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Abstract

The focal loss has demonstrated its effectiveness in many

real-world applications such as object detection and image

classification, but its theoretical understanding has been

limited so far. In this paper, we first prove that the focal loss

is classification-calibrated, i.e., its minimizer surely yields

the Bayes-optimal classifier and thus the use of the focal

loss in classification can be theoretically justified. However,

we also prove a negative fact that the focal loss is not strictly

proper, i.e., the confidence score of the classifier obtained

by focal loss minimization does not match the true class-

posterior probability. This may cause the trained classi-

fier to give an unreliable confidence score, which can be

harmful in critical applications. To mitigate this problem,

we prove that there exists a particular closed-form transfor-

mation that can recover the true class-posterior probability

from the outputs of the focal risk minimizer. Our experi-

ments show that our proposed transformation successfully

improves the quality of class-posterior probability estima-

tion and improves the calibration of the trained classifier,

while preserving the same prediction accuracy.

1. Introduction

It is well-known that training classifiers with the same

model architecture can have a huge performance difference

if they are trained using different loss functions [3, 25, 16,

8]. To choose an appropriate loss function, it is highly use-

ful to know theoretical properties of loss functions. For ex-

ample, let us consider the hinge loss, which is related to the

support vector machine [12, 3]. This loss function is known

to be suitable for classification since minimizing this loss

*Nontawat and Jayakorn contributed equally.

can achieve the Bayes-optimal classifier. However, it is also

known that training with the hinge loss does not give the

Bayes-optimal solutions for bipartite ranking [15, 47] and

class-posterior probability estimation [38]. Such theoretical

drawbacks of the hinge loss have been observed to be rele-

vant in practice as well [37, 47]. Not only the hinge loss, but

many other loss functions have also been analyzed and their

theoretical results have been used as a guideline to choose

an appropriate loss function for many problems, e.g., classi-

fication from noisy labels [16, 8, 26], classification with re-

jection [55, 34], and direct optimization of linear-fractional

metrics [2, 36].

Recently, the focal loss has been proposed as an alterna-

tive to the popular cross-entropy loss [25]. This loss func-

tion has been shown to be preferable over the cross-entropy

loss when facing the class imbalance problem. Because of

its effectiveness, it has been successfully applied in many

applications, e.g., medical diagnosis [48, 54, 41, 1], speech

processing [46], and natural language processing [40]. Al-

though the focal loss has been successfully applied in many

real-world problems [48, 54, 41, 6, 27, 9, 39, 45, 43, 1],

considerably less attention has been paid to the theoretical

understanding of this loss function. For example, a funda-

mental question whether we can estimate a class-posterior

probability from the classifier trained with the focal loss

has remained unanswered. Knowing such a property is

highly important when one wants to utilize the prediction

confidence. For example, one may defer the decision to

a human expert when a classifier has low prediction con-

fidence [10, 55, 34, 29, 7], or one may use the prediction

confidence to teach a new model, which has been studied in

the literature of knowledge distillation [20, 51, 28].

Motivated by the usefulness of loss function analysis and

the lack of theoretical understanding of the focal loss, the

goal of this paper is to provide an extensive analysis of this

loss function so that we can use it appropriately for the real-
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world applications. Our contributions can be summarized

as follows:

• In Sec. 3, we prove that the focal loss is classification-

calibrated (Thm. 3), which theoretically confirms that

the optimal classifier trained with the focal loss can

achieve the Bayes-optimal classifier.

• In Sec. 4, we prove that learning with the focal loss can

give both underconfident and overconfident classifiers

(Thm. 8). Our result suggests that the simplex output

of the classifier is not reliable as a class-posterior prob-

ability estimator (Thm. 5).

• In Sec. 5, we prove that the true class-posterior proba-

bility can be theoretically recovered from the focal risk

minimizer by our proposed novel transformation Ψ
�

(Thm. 11). This allows us to calibrate the confidence

score of the classifier, while maintaining the same de-

cision rule (Prop. 12).

2. Preliminaries

In this section, we begin by describing the problem set-

ting and notation we use in this paper. Then, we explain

fundamental properties of loss functions used for classifica-

tion, and end the section with a review of the focal loss.

2.1. Multiclass classification

Let X be an input space and Y = {1, 2, . . . ,K} be

a label space, where K denotes the number of classes1.

In multiclass classification, we are given labeled examples

D = {(xi, yi)}
n
i=1 independently drawn from an unknown

probability distribution (i.i.d.) over X ⇥ Y with density

p(x, y). The goal of classification is to find a classifier

f : X ! Y that minimizes the following classification risk:

R`0-1(f) = E
(x,y)⇠p(x,y)

[`0-1(f(x), y)], (1)

where `0-1 is the zero-one loss `0-1(f(x), y) = [f(x) 6=y].

Next, let us define the true class-posterior probability vector

as η(x) = [⌘1(x), . . . , ⌘K(x)]>, where ⌘y(x) = p(y|x)
denotes the true class-posterior probability for a class y. It is

well-known that the Bayes-optimal classifier f `0-1,⇤, which

minimizes the expected classification risk in Eq. (1), can be

defined as follows:.

