameras (RealSense D415) and

mount them such that collectively they can capture a table-

top workspace with minimal blind spots. The cameras are

extrinsically calibrated and temporally synchronized. For

data collection, we stream and record all 8 views together at

30 fps with both color and depth of resolution 640× 480.

2.2. Data Collection and Annotation

Given the setup, we record videos of hands grasping ob-

jects. We use 20 objects from the YCB-Video dataset [44],

and record multiple trials from 10 subjects. For each trial,

we select a target object with 2 to 4 other objects and place

Figure 2: Our setup with 8 RGB-D cameras (red circle).

them on the table. We ask the subject to start from a relaxed

pose, pick up the target object, and hold it in the air. We

also ask some subjects to pretend to hand over the object to

someone across from them. We record for 3 seconds, which

is sufficient to contain the full course of action. For each

target object, we repeat the trial 5 times, each time with a

random set of accompanied objects and placement. We ask

the subject to perform the pick-up with the right hand in the

first two trials, and with the left hand in the third and fourth

trials. In the fifth trial, we randomize the choice. We rotate

the target among all 20 objects. This gives us 100 trials per

subject, and 1,000 trials in total for all subjects.

To acquire accurate ground-truth 3D pose for hands and

objects, our approach (detailed in Sec. 2.3) relies on 2D key-

point annotations for hands and objects in each view. To

ensure accuracy, we label the required keypoints in RGB

sequences fully through human annotation. Our annota-

tion tool is based on VATIC [39] for efficient annotation of

videos. We set up annotation tasks on the Amazon Mechan-

ical Turk (MTurk) and label every view in all the sequences.

For hands, we adopt 21 pre-defined hand joints as our

keypoints (3 joints plus 1 tip for each finger and the wrist).

We explicitly ask the annotators to label and track these

joints throughout a given video sequence. The annotators

are also asked to mark a keypoint as invisible in a given

frame when it is occluded.

Pre-defining keypoints exhaustively for every object

would be laborious and does not scale as the number of ob-

jects increases. Our approach (Sec. 2.3) explicitly addresses

this issue by allowing user-defined keypoints. Specifically,

given a video sequence in a particular view, we first ask the

annotator to find 2 distinctive landmark points that are eas-

ily identified and trackable on a designated object, and we

ask them to label and track these points throughout the se-

quence. We explicitly ask the annotators to find keypoints

that are visible most of the time, and mark a keypoint as

invisible whenever it is occluded.

9045

2.3. Solving 3D Hand and Object Pose

To represent 3D hand pose, we use the popular MANO

hand model [28]. The model represents a right or left hand

with a deformable triangular mesh of 778 vertices. The

mesh is parameterized by two low-dimensional embeddings

(θ, β), where θ ∈ R
51 accounts for variations in pose (i.e.

articulation) and β ∈ R
10 in shape. We use the version

from [14], which implements MANO as a differentiable

layer in PyTorch that maps (θ, β) to the mesh together with

the 3D positions of 21 hand joints defined in the keypoint

annotation. We pre-calibrate the hand shape β for each sub-

ject and fix it throughout each subject’s sequences.

Since our objects from YCB-Video [44] also come with

texture-mapped 3D mesh models, we use the standard 6D

pose representation [16, 17] for 3D object pose. The pose of

each object is represented by a matrix T ∈ R
3×4 composed

of a 3D rotation matrix and a 3D translation vector.

To solve for hand and object pose, we formulate an op-

timization problem similar to [50, 11] by leveraging depth

and keypoint annotations from all views and multi-view ge-

ometry. For a given sequence with NH hands and NO ob-

jects, we denote the overall pose at a given time frame by

P = (PH , PO), where PH = {θh}
NH

h=1
and PO = {To}

NO

o=1
.

We define the pose in world coordinates where we know

the extrinsics of each camera. Then at each time frame, we

solve the pose by minimizing the following energy function:

E(P) = Edepth(P) + Ekpt(P) + Ereg(P). (1)

Depth The depth term Edepth measures how well the mod-

els given poses explain the observed depth data. Let {di ∈
R

3}ND

i=1
be the total point cloud merged from all views after

transforming to the world coordinates, with ND denoting

the number of points. Given a pose parameter, we denote

the collection of all hand and object meshes as M(P) =
({Mh(θh)}, {Mo(To)}). We define the depth term as

Edepth(P) =
1

ND

ND∑

i=1

|SDF(di,M(P))|2, (2)

where SDF(·) calculates the signed distance value of a 3D

point from a triangular mesh in mm. While Edepth is differ-

entiable, calculating Edepth and also the gradients is compu-

tationally expensive for large point clouds and meshes with

a huge number of vertices. Therefore, we use an efficient

point-parallel GPU implementation for it.

Keypoint The keypoint term Ekpt measures the reprojec-

tion error of the keypoints on the models with the annotated

keypoints, and can be decomposed by hand and object:

Ekpt(P) = Ekpt(PH) + Ekpt(PO). (3)

For hands, let Jh,j be the 3D position of joint j of hand

h in the world coordinates, pch,j be the annotation of the

same joint in the image coordinates of view c, and γc
h,j be

its visibility indicator. The energy term is defined as

Ekpt(PH) =
1∑
γc
h,j

NC∑

c=1

NH∑

h=1

NJ∑

j=1

γc
h,j ||projc(Jh,j)−pch,j ||

2

2
,

(4)

where projc(·) returns the projection of a 3D point onto the

image plane of view c, and NC = 8 and NJ = 21.

For objects, recall that we did not pre-define keypoints

for annotation, but rather asked annotators to select distinc-

tive points to track. Here, we assume an accurate initial

pose is given at the first frame where an object’s keypoint

is labeled visible. We then map the selected keypoint to a

vertex on the object’s 3D model by back-projecting the key-

point’s position onto the object’s visible surface. We fix that

mapping afterwards. Let Kc
o,k be the 3D position of the se-

lected keypoint k of object o in view c in world coordinates.

Similar to Eq. (4), with NK = 2, the energy term is

Ekpt(PO) =
1∑
γc
o,k

NC∑

c=1

NO∑

o=1

NK∑

k=1

γc
o,k||projc(Kc

o,k)−pco,k||
2

2
.