Definition 1 (Bayes-optimal classifier [56]). The Bayes-

optimal solution of multiclass classification, f `0-1,⇤ =
argminf R`0-1(f), can be expressed as

f `0-1,⇤(x) = argmax
y

⌘y(x). (2)

1Bold letters denote vectors, e.g., x. Non-bold letters denote scalars,

e.g., x. Subscripted letters denote vector elements, e.g., xi is element i of

x. [·] denotes the indicator function. x> denotes the transpose of x.

As suggested in Eq. (2), knowing the true class-posterior

probability η can give the Bayes-optimal classifier but the

converse is not necessarily true [3, 50]. The support vec-

tor machine [12] is a good example of a learning method

that achieves the Bayes-optimal classifier but its confidence

score is not guaranteed to obtain the true class-posterior

probability [12, 37].

2.2. Surrogate loss

A common practice to learn a classifier using a neu-

ral network is to learn a mapping q : X ! ∆
K , which

maps an input to a K-dimensional vector. The simplex

output q is often interpreted as a probability distribu-

tion over predicted output classes. We denote q(x) =
[q1(x), . . . , qK(x)]>, where qy : X ! [0, 1] is a score for

class y and
PK

y=1 qy(x) = 1. One typical choice of a map-

ping q would be a deep convolutional neural network with

a softmax function as the output layer. Given an example x

and a trained mapping function q, a decision rule fq can be

inferred by selecting a class with the largest score:

fq(x) = argmax
y

qy(x). (3)

In classification, although the goal is to minimize the

classification risk in Eq. (1), it is not straightforward to min-

imize the classification risk in practice. The first reason is

we are given finite examples, not the full distribution. An-

other reason is minimizing the risk w.r.t the zero-one loss

is known to be computationally infeasible [56, 3]. As a

result, it is common to minimize an empirical surrogate

risk [3, 49]. Let ` : ∆K ⇥∆
K ! R be a surrogate loss and

ey 2 {0, 1}K be a one-hot vector with 1 at the y-th index

and 0 otherwise. By following the empirical risk minimiza-

tion approach [49], we minimize the following empirical

surrogate risk:

bR`(q) =
1

n

nX

i=1

`(q(xi), eyi
), (4)

where regularization can also be added to avoid overfitting.

Note that the choice of a surrogate loss is not straightfor-

ward and can highly influence the performance of a trained

classifier. Necessarily, we should use a surrogate loss that

is easier to minimize than the zero-one loss. Moreover, the

surrogate risk minimizer should also minimize the expected

classification risk in Eq. (1) as well.

2.3. Focal loss

In this paper, we focus on a surrogate loss ` : ∆K ⇥

∆
K ! R that receives two simplex vectors as arguments.

Let u,v 2 ∆
K , and � � 0 be a nonnegative scalar. The

focal loss `
�
FL : ∆K ⇥∆

K ! R is defined as follows [25]:

`
�
FL(u,v) = �

KX

i=1

vi(1� ui)
� log(ui). (5)
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It can be observed that the focal loss with � = 0 is equiva-

lent to the well-known cross-entropy loss, i.e., [25]:

`CE(u,v) = �

KX

i=1

vi log(ui). (6)

Unlike the cross-entropy loss that has been studied exten-

sively [56, 5, 50], we are not aware of any theoretical anal-

ysis on the fundamental properties of the focal loss. Most

analyses of the focal loss are based on an analysis of its gra-

dient and empirical observation [25, 30]. In this paper, we

will study the properties of classification-calibration [3, 44]

(Sec. 3) and strict properness [42, 5, 17] (Sec. 4) to provide

a theoretical foundation to the focal loss.

3. Focal loss is classification-calibrated

In this section, we theoretically prove that minimizing

the focal risk R`
�
FL can give the Bayes-optimal classifier,

which guarantees to maximize the expected accuracy in

classification [56]. We show this fact by proving that the

focal loss is classification-calibrated [3, 44].

First, let us define the pointwise conditional risk W ` of

an input x with its class-posterior probability η(x):

W `
�
q(x);η(x)

�
=

X

y2Y

⌘y(x)`
�
q(x), ey

�
. (7)

Intuitively, the pointwise conditional risk W ` corresponds

to the expected penalty for a data point x when using q(x)
as a score function. Next, we give the definition of a

classification-calibrated loss.

Definition 2 (Classification-calibrated loss [3, 44]). Let

q
`,⇤ = argmin

q
W `

�
q(x);η(x)

�
be the minimizer of the

pointwise conditional risk. If R`0-1(fq
`,⇤

) = R`0-1(f `0-1,⇤),
then a loss ` is classification-calibrated.

Classification-calibration guarantees that the minimizer

of the pointwise conditional risk of a surrogate loss will give

the Bayes-optimal classifier. Definition 2 suggests that by

minimizing a classification-calibrated loss, even if q`,⇤(x)
is not equal to the true class-posterior probability η(x), we

can still achieve the Bayes-optimal classifier from q
`,⇤(x)

as long as their decision rule matches.

For notational simplicity, we use q
�,⇤ to denote q

`
�
FL

,⇤,

i.e., the focal risk minimizer with the parameter �.

The following theorem guarantees that the focal loss is

classification-calibrated (its proof is given in Appx. A.4).

Theorem 3. For any � � 0, the focal loss `
�
FL is

classification-calibrated.

Our proof is based on showing that the focal loss has

the strictly order-preserving property, which is sufficient

for classification-calibration [56]. The order-preserving

property suggests that for η(x), the pointwise conditional

risk W `
�
FL has the minimizer q

�,⇤(x) such that ⌘i(x) <
⌘j(x) ) q�,⇤i (x) < q�,⇤j (x). Since q

�,⇤ preserves the or-

der of η, it is straightforward to see that the focal risk mini-

mizer achieves the Bayes-optimal risk, i.e., R`0-1(fq
�,⇤

) =
R`0-1(f `0-1,⇤). Our result agrees with the empirical effec-

tiveness observed in the previous work [25], where evalua-

tion metrics are based on accuracy or ranking such as mean

average precision.

4. On confidence score of classifier trained with

focal loss

In this section, we analyze the focal loss for the class-

posterior probability estimation problem. We theoreti-

cally prove that the simplex output of the focal risk mini-

mizer q�,⇤ does not give the true class-posterior probabil-

ity. Further, we reveal that the focal loss can yield both un-

derestimation and overestimation of the true class-posterior

probability.

4.1. Focal loss is not strictly proper

To ensure that a surrogate loss is appropriate for class-

posterior probability estimation, it is required that a surro-

gate loss is strictly proper, which is defined as follows.

Definition 4 (Strictly proper loss [42, 5, 17]). We say that

a loss ` : ∆K ⇥ ∆
K ! R is strictly proper if `(u,v) is

minimized if and only if u = v.

The notion of strict properness can be seen as a natu-

ral requirement of a loss when one wants to estimate the

true class-posterior probability [52]. When comparing be-

tween the ground truth probability v and its estimate u,

we want a loss function to be minimized if and only if

u = v, meaning that the probability estimation is cor-

rect. Note that strict properness is a stronger requirement

of a loss than classification-calibration because all strictly

proper losses are classification-calibrated but the converse

is false [38, 52].

Here, we prove that the focal loss is not strictly proper in

general (its proof is given in Appx. A.5). In fact, it is strictly

proper if and only if � = 0, i.e., when it coincides with the

cross-entropy loss.

Theorem 5. For any � > 0, the focal loss `
�
FL is not strictly

proper.

Our Thm. 5 suggests that to minimize the focal loss,

the simplex output of a classifier does not necessarily need

to coincide with the true class-posterior probability. Sur-

prisingly, a recent work [30] suggested that training with

the focal loss can give a classifier with reliable confidence.

Although their finding seems to contradict with the fact
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that the focal loss is not strictly proper, we will discuss in

Sec. 6.3 that this phenomenon could occur in practice due to

the fact that deep neural networks (DNNs) can suffer from

overconfident estimation of the true class-posterior proba-

bility [18].

4.2. Focal loss gives under/overconfident classifier

Here, we take a closer look at the behavior of the simplex

output of the focal risk minimizer q�,⇤. We begin by point-

ing out that there exists the case where q
�,⇤(x) coincides

with η(x) (its proof can be found in Appx. A.6).

Proposition 6. Define SK = {v 2 ∆
K : vi 2

{0,maxj vj}}. If q�,⇤(x) 2 SK , then q
�,⇤(x) = η(x).

The set SK is the set of probability vectors where a

subset of classes has uniform probability and the rest has

zero probability, e.g., the uniform vector and one-hot vec-

tors. Prop. 6 indicates that, although the focal loss is not

strictly proper, the focal risk minimizer can give the true

class-posterior probability if q�,⇤(x) 2 SK .

For the rest of this section, we assume that q�,⇤(x) /2
SK for readability. Next, to analyze the focal loss behavior

in general, we propose the notion of η-underconfidence and

η-overconfidence of the risk minimizer q`,⇤ as follows.

Definition 7 (η-under/overconfidence of risk min-

imizer). We say that the risk minimizer q
`,⇤ is η-

underconfident (ηUC) at x if

max
y

q`,⇤y (x)�max
y

⌘y(x) < 0. (8)

Similarly, q`,⇤ is said to be η-overconfident (ηOC) at x if

max
y

q`,⇤y (x)�max
y

⌘y(x) > 0. (9)

Def. 7 can be interpreted as follows. If q
`,⇤ is ηUC

(resp., ηOC) at x, then the confidence score maxy q
`,⇤
y (x)

for the predicted class must be lower (resp., higher) than

that of the true class-posterior probability maxy ⌘y(x). It is

straightforward to see that the risk minimizer of any strictly

proper loss does not give an ηUC/ηOC classifier because

q
`,⇤ must be equal to the true class-posterior probability η.

Thus, Def. 7 is not useful for characterizing strictly proper

losses but it is highly useful for analyzing the behavior of

the focal loss.

We emphasize that the notion of η-under/overconfidence

of the risk minimizer is significantly different from the no-

tion of overconfidence that has been used in the literature of

confidence-calibration [18, 22, 30]. In that literature, over-

confidence was used to describe the empirical performance

of modern neural networks [13, 35], where a classifier out-

puts an average confidence score higher than its average ac-

curacy for a set of data points. In our case, ηOC and ηUC
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Figure 1. The function '�(v) for various �. Visualization of

the region where q
�,⇤ can be ηUC and ηOC are emphasized for

� = 3. Whether q
�,⇤ is ηOC or ηUC can be largely deter-

mined by the relation between '� and the maximum predicted

score maxy q
�,⇤
y (x). See details in Thm. 8.

are based on the behavior of the risk minimizer of the loss

function, which does not concern with the empirical valida-

tion.