(5)

To ensure an accurate initial pose for keypoint mapping, we

initialize the pose in each time frame with the solved pose

from the last time frame. We initialize the pose in the first

frame by running PoseCNN [44] on each view and select an

accurate pose for each object manually.

Regularization Following [24, 13], we add an ℓ2 regular-

ization to the low-dimensional pose embedding of MANO

to avoid irregular articulation of hands:

Ereg(P) =
1

NH

NH∑

h=1

||θh||
2

2
. (6)

To minimize Eq. (1), we use the Adam optimizer with a

learning rate of 0.01. For each time frame, we initialize the

pose P with the solved pose from the last time frame and

run the optimizer for 100 iterations.

3. Related Datasets

3.1. 6D Object Pose

Most datasets address instance-level 6D object pose es-

timation, where 3D models are given a priori. The recent

BOP challenge [16, 17] has curated a decent line-up of these

datasets which the participants have to evaluate on. Yet ob-

jects are mostly static in these datasets without human inter-

actions. A recent dataset [41] was introduced for category-

level 6D pose estimation, but the scenes are also static.

3.2. 3D Hand Pose

We present a summary of related 3D hand pose datasets

in Tab. 1. Some address pose estimation with depth only,

9046

dataset
visual

modality

real

image

marker-

less

hand- hand- 3D 3D

resolution #frames #sub #obj #views motion #seq
dynamic

grasp
labelhand obj obj hand

int int pose shape

BigHand2.2M [48] depth X × × × – × 640×480 2,200K 10 – 1 X – –
magnetic

sensor

SynthHands [25] RGB-D × – × X × × 640×480 220K – 7 5 × – – synthetic

Rendered Hand Pose [49] RGB-D × – × × – × 320×320 44K 20 – 1 × – – synthetic

GANerated Hands [23] RGB × – × X × × 256×256 331K – – 1 × – – synthetic

ObMan [14] RGB-D × – × X X X 256×256 154K 20 3K 1 × – – synthetic

FPHA [8] RGB-D X × × X X × 1920×1080 105K 6 4 1 X 1,175 X
magnetic

sensor

ContactPose [3] RGB-D X × × X X X 960×540 2,991K 50 25 3 X 2,303 ×
mocap

+ thermal

GRAB [35] – – × × X X X – 1 ,624K 10 51 – X 1,335 X mocap

Mueller et al. [24] depth × – X × – × 640×480 80K 5 – 4 X 11 – synthetic

InterHand2.6M [22] RGB X X X × – X 512×334 2,590K 27 – >80 X – – semi-auto

Dexter+Object [32] RGB-D X X × X X × 640×480 3K 2 2 1 X 6 X manual

Simon et al. [30] RGB X X X X × × 1920×1080 15K – – 31 X – X automatic

EgoDexter [25] RGB-D X X × X × × 640×480 3K 4 – 1 X 4 X manual

FreiHAND [50] RGB X X × X × X 224×224 37K 32 27 8 × – – semi-auto

HO-3D [11] RGB-D X X × X X X 640×480 78K 10 10 1–5 X 27 X automatic

DexYCB (ours) RGB-D X X × X X X 640×480 582K 10 20 8 X 1,000 X manual

Table 1: Comparison of DexYCB with existing 3D hand pose datasets.

e.g., BigHand2.2M [48]. These datasets can be large but

lack color images and capture only bare hands without inter-

actions. Some others address hand-hand interactions, e.g.,

Mueller et al. [24] and InterHand2.6M [22]. While not fo-

cused on interaction with objects, their datasets address an-

other challenging scenario and is orthogonal to our work.

Below we review datasets with hand-object interactions.

Synthetic Synthetic data has been increasingly used for

hand pose estimation [25, 49, 23, 14]. A common down-

side is the gap to real images on appearance. To bridge this

gap, GANerated Hands [23] was introduced by translating

synthetic images to real via GANs. Nonetheless, other chal-

lenges remain. One is to synthesize realistic grasp pose for

objects. ObMan [14] was introduced to address this chal-

lenge using heuristic metrics. Yet besides pose, it is also

challenging to synthesize realistic motion. Consequently,

these datasets only offer static images but not videos. Our

dataset captures real videos with real grasp pose and mo-

tion. Furthermore, our motion data from real can help boot-

strapping synthetic data generation.

Marker-based FPHA [8] captured hand interaction with

objects in first person view by attaching magnetic sensors

to the hands. This offers a flexible and portable solution,

but the attached sensors may hinder natural hand motion

and also bias the hand appearance. ContactPose [3] cap-

tured grasp poses by tracking objects with mocap markers

and recovering hand pose from thermal imagery of the ob-

jects surface. While the dataset is large in scale, the thermal

based approach can only capturing rigid grasp poses but not

motions. GRAB [35] captured full body motion together

with hand-object interactions using marker-based mocap. It

provides high-fidelity capture of interactions but does not

come with any visual modalities. Our dataset is marker-

less, captures dynamic grasp motions, and provides RGB-D

sequences in multiple views.

Marker-less Our DexYCB dataset falls in this category.

The challenge is to acquire accurate 3D pose. Some datasets

like Dexter+Object [32] and EgoDexter [23] rely on man-

ual annotation and are thus limited in scale. To acquire 3D

pose at scale others rely on automatic or semi-automatic ap-

proaches [30, 50]. While these datasets capture hand-object

interactions, they do not offer 3D pose for objects.

Most similar to ours is the recent HO-3D dataset [11].

HO-3D also captures hands interacting with objects from

multiple views and provides both 3D hand and object pose.

Nonetheless, the two datasets differ both quantitatively and

qualitatively. Quantitatively (Tab. 1), DexYCB captures

interactions with more objects (20 versus 10), from more

views (8 versus 1 to 5), and is one order of magnitude larger

in terms of number of frames (582K versus 78K) 2 and num-

ber of sequences (1,000 versus 27). 3 Qualitatively (Fig. 3),

we highlight three differences. First, DexYCB captures full

grasping processes (i.e. from hand approaching, opening

fingers, contact, to holding the object stably) in short seg-

ments, whereas HO-3D captures longer sequences with ob-

ject in hand most of the time. Among the 27 sequences from

HO-3D, we found 17 with hand always rigidly attached to

the object, only rotating the object from the wrist with no

finger articulation. Second, DexYCB captures a full table-

top workspace with 3D pose of all the objects on the table,

whereas in HO-3D one object is held close to the camera

each time and only the held object is labeled with pose. Fi-

nally, regarding annotation, DexYCB leverages keypoints

2We count the number of frames over all views.
3We count the same motion across different views as one sequence.

9047

Figure 3: Qualitative comparison of HO-3D [11] (top) and

DexYCB (bottom). DexYCB captures full grasping processes in a

tabletop workspace with 3D pose of all the on table objects.

fully labeled by humans through crowdsourcing, while HO-

3D relies on a fully automatic labeling pipeline.

4. Cross-Dataset Evaluation

To further assess the merit of our DexYCB dataset, we

perform cross-dataset evaluation following prior work [50,

29, 47]. We focus specifically on HO-3D [11] due to its rel-

evance, and evaluate generalizability between HO-3D and

DexYCB on single-image 3D hand pose estimation. For

DexYCB, we generate a train/val/test split following our

benchmark setup (“S0” in Sec. 5.1). For HO-3D, we se-

lect 6 out of its 55 training sequences for test. We use Spurr

et al. [31] (winner of the HAND 2019 Challenge) as our

method, and train the model separately on three training

sets: the training set of HO-3D, the training set of DexYCB,

and the combined training set from both datasets. Finally,

we evaluate the three trained models separately on the test

set of HO-3D and DexYCB.

Tab. 2 shows the results in mean per joint position er-

ror (MPJPE) reported on two different alignment methods

(details in Sec. 5.4). We experiment with two different

backbones: ResNet50 and HRNet32 [33]. Unsurprisingly,

when training on a single dataset, the model generalizes

better to the respective test set. The error increases when

tested on the other dataset. When we evaluate the DexYCB

trained model on HO-3D, we observe a consistent increase

from 1.4× to 1.9× (e.g., for ResNet50, from 18.05 to 31.76

mm on root-relative). However, when we evaluate the HO-

3D trained model on DexYCB, we observe a consistent

yet more significant increase, from 3.4× to 3.7× (e.g., for

ResNet50, from 12.97 to 48.30 mm on root-relative). This

suggests that models trained on DexYCB generalize better

than on HO-3D. Furthermore, when we train on the com-

bined training set and evaluate on HO-3D, we can further

reduce the error from only training on HO-3D (e.g., from

18.05 to 15.79 mm). However, when tested on DexYCB,

the error rather rises compared to training only on DexYCB

(e.g., from 12.97 to 13.36 mm). We conclude that DexYCB

complements HO-3D better than vice versa.

test

train
HO-3D [11] DexYCB

HO-3D [11]

+ DexYCB

HO-3D 18.05 / 10.66 31.76 / 15.23 15.79 / 9.51

DexYCB 48.30 / 24.23 12.97 / 7.18 13.36 / 7.27

HO-3D 17.46 / 10.44 33.11 / 15.51 15.89 / 9.00

DexYCB 46.38 / 23.94 12.39 / 6.79 12.48 / 6.87

Table 2: Cross-dataset evaluation with HO-3D [11] on 3D hand

pose estimation. Results are in MPJPE (mm) (root-relative / Pro-

crustes aligned). Top: [31] + ResNet50. Bottom: [31] + HRNet32.

5. Benchmarking Representative Approaches

We benchmark three tasks on our DexYCB dataset: 2D

object and keypoint detection, 6D object pose estimation,

and 3D hand pose estimation. For each task we select rep-

resentative approaches and analyze their performace.

5.1. Evaluation Setup

To evaluate different scenarios, we generate train/val/test

splits in four different ways (referred to as “setup”):

• S0 (default). The train split contains all 10 subjects, all

8 camera views, and all 20 grasped objects. Only the

sequences are not shared with the val/test split.

• S1 (unseen subjects). The dataset is split by subjects

(train/val/test: 7/1/2).

• S2 (unseen views). The dataset is split by camera views

(train/val/test: 6/1/1).

• S3 (unseen grasping). The dataset is split by grasped

objects (train/val/test: 15/2/3). Objects being grasped in

the test split are never being grasped in the train/val split,

but may appear static on the table. This way the training

set still contain examples of each object.

5.2. 2D Object and Keypoint Detection

We evaluate object and keypoint detection using the

COCO evaluation protocol [21]. For object detection, we

consider 20 object classes and 1 hand class. We collect

ground truths by rendering a segmentation mask for each

instance in each camera view. For keypoints, we consider

21 hand joints and collect the ground truths by reprojecting

each 3D joint to each camera image.

We benchmark two representative approaches: Mask R-

CNN (Detectron2) [15, 43] and SOLOv2 [42]. Mask R-

CNN has been the de facto for object and keypoint detec-

tion and SOLOv2 is a state-of-the-art on COCO instance

segmentation. For both we use a ResNet50-FPN backbone

pre-trained on ImageNet and finetune on DexYCB.

Tab. 3 shows results for object detection in average pre-

cision (AP). First, Mask R-CNN and SOLOv2 perform sim-

ilarly in mean average precision (mAP). Mask R-CNN has

a slight edge on bounding box (e.g., 75.76 versus 75.13

mAP on S0) while SOLOv2 has a slight edge on segmenta-

tion (e.g., 71.56 versus 69.58 mAP on S0). This is because

9048

S0 (default) S1 (unseen subjects) S2 (unseen views) S3 (unseen grasping)

Mask R-CNN SOLOv2 Mask R-CNN SOLOv2 Mask R-CNN SOLOv2 Mask R-CNN SOLOv2

bbox segm bbox segm bbox segm bbox segm bbox segm bbox segm bbox segm bbox segm

002 master chef can 83.87 82.68 84.90 85.20 82.41 80.69 82.74 81.67 85.82 84.44 83.52 83.39 83.96 83.72 84.53 85.44

003 cracker box 85.85 83.72 89.08 88.07 82.12 80.18 84.26 84.39 88.74 87.60 89.61 87.85 85.51 83.68 79.75 88.00