To study the behavior of q
�,⇤, let us define a function

'� : [0, 1] ! R as

'�(v) = (1� v)� � �(1� v)��1v log v. (10)

This function plays a key role in characterizing if q
�,⇤ is

ηUC/ηOC. See Appx. A for more details on how '� was

derived. Next, we state our main theorem that characterizes

the ηUC/ηOC behaviors of the risk minimizer of the focal

loss q�,⇤ (its proof is given in Appx. A.7).

Theorem 8. Consider the focal loss `
�
FL where � > 0.

Define ⌧�oc = argmaxv '
�(v) and ⌧�uc 2 (0, 1) such that

'�(⌧�uc) = 1. If q�,⇤(x) /2 SK , we have

1. 0 < ⌧�oc < ⌧�uc < 0.5.

2. q
�,⇤ is ηOC if maxy q

�,⇤
y (x) 2 (0, ⌧�oc].

3. q
�,⇤ is ηUC if maxy q

�,⇤
y (x) 2 [⌧�uc, 1) .

Thm. 8 suggests that training with focal loss can lead

to both ηUC and ηOC classifiers. It also indicates that we

can determine if q�,⇤ is ηOC or ηUC at x if maxy q
�,⇤
y (x)

is in (0, ⌧�oc] or [⌧�uc, 1). For maxy q
�,⇤
y (x) 2 (⌧�oc, ⌧

�
uc),

we may require the knowledge of qy0 for all y0 2 Y to de-

termine if q
�,⇤ is ηUC or ηOC. Nevertheless, in Sec. 5,

we will show that given any q
�,⇤(x), ηUC and ηOC can

be determined everywhere including the ambiguous region

(⌧�oc, ⌧
�
uc) by using our novel transformation Ψ

� . Fig. 1 il-

lustrates the overconfident, ambiguous, and underconfident

regions of q�,⇤. Interestingly, the fact that q�,⇤ can be ηOC

cannot be explained by the previous analysis [30], which

only implicitly suggested that q�,⇤ is ηUC by interpreting

focal loss minimization as the minimization of an upper

bound of the regularized Kullback-Leibler divergence.
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Figure 2. Relation between maxy ⌘y(x) and maxy q
�,⇤
y (x) under

different �. (a) shows the relation in the binary case, where q
�,⇤

can be ηUC and the effect of ηUC is stronger as � increases. On

the other hand, (b) shows the relation of a 1000-way classification

where the focal loss can also induce ηOC.

Since calculating ⌧�oc and ⌧�uc is not straightforward be-

cause their simple close-form solutions may not exist for

all �, we provide the following corollary to show that there

exists a region where q
�,⇤ is always ηUC regardless of the

choice of � (its proof is given in Appx. A.8).

Corollary 9. For all � > 0, q�,⇤ is ηUC if maxy q
�,⇤
y (x) 2

(0.5, 1).

Cor. 9 suggests that q�,⇤ is ηUC when the label is not

too ambiguous. In practice, a classifier is more likely to be

ηUC but it still could be ηOC when the number of classes

K is large and � is small. Fig. 2b demonstrates that q�,⇤

can be ηOC when having 1000 classes for different �.2

We also provide the following corollary, which is an im-

mediate implication from Cor. 9 for the binary classification

scenario (its proof is given in Appx. A.9).

Corollary 10. For all � > 0, q�,⇤ is always ηUC in binary

classification unless q�,⇤(x) is uniform or a one-hot vector.

Fig. 2a demonstrates that q�,⇤ is ηUC in binary clas-

sification, where a larger � causes a larger gap between

maxy q
�,⇤
y and the true class-posterior probability.

5. Recovering class-posterior probability from

classifiers trained with focal loss

In this section, we propose a novel transformation Ψ
�

to recover the true class-posterior probability from the focal

risk minimizer with theoretical justification. Then, we pro-

vide a numerical example to demonstrate its effectiveness.

5.1. Proposed transformation Ψ
�

Our following theorem reveals that there exists a trans-

formation that can be computed in a closed form to recover

the true class-posterior probability from the focal risk min-

imizer (its proof is given in Appx. A.1).

2We numerically found that q�,⇤ can be ηOC with as minimum as

K = 5 classes with γ ≤ 0.03 when maxy q�,⇤y (x) → 1/K.