004 sugar box 81.30 77.71 80.45 79.26 78.35 74.75 77.17 76.66 83.72 79.53 81.91 79.25 78.06 75.68 74.87 77.40

005 tomato soup can 76.03 74.75 75.70 75.33 73.65 71.33 72.66 71.35 77.66 76.70 75.25 73.82 76.70 76.29 76.50 76.48

006 mustard bottle 81.56 79.40 79.94 81.87 78.76 75.41 77.76 75.92 81.12 79.06 79.87 78.29 81.74 82.37 82.24 84.45

007 tuna fish can 68.08 67.14 67.76 67.34 68.99 67.76 68.07 67.59 73.37 72.06 71.72 70.68 75.76 77.70 75.76 77.61

008 pudding box 73.60 70.39 74.05 72.58 69.77 68.04 69.78 68.20 78.88 76.74 79.01 76.58 71.32 71.43 65.11 70.94

009 gelatin box 69.51 68.43 68.64 68.09 67.37 64.99 66.16 63.14 72.87 71.45 73.34 69.36 61.19 58.41 60.98 59.49

010 potted meat can 75.63 72.66 77.28 75.80 73.86 71.95 70.87 71.76 78.96 78.35 79.63 76.84 77.48 78.03 78.40 79.24

011 banana 70.53 63.43 69.67 65.49 68.07 60.50 67.31 60.57 72.46 58.18 70.80 70.68 71.67 67.54 73.25 70.28

019 pitcher base 87.17 84.67 89.95 88.98 86.21 82.00 90.07 86.38 90.47 86.67 86.88 87.02 85.62 83.69 90.22 89.91

021 bleach cleanser 80.98 77.52 75.52 79.71 79.59 76.68 78.77 78.52 84.75 81.71 82.79 81.75 77.36 71.54 77.01 75.54

024 bowl 80.62 78.12 75.79 80.30 78.75 76.42 78.06 77.39 83.25 80.12 81.54 79.72 81.12 79.69 81.91 82.99

025 mug 76.01 71.95 76.35 74.35 74.64 69.64 72.72 69.93 80.14 75.99 78.24 74.13 75.51 73.19 76.78 75.86

035 power drill 81.83 73.80 82.85 77.20 76.89 69.02 77.90 71.50 82.57 74.66 82.42 74.09 83.67 77.62 84.06 80.77

036 wood block 83.75 81.41 85.72 85.59 80.45 78.15 79.45 79.32 83.78 83.40 41.24 64.85 77.52 73.84 78.01 77.78

037 scissors 64.07 29.36 59.00 32.63 55.05 20.68 50.85 26.51 63.16 17.93 38.00 16.93 58.01 24.35 57.92 31.11

040 large marker 52.69 42.42 50.95 42.46 50.14 38.46 44.94 36.46 53.98 36.47 50.78 33.58 55.35 41.23 53.66 45.22

052 extra large clamp 73.41 54.03 71.71 55.38 68.12 51.26 65.26 52.33 75.61 52.77 61.14 53.59 75.24 57.28 72.52 58.87

061 foam brick 72.68 72.85 72.54 72.93 68.34 66.62 67.98 65.72 75.24 74.10 73.01 71.05 71.36 71.32 71.50 71.59

hand 71.85 54.83 66.41 54.27 64.88 46.86 58.33 46.66 70.23 54.70 59.28 52.08 71.23 54.89 66.33 53.51

mAP 75.76 69.58 75.13 71.56 72.69 66.26 71.48 67.24 77.94 70.60 72.37 68.66 75.02 69.69 74.35 72.05

Table 3: 2D object detection results in AP (%) on the four setups. We compare Mask R-CNN (Detectron2) [15, 43] with SOLOv2 [42]

on both bounding box (bbox) and segmentation (segm).

S0 S1 S2 S3

hand 36.42 26.85 32.90 35.18

Table 4: 2D keypoint detection results in AP (%) with Mask R-

CNN (Detectron2) [15, 43].

Mask R-CNN predicts bounding boxes first and uses them

to generate segmentations. Therefore the error can accumu-

late for segmentation. SOLOv2 in contrast directly predicts

segmentations and uses it to generate bounding boxes. Sec-

ond, the AP for hand is lower than the AP for objects (e.g.,

for Mask R-CNN, 71.85 for hand versus 75.76 mAP on S0

bbox). This suggests that hands are more difficult to detect

than objects, possibly due to its larger variability in posi-

tion. Finally, performance varies across setups. For exam-

ple, mAP in S1 is lower than in S0 (e.g., for Mask R-CNN,

72.69 versus 75.76 on bbox). This can be attributed to the

challenge introduced by unseen subjects. Tab. 4 shows the

AP for keypoint detection with Mask R-CNN. We observe

a similar trend on the ordering of AP over different setups.

5.3. 6D Object Pose Estimation

We evaluate single-view 6D pose estimation following

the BOP challenge protocol [16, 17]. The task asks for a

6D pose estimate for each object instance given the num-

ber of objects and instances in each image. The evaluation

computes recall using three different pose-error functions

(VSD, MSSD, MSPD), and the final score is the average of

the three recall values (AR).

We first analyze the challenge brought by hand grasping

by comparing static and grasped objects. We use PoseCNN

all static grasped

52.68 56.53 41.65

Table 5: PoseCNN (RGB) [44] results in AR (%) on S0 (default).

(RGB) [44] as a baseline and retrain the model on DexYCB.

Tab. 5 shows the AR on S0 evaluated separately on the full

test set, static objects only, and grasped objects only. With-

out surprise the AR drops significantly when only consid-

ering the grasped objects. This recapitulates the increas-

ing challenge of object pose estimation under hand interac-

tions. To better focus on this regime, we evaluate only on

the grasped objects in the remaining experiments.

We next evaluate on the four setups using the same base-

line. Results are shown in Tab. 6 (left). On S1 (unseen

subjects), we observe a drop in AR compared to S0 (e.g.,

38.26 versus 41.65 on all) as in object detection. This can

be attributed to the influence of interaction from unseen

hands as well as different grasping styles. The column of

S3 (unseen grasping) shows the AR of the three only ob-

jects being grasped in the test set (i.e. “009 gelatin box”,

“021 bleach cleanser”, “036 wood block”). Again, the AR

is lower compared to on S0, and the drop is especially sig-

nificant for smaller objects like “009 gelatin box” (33.07

versus 46.62). Surprisingly, AR on S2 (unseen views) does

not drop but rather increases slightly (e.g., 45.18 versus

41.65 on all). This suggests that our multi-camera setup

has a dense enough coverage of the scene such that training

on certain views can translate well to some others.