Theorem 11. Let η(x) be the true class-posterior probabil-

ity of an input x and q
�,⇤ = argmin

q
W `

�
FL

�
q(x),η(x)

�

be the focal risk minimizer, where � � 0. Then, the true

class-posterior probability η(x) can be recovered from q
�,⇤

with the transformation Ψ
� : ∆K ! ∆

K , i.e.,

η(x) = Ψ
�(q�,⇤(x)), (11)

where Ψ
�(v) = [Ψ�

1(v), . . . ,Ψ
�
K(v)]>, and

Ψ
�
i (v) =

h�(vi)PK

l=1 h
�(vl)

, (12)

h�(v) =
v

'�(v)
=

v

(1� v)� � �(1� v)��1v log v
. (13)

For completeness, we also define Ψ
�
i (v) = vi if v

is a one-hot vector. Note that if � = 0, then ⌘i(x) =
Ψ

�
i (q

�,⇤(x)) = q�,⇤i (x), which coincides with the known

analysis that the cross-entropy loss is strictly proper [14,

17]. On the other hand, if � > 0, an additional step of

applying Ψ
� is required to recover the true class-posterior

probability. We also want to emphasize that for any given

maxy q
�,⇤
y (x) in the ambiguous region (see Fig. 1), one

can easily determine if it is ηUC or ηOC by comparing

maxy q
�,⇤
y (x) and maxy Ψ

�
y(q

�,⇤(x)).
Next, we confirm that our proposed transformation Ψ

�

does not degrade the classification performance of the clas-

sifier by proving that Ψ� preserves the decision rule (its

proof is given in Appx. A.10).

Proposition 12. Given v 2 ∆
K and � � 0, we have

argmaxi Ψ
�
i (v) = argmaxi vi.

In summary, if one wants to recover the true class-

posterior probability from the focal risk minimizer with

� 6= 0, an additional step of applying Ψ
� is suggested by

Thm. 11. However, if one only wants to know which class

has the highest prediction probability, then applying Ψ
� is

unneeded since it does not change the prediction result. We

want to emphasize that that using the transformation Ψ
� to

recover the true class-posterior probability is significantly

different and orthogonal from using a heuristic technique

such as Platt scaling [37]. The differences are: (1) Using

Ψ
� is theoretically guaranteed given the risk minimizer and

(2) No additional training is involved since the transforma-

tion Ψ
� does not contain any tuning parameter, whereas

Platt scaling requires additional training, which can be com-

putationally expensive when using a large training dataset.

5.2. Numerical illustration

Here, we use synthetic data to demonstrate the ηUC

property of the focal loss and show that applying Ψ
�

can successfully recover the true class-posterior probabil-

ity. The purpose of using the synthetic data is because
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Figure 3. Demonstration of the underconfident (ηUC) property of the focal loss and the result of the transformation Ψ
� . (a) and (b) show

p(x), p(x, y), and p(y|x) used for training the MLPs. For (c-i), solid graphs are the raw or transformed predicted scores from the MLPs

while dashed graphs are p(y|x) (same as (b)). The ERR, KLD, and ECE values are reported on the top-right of each subfigure. (c) shows

q
`
CE(x) of an MLP trained with `CE while (d) and (e) show q

�(x) of MLPs trained with `
�
FL with � = 1 and 5. (f) and (g) show the

scores after processing with TSNLL. (h) and (i) show the scores after using the our proposed Ψ
� in Eq. (11). See Sec. 5.2 for details.

we know the true class-posterior probability η in this prob-

lem. Unlike many real-world datasets where only hard la-

bels are given, we can directly evaluate the quality of class-

posterior probability estimation using the Kullback-Leibler

divergence (KLD), which is defined as KL(η(x)||q(x)) =PK

i=1 ⌘i(x) log
⌘i(x)
qi(x)

.

We simulate a 1-dimensional 3-class classification prob-

lem with the distribution given in Fig. 3a. We then trained

three-layer multilayered perceptrons (MLPs) with `CE and

`
�
FL (� = 1 and 5) using data sampled from the distribu-

tion. The estimated confidence scores q`y(x) of all losses are

shown in Fig. 3c,d,e. We can see that all MLPs can correctly

identify the class having the highest class-posterior proba-

bility for the whole X and achieve roughly the same classifi-

cation error (ERR), which corresponds to the fact that both

`CE and `
�
FL are classification-calibrated. However, while

q`CE

y (x) in Fig. 3c could correctly estimate ⌘y(x), q
�
y (x) in

Fig. 3d,e do not match ⌘y(x), which agrees with our result

that the focal loss is not strictly proper. More precisely, the

value of the maxy q
�
y (x) is lower than maxy ⌘y(x), which

indicates that q�(x) is ηUC. With a larger �, we can ob-

serve this trend more significantly by looking at KLD and

the expected calibration error (ECE) [32, 18], where low

ECE indicates good empirical confidence.

One well-known approach to improve confidence esti-

mation in neural networks is temperature scaling (TS) [18].

We applied TS with negative log-likelihood (NLL) as the

validation objective (TSNLL) to the MLPs trained with the

focal loss. We can see from Fig. 3f,g that while TSNLL

made the q�y (x) move closer to ⌘y(x), a large gap between

them still exists, suggesting that TSNLL fails to obtain the

true class-posterior probability.

By using the transformation Ψ
� , we can plot Fig. 3h,i

and see that Ψ�(q�(x)) can improve the quality of the es-

timation, where both KLD and ECE are almost zero. Re-

call that Ψ� can be applied without any additional data or

changing decision rule, thus the ERR remains exactly the

same. This synthetic experiment demonstrates that the sim-

plex outputs of neural networks trained with the focal loss

is likely to be ηUC, and this can be effectively fixed using

the transformation Ψ
� .

6. Experimental results

In this section, we perform experiments to study the be-

havior of the focal loss and validate the effectiveness of Ψ�

under different training paradigms. To do so, we use the

CIFAR10 [21] and SVHN [33] datasets as the benchmark

datasets. The details of the experiments are as follows.