Finally, we benchmark five representative approaches:

PoseCNN [44], DeepIM [20], DOPE [38], PoseRBPF [5],

9049

S0 S1 S2 S3
PoseCNN [44] DeepIM [20] DOPE [38] PoseRBPF [5] CosyPose [19]

RGB + depth ref RGB RGB-D RGB RGB RGB-D RGB

002 master chef can 47.47 44.53 51.36 – 44.53 48.24 60.74 68.40 19.82 35.19 58.04 77.21

003 cracker box 61.04 57.46 60.65 – 57.46 62.62 79.43 84.56 53.50 43.62 67.37 88.39

004 sugar box 45.11 36.00 51.73 – 36.00 42.45 51.29 59.34 32.06 30.55 56.55 69.61

005 tomato soup can 36.68 34.88 45.44 – 34.88 42.99 46.87 55.46 20.52 23.76 40.03 52.76

006 mustard bottle 52.56 42.89 51.96 – 42.89 48.98 55.52 63.31 23.66 28.98 54.93 67.11

007 tuna fish can 32.70 29.58 31.96 – 29.58 36.17 39.18 46.98 5.86 20.13 36.77 49.00

008 pudding box 44.24 42.60 50.81 – 42.60 51.26 58.23 67.18 14.48 27.24 47.95 70.22

009 gelatin box 46.62 34.39 44.38 33.07 34.39 41.71 47.89 55.54 21.81 31.27 46.14 57.63

010 potted meat can 37.41 42.10 45.08 – 42.10 51.64 60.19 69.40 14.15 31.17 46.43 65.37

011 banana 38.33 36.71 44.42 – 36.71 40.21 41.82 48.63 16.15 21.39 39.15 35.48

019 pitcher base 53.49 46.03 53.51 – 46.03 49.62 54.27 63.46 7.02 19.94 51.38 52.68

021 bleach cleanser 49.41 42.54 56.03 38.52 42.54 46.29 51.54 61.44 16.70 22.94 53.50 63.62

024 bowl 57.42 54.25 58.15 – 54.25 57.05 60.30 69.40 – 37.00 62.49 74.74

025 mug 40.68 37.28 43.70 – 37.28 38.69 41.15 49.51 – 18.21 34.87 48.48

035 power drill 47.93 41.86 50.79 – 41.86 45.79 58.10 64.28 19.60 30.67 51.41 49.22

036 wood block 40.11 38.66 49.50 40.53 38.66 44.08 49.91 65.39 – 23.80 51.63 67.14

037 scissors 21.93 22.87 25.90 – 22.87 25.29 27.48 32.65 14.16 17.18 29.40 24.36

040 large marker 35.09 32.12 38.19 – 32.12 38.73 33.27 46.63 – 19.05 29.66 50.58

052 extra large clamp 30.48 31.89 34.42 – 31.89 33.60 39.63 47.04 – 22.99 35.99 50.78

061 foam brick 12.80 13.04 15.75 – 13.04 16.70 18.14 27.57 – 17.40 32.42 30.12

all 41.65 38.26 45.18 37.41 38.26 43.27 48.99 57.54 – 26.24 46.48 57.43

Table 6: 6D object pose estimation results in AR (%). Left: PoseCNN (RGB). Right: performance of representative approaches on S1.

and CosyPose [19] (winner of the BOP challenge 2020). All

of them take RGB input. For PoseCNN, we also include a

variant with post-process depth refinement. For DeepIM

and PoseRBPF, we also include their RGB-D variants. For

CosyPose, we use its single view version. For DeepIM

and CosyPose, we initialize the pose from the output of

PoseCNN (RGB). We retrain all the models on DexYCB

except for DOPE and PoseRBPF, which trained their mod-

els solely on synthetic images. For DOPE, we train models

for an additional 7 objects besides the 5 provided. Tab. 6

(right) compares the results on the most challenging S1 (un-

seen subjects) setup. First, we can see a clear edge on those

which also use depth compared to their respective RGB

only variants (for PoseCNN, from 38.26 to 43.27 AR on

all). Second, refinement based methods like DeepIM and

CosyPose are able to improve significantly upon their initial

pose input (e.g., for DeepIM RGB-D, from 38.26 to 57.54

AR on all). Finally, CosyPose achieves the best overall AR

among all the RGB-based methods (57.43 AR on all).

5.4. 3D Hand Pose Estimation

The task is to estimate the 3D position of 21 hand joints

from a single image. We evaluate with two metrics: mean

per joint position error (MPJPE) in mm and percentage of

correct keypoints (PCK). Besides computing error in abso-

lute 3D position, we also report errors after aligning the pre-

dictions with ground truths in post-processing [49, 50, 11].

We consider two alignment methods: root-relative and Pro-

crustes. The former removes ambiguity in translation by

replacing the root (wrist) location with ground thuths. The

latter removes ambiguity in translation, rotation, and scale,

thus focusing specifically on articulation. For PCK we re-

absolute root-relative Procrustes

S0

[31] + ResNet50 53.92 (0.307) 17.71 (0.683) 7.12 (0.858)

[31] + HRNet32 52.26 (0.328) 17.34 (0.698) 6.83 (0.864)

A2J [45] 27.53 (0.612) 23.93 (0.588) 12.07 (0.760)

S1

[31] + ResNet50 70.23 (0.240) 22.71 (0.601) 8.43 (0.832)

[31] + HRNet32 70.10 (0.248) 22.26 (0.615) 7.98 (0.841)

A2J [45] 29.09 (0.584) 25.57 (0.562) 12.95 (0.743)

S2

[31] + ResNet50 83.46 (0.208) 23.15 (0.566) 8.11 (0.838)

[31] + HRNet32 80.63 (0.217) 25.49 (0.530) 8.21 (0.836)

A2J [45] 23.44 (0.576) 27.65 (0.540) 13.42 (0.733)

S3

[31] + ResNet50 58.69 (0.281) 19.41 (0.665) 7.56 (0.849)

[31] + HRNet32 55.39 (0.311) 18.44 (0.686) 7.06 (0.859)

A2J [45] 30.99 (0.608) 24.92 (0.581) 12.15 (0.759)

Table 7: 3D hand pose estimation results in MPJPE (mm). Num-

bers in parentheses are AUC values.

port the area under the curve (AUC) over the error range

[0, 50 mm] with 100 steps.