Models: To see the influence of the model complexity,

we used ResNetL [19] with L 2 {8, 20, 44, 110}, where

complexity increases as L increases.

Methods: We compared the networks that use Ψ
� af-

ter the softmax layer to those that do not. Note that both

methods have the same accuracy since Ψ
� does not affect

the decision rule (Prop. 12). We used � 2 {0, 1, 2, 3} and

conducted 10 trials for each experiment setting.

Evaluation metrics: Since true class-posterior probabil-

ity labels are not available, a common practice is to use ECE

to evaluate the quality of prediction confidence [32, 18]. In

this paper, we used 10 as the number of bins. ECE-Ψ�

(resp., ECE-raw) denotes the ECE of the networks that use

(resp., do not use) Ψ� . ERR denotes the classification er-
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Figure 4. Reliability diagrams of ResNet110 trained with `
�
FL, � = 1, 2, 3 on SVHN and CIFAR10 datasets. ECE-Ψ� (resp., ECE-raw)

denotes the ECE of the networks that use (resp., do not use) Ψ� and their diagrams are plotted in green (resp., red). ERR denotes the

classification error. Each row shows the results of different training paradigms: (a) Standard, (b) TSFL, and (c) LS. See Sec. 6.1 for details.

ror. We scale the values of ECE-Ψ� , ECE-raw, and ERR to

0 � 100 for readability in Fig. 4. We report full results on

more evaluation metrics and models in Appx. C.

Hyperparameters: For all models, the number of

epochs was 200 for CIFAR10 and 50 for SVHN. The batch

size was 128. We used SGD with momentum of 0.9, where

the initial learning rate was 0.1, which was then divided by

10 at epoch 80 and 150 for CIFAR10 and at epoch 25 and

40 for SVHN. The weight decay parameter was 5⇥ 10�4.

6.1. ECE of different training paradigms

We trained models using three different paradigms: (1)

Standard uses one-hot ground truth vectors, which is

known to be susceptible to overconfidence [18]; (2) TSFL

post-processes the output of Standard with TS that uses the

focal loss in the validation objective; and (3) LS uses label

smoothing to smoothen one-hot labels to soft labels, which

has been reported to alleviate the overconfidence issue in

DNNs [31]. The label smoothing parameter was 0.1.

Fig. 4 shows the reliability diagrams for ResNet110

trained with the focal loss using different �. We can see

that Ψ� substantially improves ECE for most settings. This

demonstrates that our theoretically-motivated transforma-

tion Ψ
� can be highly relevant in practice. For LS, ECE-

raw drastically increases as � increases, whereas the value

of � does not significantly affect ECE-Ψ� . Next, in TSFL,

if Ψ
� is not applied, we can see that ECE-raw degrades

compared with that of Standard. On the other hand, our

transformation Ψ
� can further improve the performance of

Standard. This could be due to TSFL giving a more ac-

curate estimate of the focal risk minimizer q
�,⇤, but q�,⇤

does not coincide with the true class-posterior probability

η if Ψ� is not applied, as proven in Thm. 11. Apart from

Standard in CIFAR10, underconfident bins (i.e., the bins

that align above the diagonal of the reliability diagram) can

be observed especially when � is large. The results indicate

that the focal loss is susceptible to be underconfident as �

increases, which agrees with our analysis that the focal loss

is not strictly proper (Thm. 5) and prone to ηUC (Cor. 9).

6.2. Why does Ψ
� not always improve ECE?

In Fig. 4, although our transformation Ψ
� can greatly

improve the performance for Standard in SVHN, it wors-

ens the performance for Standard in CIFAR10. This

demonstrates that our proposed transformation does not al-

ways improve the performance in practice, which could oc-

cur when the focal risk minimizer q�,⇤ is not successfully

learned. Note that if q
�,⇤ is obtained, the transformation

Ψ
� is the only mapping to obtain the true class-posterior

probability η from q
�,⇤ (Thm. 11).

Here, we take a closer look at the scenario where Ψ
�

could be less effective. We hypothesize that there are two

potential reasons: (1) DNNs can overfit the one-hot vec-

tor, which leads to overconfident prediction [18]. By using

one-hot vectors as labels, perfectly minimizing the empiri-

cal risk implies making the confidence score close to a one-

hot vector. (2) The amount of data could be insufficient for

correctly estimating the true class-posterior probability.
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Figure 5. Box plots of ECEs for Standard with varying � using different models on (a-b) SVHN, (c-f) CIFAR10, and (g) CIFAR10-s.
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Figure 6. Box plots of ECEs with varying � for ResNet110 using

TSFL for CIFAR10 and CIFAR10-s, and LS for CIFAR10. It can

be observed that using the transformation Ψ
� is preferable.