We benchmark one RGB and one depth based approach.

For RGB, we select a supervised version of Spurr et al. [31]

which won the HANDS 2019 Challenge [1]. We experiment

with the original ResNet50 backbone as well as a stronger

HRNet32 [33] backbone, both initialized with ImageNet

pre-trained models and finetuned on DexYCB. For depth,

we select A2J [45] and retrain the model on DexYCB.

Tab. 7 shows the results. For [31], we can see that es-

timating absolute 3D position solely from RGB is difficult

(e.g., 53.92 mm absolute MPJPE with ResNet50 on S0).

The stronger HRNet32 backbone reduces the errors over

ResNet50 but only marginally (e.g., 52.26 versus 53.92 mm

absolute MPJPE on S0). Similar to in object pose, the errors

on S1 (unseen subjects) increase from S0 (e.g., 70.10 versus

52.26 mm absolute MPJPE for HRNet32) due to the impact

of unseen hands and grasping styles. However, unlike the

trend in Tab. 6 (left), the errors on S2 (unseen views) also in-

9050

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
Coverage

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Pr
ec

isi
on

PoseCNN RGB
PoseCNN + Depth
DeepIM RGB
DeepIM RGB-D
PoseRBPF RGB
PoseRBPF RGB-D
CosyPose RGB

Figure 4: Precision-coverage curves for grasp generation on S1.

crease pronouncedly and even surpass the other setups (e.g.,

80.63 mm absolute MPJPE for HRNet32). This is because

unlike objects, the subjects are always facing the same di-

rection from a situated position in this setup. This further

constrains the possible hand poses observed in each view,

making cross view generalization more challenging. Un-

surprisingly, A2J [45] outperforms [31] on absolute MPJPE

due to the depth input, but falls short on estimating artic-

ulation as shown by the errors after alignment (e.g., 12.07

versus 6.83 mm Procrustes MPJPE for HRNet32 on S0).

6. Safe Human-to-Robot Object Handover

Task Given an RGB-D image with a person holding an

object, the goal is to generate a diverse set of robot grasps

to take over the object without pinching the person’s hand

(we refer to as “safe” handovers). The diversity of grasps

is important since not all the grasps are kinematically feasi-

ble for execution. We assume a parallel-jaw Franka Panda

gripper and represent each grasp as a point in SE(3).

Evaluation We first sample 100 grasps for each YCB

object using farthest point sampling from a diverse set of

grasps pre-generated for that object in [7]. This ensures a

dense coverage of the pose space (Fig. 5). For each image,

we transform these grasps from the object frame to camera

frame using the ground-truth object pose, and remove those

collided with the ground-truth object and hand mesh. This

generates a reference set of successful grasps R.

Given a set of predicted grasps χ, we evaluate its di-

versity by computing the coverage [7] of R, defined by

the percentage of grasps in R having at least one matched

grasp in χ that is neither collided with the object nor the

hand. Specifically, two grasps g, h are considered matched

if |gt − ht| < σt and arccos(|〈gq, hq〉|) < σq , where gt is

the translation and gq is the orientation in quaternion. We

use σt = 0.05 m and σq = 15°.

One could potentially hit a high coverage by sampling

grasps exhaustively. Therefore we also compute precision,

Figure 5: Top: 100 successful grasps sampled from [7]. Bottom:

predicted grasps generated by the predicted object pose (textured

model) and hand segmentation (blue masks). Green ones denote

those covering successful grasps, red ones denote those collided

with the object or hand, and gray ones are failures not covering

any successful grasps in the reference set. Ground-truth objects

and hands are shown in translucent white and brown meshes.

defined as the percentage of grasps in χ that have at least

one matched successful grasp in R.

Baseline We experiment with a simple baseline that only

requires hand segmentation and 6D object pose. Similar to

constructing R, we transform the 100 grasps to the cam-

era frame but using the estimated object pose, then remove

those that are collided with the hand point cloud obtained by

the hand segmentation and the depth image. Specifically, a

grasp is collided if the distance of a pair of points from the

gripper point cloud and the hand point cloud is less than a

threshold ǫ. The gripper point cloud is obtained from a set

of pre-sampled points on the gripper surface. We use the

hand segmentation results from Mask R-CNN (Sec. 5.2).

Results We evaluate grasps generated with different ob-

ject pose methods at different threshold ǫ ∈ [0, 0.07 m] and

show the precision-coverage curves on S1 in Fig. 4. We see

that better object pose estimation leads to better grasp gen-

eration. Fig. 5 shows qualitative examples of the predicted

grasps. We see that most of the failure grasps (red and gray)

are due to inaccurate object pose. Some are hand-colliding

grasps caused by a miss detected hand when the hand is par-

tially occluded by the object (e.g., “003 cracker box”). This

can be potentially addressed by model based approaches

that directly predict the full hand shape.

7. Conclusions

We have introduced DexYCB for capturing hand grasp-

ing of objects. We have shown its merits, presented a thor-

ough benchmark of current approaches on three relevant

tasks, and evaluated a new robotics-relevant task. We envi-

sion our dataset will drive progress on these crucial fronts.

9051

References

[1] Anil Armagan, Guillermo Garcia-Hernando, Seungryul

Baek, Shreyas Hampali, Mahdi Rad, Zhaohui Zhang,

Shipeng Xie, MingXiu Chen, Boshen Zhang, Fu Xiong,

Yang Xiao, Zhiguo Cao, Junsong Yuan, Pengfei Ren, Weit-

ing Huang, Haifeng Sun, Marek Hrúz, Jakub Kanis, Zdeněk

Krňoul, Qingfu Wan, Shile Li, Linlin Yang, Dongheui Lee,

Angela Yao, Weiguo Zhou, Sijia Mei, Yunhui Liu, Adrian

Spurr, Umar Iqbal, Pavlo Molchanov, Philippe Weinzaepfel,

Romain Brégier, Grégory Rogez, Vincent Lepetit, and Tae-

Kyun Kim. Measuring generalisation to unseen viewpoints,

articulations, shapes and objects for 3D hand pose estimation

under hand-object interaction. In ECCV, 2020. 7

[2] Adnane Boukhayma, Rodrigo de Bem, and Philip H.S. Torr.

3D hand shape and pose from images in the wild. In CVPR,

2019. 1

[3] Samarth Brahmbhatt, Chengcheng Tang, Christopher D.

Twigg, Charles C. Kemp, and James Hays. ContactPose:

A dataset of grasps with object contact and hand pose. In

ECCV, 2020. 1, 4

[4] Enric Corona, Albert Pumarola, Guillem Alenyà, Francesc

Moreno-Noguer, and Grégory Rogez. GanHand: Predicting

human grasp affordances in multi-object scenes. In CVPR,

2020. 2

[5] Xinke Deng, Arsalan Mousavian, Yu Xiang, Fei Xia, Timo-

thy Bretl, and Dieter Fox. PoseRBPF: A Rao-Blackwellized

particle filter for 6D object pose estimation. In RSS, 2019. 1,

6, 7

[6] Bardia Doosti, Shujon Naha, Majid Mirbagheri, and David J.

Crandall. HOPE-Net: A graph-based model for hand-object

pose estimation. In CVPR, 2020. 1

[7] Clemens Eppner, Arsalan Mousavian, and Dieter Fox. A

billion ways to grasps: An evaluation of grasp sampling

schemes on a dense, physics-based grasp data set. In ISRR,

2019. 8

[8] Guillermo Garcia-Hernando, Shanxin Yuan, Seungryul

Baek, and Tae-Kyun Kim. First-person hand action bench-

mark with RGB-D videos and 3D hand pose annotations. In

CVPR, 2018. 1, 4

[9] Liuhao Ge, Zhou Ren, Yuncheng Li, Zehao Xue, Yingying

Wang, Jianfei Cai, and Junsong Yuan. 3D hand shape and

pose estimation from a single RGB image. In CVPR, 2019.

1

[10] Oliver Glauser, Shihao Wu, Daniele Panozzo, Otmar

Hilliges, and Olga Sorkine-Hornung. Interactive hand pose

estimation using a stretch-sensing soft glove. In SIGGRAPH,

2019. 1

[11] Shreyas Hampali, Mahdi Rad, Markus Oberweger, and Vin-

cent Lepetit. HOnnotate: A method for 3D annotation of

hand and object poses. In CVPR, 2020. 2, 3, 4, 5, 7

[12] Ankur Handa, Karl Van Wyk, Wei Yang, Jacky Liang, Yu-

Wei Chao, Qian Wan, Stan Birchfield, Nathan Ratliff, and

Dieter Fox. DexPilot: Vision-based teleoperation of dexter-

ous robotic hand-arm system. In ICRA, 2020. 1

[13] Yana Hasson, Bugra Tekin, Federica Bogo, Ivan Laptev,

Marc Pollefeys, and Cordelia Schmid. Leveraging photomet-

ric consistency over time for sparsely supervised hand-object

reconstruction. In CVPR, 2020. 1, 3

[14] Yana Hasson, Gul Varol, Dimitrios Tzionas, Igor Kale-

vatykh, Michael J. Black, Ivan Laptev, and Cordelia Schmid.

Learning joint reconstruction of hands and manipulated ob-

jects. In CVPR, 2019. 1, 3, 4

[15] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Gir-

shick. Mask R-CNN. In ICCV, 2017. 5, 6

[16] Tomáš Hodaň, Frank Michel, Eric Brachmann, Wadim Kehl,

Anders Glent Buch, Dirk Kraft, Bertram Drost, Joel Vidal,

Stephan Ihrke, Xenophon Zabulis, Caner Sahin, Fabian Man-

hardt, Federico Tombari, Tae-Kyun Kim, Jiřı́ Matas, and

Carsten Rother. BOP: Benchmark for 6D object pose esti-

mation. In ECCV, 2018. 1, 3, 6

[17] Tomáš Hodaň, Martin Sundermeyer, Bertram Drost, Yann

Labbé, Eric Brachmann, Frank Michel, Carsten Rother, and

Jiřı́ Matas. BOP challenge 2020 on 6D object localization.

ECCV Workshops, 2020. 1, 3, 6

[18] Umar Iqbal, Pavlo Molchanov, Thomas Breuel, Juergen

Gall, and Jan Kautz. Hand pose estimation via latent 2.5D

heatmap regression. In ECCV, 2018. 1

[19] Yann Labbé, Justin Carpentier, Mathieu Aubry, and Josef

Sivic. CosyPose: Consistent multi-view multi-object 6D

pose estimation. In ECCV, 2020. 1, 7

[20] Yi Li, Gu Wang, Xiangyang Ji, Yu Xiang, and Dieter Fox.

DeepIM: Deep iterative matching for 6D pose estimation. In

ECCV, 2018. 1, 6, 7

[21] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,

Pietro Perona, Deva Ramanan, Piotr Dollár, and C. Lawrence

Zitnick. Microsoft COCO: Common objects in context. In

ECCV, 2014. 5

[22] Gyeongsik Moon, Shoou-I Yu, He Wen, Takaaki Shiratori,

and Kyoung Mu Lee. InterHand2.6M: A dataset and baseline

for 3D interacting hand pose estimation from a single RGB

image. In ECCV, 2020. 4

[23] Franziska Mueller, Florian Bernard, Oleksandr Sotny-

chenko, Dushyant Mehta, Srinath Sridhar, Dan Casas, and

Christian Theobalt. GANerated Hands for real-time 3D hand

tracking from monocular RGB. In CVPR, 2018. 1, 4

[24] Franziska Mueller, Micah Davis, Florian Bernard, Oleksandr

Sotnychenko, Mickeal Verschoor, Miguel A. Otaduy, Dan

Casas, and Christian Theobalt. Real-time pose and shape

reconstruction of two interacting hands with a single depth

camera. In SIGGRAPH, 2019. 3, 4

[25] Franziska Mueller, Dushyant Mehta, Oleksandr Sotny-

chenko, Srinath Sridhar, Dan Casas, and Christian Theobalt.