To justify our claim, we conducted experiments with dif-

ferent models on SVHN, CIFAR10, and CIFAR10-s, where

CIFAR10-s is CIFAR10 that uses only 10% of training data

for each class. Note that SVHN has a larger number of

data than CIFAR10, and ResNetL is more complex as L
increases. Fig. 5 illustrates ECEs with different dataset size

and models. In Fig. 5b,f,g, where the same model was

used, we can observe that Ψ� becomes less effective as the

dataset size gets smaller. Also, in Fig. 5c-f, where the dif-

ferent models were used in CIFAR10, Ψ� becomes less ef-

fective as the model becomes more complex. Therefore, the

results agree with our hypotheses that the model complexity

and dataset size play a role in the effectiveness of Ψ� . Note

that Ψ� is still effective in SVHN regardless of the model

size in our experiments, as can be seen in Fig. 5a,b, since

the size of SVHN may be sufficiently large to accurately

estimate q
�,⇤ for complex models.

It is also insightful to observe the best value of � in dif-

ferent settings. More precisely, we see from Fig. 5c-g that

the best � for CIFAR10 is � = 0 for ResNet8, � = 1 for

ResNet20, and � = 2 for ResNet110, while the best � for

CIFAR10-s and ResNet110 is � = 3. Therefore, we can

conclude that the best � increases as the data size decreases

or the model becomes more complex. Nevertheless, For LS

and TSFL, we observe that a larger � always leads to worse

performance and Ψ
� can effectively mitigate this problem

for every dataset, as illustrated in Fig. 6.

6.3. Discussion

Recently, Mukhoti et al. [30] studied the relation be-

tween the focal loss and the confidence issue of DNNs, and

showed that without post-processing, training with the focal

loss can achieve lower ECE than that of the cross-entropy

loss. Our results indicate that this is not always the case

(see SVHN for example). In Appx. C, we provide addi-

tional experimental results on 30 datasets to show that the

focal loss is less desirable compared with the cross-entropy

loss in most datasets, and that Ψ� can successfully improve

ECE to be comparable with that of the cross-entropy loss.

Nevertheless, the focal loss can also outperform the cross-

entropy loss as shown in Fig. 5, which agrees with the pre-

vious work [30]. This could occur when classifiers (espe-

cially DNNs) suffer from overconfidence due to empirical

estimation [18]. Since the focal loss tends to give an ηUC

classifier, there may exist a sweet spot for � > 0 that gives

the best ECE because the overconfident and underconfident

effects cancel each other out. In addition, it has been ob-

served that applying TS w.r.t. NLL or ECE on a classifier

trained with the focal loss can be empirically effective to

reduce ECE [18, 30]. Nevertheless, for a classifier trained

with the focal loss, Fig. 3 illustrates that using such heuris-

tics may fail to recover the true class-posterior probability.

Theoretically, since TS only tunes one scalar to optimize the

validation objective, it may suffer from model misspecifica-

tion and could fail to achieve the optimal NLL/ECE w.r.t. all

measurable functions [38, 52].

7. Conclusions

We proved that the focal loss is classification-calibrated

but not strictly proper. We further investigated and pointed

out that focal loss can give both underconfident and over-

confident classifiers. Then, we proposed a transformation

that can theoretically recover the true class-posterior prob-

ability from the focal risk minimizer. Experimental results

showed that the proposed transformation can improve the

performance of class-posterior probability estimation.

Acknowledgements

We would like to thank Zhenguo Wu, Yivan Zhang, Han

Bao, and Zhenghang Cui for helpful discussion. Nontawat

Charoenphakdee was supported by MEXT scholarship and

Google PhD Fellowship program. Nuttapong Chairatanakul

was supported by MEXT scholarship. Part of this work is

conducted as research activities of AIST-Tokyo Tech Real

World Big-Data Computation Open Innovation Laboratory

(RWBC-OIL). Masashi Sugiyama was supported by JST

CREST Grant Number JPMJCR18A2.

5209



References

[1] Mohamad Mahmoud Al Rahhal, Yakoub Bazi, Haidar Al-

mubarak, Naif Alajlan, and Mansour Al Zuair. Dense con-

volutional networks with focal loss and image generation for

electrocardiogram classification. IEEE Access, 7:182225–

182237, 2019. 1

[2] Han Bao and Masashi Sugiyama. Calibrated surrogate max-

imization of linear-fractional utility in binary classification.

In International Conference on Artificial Intelligence and

Statistics, pages 2337–2347. PMLR, 2020. 1

[3] Peter L Bartlett, Michael I Jordan, and Jon D McAuliffe.

Convexity, classification, and risk bounds. Journal of the

American Statistical Association, 101(473):138–156, 2006.

1, 2, 3

[4] Stephen Boyd and Lieven Vandenberghe. Convex optimiza-

tion. Cambridge university press, 2004. 12, 15, 18

[5] Andreas Buja, Werner Stuetzle, and Yi Shen. Loss func-

tions for binary class probability estimation and classifica-

tion: Structure and applications. Working draft, 2005. 3

[6] Jie Chang, Xiaoci Zhang, Minquan Ye, Daobin Huang,

Peipei Wang, and Chuanwen Yao. Brain tumor segmenta-

tion based on 3d unet with multi-class focal loss. In 2018

11th International Congress on Image and Signal Process-

ing, BioMedical Engineering and Informatics (CISP-BMEI),

pages 1–5. IEEE, 2018. 1

[7] Nontawat Charoenphakdee, Zhenghang Cui, Yivan Zhang,

and Masashi Sugiyama. Classification with rejection

based on cost-sensitive classification. arXiv preprint

arXiv:2010.11748, 2020. 1

[8] Nontawat Charoenphakdee, Jongyeong Lee, and Masashi

Sugiyama. On symmetric losses for learning from corrupted

labels. ICML, 2019. 1

[9] Mingqiang Chen, Lin Fang, and Huafeng Liu. Fr-net: Focal

loss constrained deep residual networks for segmentation of

cardiac mri. In 2019 IEEE 16th International Symposium

on Biomedical Imaging (ISBI 2019), pages 764–767. IEEE,

2019. 1

[10] C. K. Chow. On optimum recognition error and reject trade-

off. IEEE Transactions on information theory, 16(1):41–46,

1970. 1

[11] Tarin Clanuwat, Mikel Bober-Irizar, Asanobu Kitamoto,

Alex Lamb, Kazuaki Yamamoto, and David Ha. Deep

learning for classical japanese literature. arXiv preprint

arXiv:1812.01718, 2018. 29

[12] Corinna Cortes and Vladimir Vapnik. Support-vector net-

works. Machine learning, 20(3):273–297, 1995. 1, 2

[13] Morris H DeGroot and Stephen E Fienberg. The comparison

and evaluation of forecasters. Journal of the Royal Statistical

Society: Series D (The Statistician), 32(1-2):12–22, 1983. 4

[14] Andrey Feuerverger and Sheikh Rahman. Some aspects of

probability forecasting. Communications in statistics-theory

and methods, 21(6):1615–1632, 1992. 5

[15] Wei Gao and Zhi-Hua Zhou. On the consistency of AUC

pairwise optimization. In IJCAI, pages 939–945, 2015. 1

[16] Aritra Ghosh, Himanshu Kumar, and PS Sastry. Robust loss

functions under label noise for deep neural networks. In

AAAI, pages 1919–1925, 2017. 1

[17] Tilmann Gneiting and Adrian E Raftery. Strictly proper scor-

ing rules, prediction, and estimation. Journal of the Ameri-

can statistical Association, 102(477):359–378, 2007. 3, 5

[18] Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Weinberger.

On calibration of modern neural networks. ICML, 2017. 4,

6, 7, 8, 27, 29

[19] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In CVPR,

pages 770–778, 2016. 6, 29

[20] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distill-

ing the knowledge in a neural network. arXiv preprint

arXiv:1503.02531, 2015. 1

[21] Alex Krizhevsky and Geoffrey Hinton. Learning multiple

layers of features from tiny images. Technical report, Cite-

seer, 2009. 6

[22] Meelis Kull, Miquel Perello Nieto, Markus Kängsepp,

Telmo Silva Filho, Hao Song, and Peter Flach. Beyond tem-

perature scaling: Obtaining well-calibrated multi-class prob-

abilities with dirichlet calibration. In NeurIPS, pages 12316–

12326, 2019. 4, 27

[23] Yann LeCun. The mnist database of handwritten digits.

http://yann. lecun. com/exdb/mnist/, 1998. 29

[24] Moshe Lichman et al. UCI machine learning repository,

2013. 29

[25] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and

Piotr Dollár. Focal loss for dense object detection. In CVPR,

2017. 1, 2, 3

[26] Yang Liu and Hongyi Guo. Peer loss functions: Learning

from noisy labels without knowing noise rates. ICML, 2020.

1

[27] Mayar Lotfy, Raed M Shubair, Nassir Navab, and Shadi Al-

barqouni. Investigation of focal loss in deep learning mod-

els for femur fractures classification. In 2019 International

Conference on Electrical and Computing Technologies and

Applications (ICECTA), pages 1–4. IEEE, 2019. 1

[28] Aditya Krishna Menon, Ankit Singh Rawat, Sashank J

Reddi, Seungyeon Kim, and Sanjiv Kumar. Why dis-

tillation helps: a statistical perspective. arXiv preprint

arXiv:2005.10419, 2020. 1

[29] Hussein Mozannar and David Sontag. Consistent estimators

for learning to defer to an expert. ICML, 2020. 1

[30] Jishnu Mukhoti, Viveka Kulharia, Amartya Sanyal, Stuart

Golodetz, Philip HS Torr, and Puneet K Dokania. Calibrating

deep neural networks using focal loss. NeurIPS, 2020. 3, 4,

8

[31] Rafael Müller, Simon Kornblith, and Geoffrey E Hinton.

When does label smoothing help? In NeurIPS, pages 4694–

4703, 2019. 7

[32] Mahdi Pakdaman Naeini, Gregory F Cooper, and Milos

Hauskrecht. Obtaining well calibrated probabilities using

bayesian binning. In AAAI, volume 2015, page 2901. NIH

Public Access, 2015. 6, 27, 29

[33] Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bis-

sacco, Bo Wu, and Andrew Y Ng. Reading digits in natural

images with unsupervised feature learning. 2011. 6

[34] Chenri Ni, Nontawat Charoenphakdee, Junya Honda, and

Masashi Sugiyama. On the calibration of multiclass classifi-

5210



cation with rejection. In NeurIPS, pages 2586–2596, 2019.

1

[35] Alexandru Niculescu-Mizil and Rich Caruana. Predicting

good probabilities with supervised learning. In ICML, pages

625–632, 2005. 4

[36] Marcus Nordström, Han Bao, Fredrik Löfman, Henrik Hult,
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