Real-time hand tracking under occlusion from an egocentric

RGB-D sensor. In ICCV, 2017. 4

[26] Kiru Park, Timothy Patten, and Markus Vincze. Pix2Pose:

Pixel-wise coordinate regression of objects for 6D pose esti-

mation. In ICCV, 2019. 1

[27] Sida Peng, Yuan Liu, Qixing Huang, Xiaowei Zhou, and Hu-

jun Bao. PVNet: Pixel-wise voting network for 6DoF pose

estimation. In CVPR, 2019. 1

[28] Javier Romero, Dimitrios Tzionas, and Michael J. Black.

Embodied hands: Modeling and capturing hands and bod-

ies together. In SIGGRAPH Asia, 2017. 3

9052

[29] Dandan Shan, Jiaqi Geng, Michelle Shu, and David F.

Fouhey. Understanding human hands in contact at internet

scale. In CVPR, 2020. 5

[30] Tomas Simon, Hanbyul Joo, Iain Matthews, and Yaser

Sheikh. Hand keypoint detection in single images using mul-

tiview bootstrapping. In CVPR, 2017. 4

[31] Adrian Spurr, Umar Iqbal, Pavlo Molchanov, Otmar Hilliges,

and Jan Kautz. Weakly supervised 3D hand pose estimation

via biomechanical constraints. In ECCV, 2020. 1, 5, 7, 8

[32] Srinath Sridhar, Franziska Mueller, Michael Zollhoefer, Dan

Casas, Antti Oulasvirta, and Christian Theobalt. Real-time

joint tracking of a hand manipulating an object from RGB-D

input. In ECCV, 2016. 4

[33] Ke Sun, Bin Xiao, Dong Liu, and Jingdong Wang. Deep

high-resolution representation learning for human pose esti-

mation. In CVPR, 2019. 5, 7

[34] Martin Sundermeyer, Zoltan-Csaba Marton, Maximilian

Durner, Manuel Brucker, and Rudolph Triebel. Implicit 3D

orientation learning for 6D object detection from RGB im-

ages. In ECCV, 2018. 1

[35] Omid Taheri, Nima Ghorbani, Michael J. Black, and Dim-

itrios Tzionas. GRAB: A dataset of whole-body human

grasping of objects. In ECCV, 2020. 1, 4

[36] Bugra Tekin, Federica Bogo, and Marc Pollefeys. H+O: Uni-

fied egocentric recognition of 3D hand-object poses and in-

teractions. In CVPR, 2019. 1

[37] Bugra Tekin, Sudipta N. Sinha, and Pascal Fua. Real-time

seamless single shot 6D object pose prediction. In CVPR,

2018. 1

[38] Jonathan Tremblay, Thang To, Balakumar Sundaralingam,

Yu Xiang, Dieter Fox, and Stan Birchfield. Deep object pose

estimation for semantic robotic grasping of household ob-

jects. In CoRL, 2018. 1, 6, 7

[39] Carl Vondrick, Donald Patterson, and Deva Ramanan. Ef-

ficiently scaling up crowdsourced video annotation. IJCV,

101(1):184–204, Jan 2013. 2

[40] Chen Wang, Danfei Xu, Yuke Zhu, Roberto Martin-Martin,

Cewu Lu, Li Fei-Fei, and Silvio Savarese. DenseFusion: 6D

object pose estimation by iterative dense fusion. In CVPR,

2019. 1

[41] He Wang, Srinath Sridhar, Jingwei Huang, Julien Valentin,

Shuran Song, and Leonidas J. Guibas. Normalized object

coordinate space for category-level 6D object pose and size

estimation. In CVPR, 2019. 3

[42] Xinlong Wang, Rufeng Zhang, Tao Kong, Lei Li, and Chun-

hua Shen. SOLOv2: Dynamic, faster and stronger. In

NeurIPS. 2020. 5, 6

[43] Yuxin Wu, Alexander Kirillov, Francisco Massa, Wan-Yen

Lo, and Ross Girshick. Detectron2. https://github.

com/facebookresearch/detectron2, 2019. 5, 6

[44] Yu Xiang, Tanner Schmidt, Venkatraman Nafurayanan, and

Dieter Fox. PoseCNN: A convolutional neural network for

6D object pose estimation in cluttered scenes. In RSS, 2018.

2, 3, 6, 7

[45] Fu Xiong, Boshen Zhang, Yang Xiao, Zhiguo Cao, Taidong

Yu, Joey Tianyi Zhou, and Junsong Yuan. A2J: Anchor-to-

joint regression network for 3D articulated pose estimation

from a single depth image. In ICCV, 2019. 7, 8

[46] Wei Yang, Chris Paxton, Maya Cakmak, and Dieter Fox.

Human grasp classification for reactive human-to-robot han-

dovers. In IROS, 2020. 1

[47] Zhixuan Yu, Jae Shin Yoon, In Kyu Lee, Prashanth

Venkatesh, Jaesik Park, Jihun Yu, and Hyun Soo Park.

HUMBI: A large multiview dataset of human body expres-

sions. In CVPR, 2020. 5

[48] Shanxin Yuan, Qi Ye, Bjorn Stenger, Siddhant Jain, and Tae-

Kyun Kim. BigHand2.2M benchmark: Hand pose dataset

and state of the art analysis. In CVPR, 2017. 1, 4

[49] Christian Zimmermann and Thomas Brox. Learning to esti-

mate 3D hand pose from single RGB images. In ICCV, 2017.

1, 4, 7

[50] Christian Zimmermann, Duygu Ceylan, Jimei Yang, Bryan

Russell, Max J. Argus, and Thomas Brox. FreiHAND: A

dataset for markerless capture of hand pose and shape from

single RGB images. In ICCV, 2019. 3, 4, 5, 7

9053

https://github.com/facebookresearch/detectron2
https://github.com/facebookresearch/detectron2

