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Abstract

Self-attention techniques, and specifically Transformers,

are dominating the field of text processing and are becom-

ing increasingly popular in computer vision classification

tasks. In order to visualize the parts of the image that

led to a certain classification, existing methods either rely

on the obtained attention maps or employ heuristic prop-

agation along the attention graph. In this work, we pro-

pose a novel way to compute relevancy for Transformer

networks. The method assigns local relevance based on

the Deep Taylor Decomposition principle and then prop-

agates these relevancy scores through the layers. This

propagation involves attention layers and skip connections,

which challenge existing methods. Our solution is based

on a specific formulation that is shown to maintain the to-

tal relevancy across layers. We benchmark our method

on very recent visual Transformer networks, as well as

on a text classification problem, and demonstrate a clear

advantage over the existing explainability methods. Our

code is available at: https://github.com/hila-

chefer/Transformer-Explainability .

1. Introduction

Transformers and derived methods [41, 9, 22, 30] are

currently the state-of-the-art methods in almost all NLP

benchmarks. The power of these methods has led to their

adoption in the field of language and vision [23, 40, 38].

More recently, Transformers have become a leading tool

in traditional computer vision tasks, such as object detec-

tion [4] and image recognition [6, 11]. The importance of

Transformer networks necessitates tools for the visualiza-

tion of their decision process. Such a visualization can aid

in debugging the models, help verify that the models are fair

and unbiased, and enable downstream tasks.

The main building block of Transformer networks are

self-attention layers [29, 7], which assign a pairwise atten-

tion value between every two tokens. In NLP, a token is

typically a word or a word part. In vision, each token can

be associated with a patch [11, 4]. A common practice when

trying to visualize Transformer models is, therefore, to con-

sider these attentions as a relevancy score [41, 43, 4]. This is

usually done for a single attention layer. Another option is

to combine multiple layers. Simply averaging the attentions

obtained for each token, would lead to blurring of the sig-

nal and would not consider the different roles of the layers:

deeper layers are more semantic, but each token accumu-

lates additional context each time self-attention is applied.

The rollout method [1] is an alternative, which reassigns all

attention scores by considering the pairwise attentions and

assuming that attentions are combined linearly into subse-

quent contexts. The method seems to improve results over

the utilization of a single attention layer. However, as we

show, by relying on simplistic assumptions, irrelevant to-

kens often become highlighted.

In this work, we follow the line of work that assigns rel-

evancy and propagates it, such that the sum of relevancy

is maintained throughout the layers [27]. While the ap-

plication of such methods to Transformers has been at-

tempted [42], this was done in a partial way that does not

propagate attention throughout all layers.

Transformer networks heavily rely on skip connection

and attention operators, both involving the mixing of two

activation maps, and each leading to unique challenges.

Moreover, Transformers apply non-linearities other than

ReLU, which result in both positive and negative features.

Because of the non-positive values, skip connections lead,

if not carefully handled, to numerical instabilities. Meth-

ods such as LRP [3] for example, tend to fail in such cases.

Self-attention layers form a challenge since a naive propa-

gation through these would not maintain the total amount of

relevancy.

We handle these challenges by first introducing a rele-

vancy propagation rule that is applicable to both positive

and negative attributions. Second, we present a normal-

ization term for non-parametric layers, such as “add” (e.g.

skip-connection) and matrix multiplication. Third, we in-

tegrate the attention and the relevancy scores, and combine

the integrated results for multiple attention blocks.

Many of the interpretability methods used in computer

vision are not class-specific in practice, i.e., return the same
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visualization regardless of the class one tries to visualize,

even for images that contain multiple objects. The class-

specific signal, especially for methods that propagate all the

way to the input, is often blurred by the salient regions of

the image. Some methods avoid this by not propagating to

the lower layers [32], while other methods contrast differ-

ent classes to emphasize the differences [15]. Our method

provides the class-based separation by design and it is the

only Transformer visualization method, as far as we can as-

certain, that presents this property.

Explainability, interpretability, and relevance are not uni-

formly defined in the literature [26]. For example, it is not

clear if one would expect the resulting image to contain

all of the pixels of the identified object, which would lead

to better downstream tasks [21] and for favorable human

impressions, or to identify the sparse image locations that

cause the predicted label to dominate. While some meth-

ods offer a clear theoretical framework [24], these rely on

specific assumptions and often do not lead to better perfor-

mance on real data. Our approach is a mechanistic one

and avoids controversial issues. Our goal is to improve

the performance on the acceptable benchmarks of the field.

This goal is achieved on a diverse and complementary set

of computer vision benchmarks, representing multiple ap-

proaches to explainability.

These benchmarks include image segmentation on a sub-

set of the ImageNet dataset, as well as positive and negative

perturbations on the ImageNet validation set. In NLP, we

consider a public NLP explainability benchmark [10]. In

this benchmark, the task is to identify the excerpt that was

marked by humans as leading to a decision.

2. Related Work

Explainability in computer vision Many methods were

suggested for generating a heatmap that indicates local rel-

evancy, given an input image and a CNN. Most of these

methods belong to one of two classes: gradient methods

and attribution methods.

Gradient based methods are based on the gradients with

respect to the input of each layer, as computed through

backpropagation. The gradient is often multiplied by the in-

put activations, which was first done in the Gradient*Input

method [34]. Integrated Gradients [39] also compute the

multiplication of the inputs with their derivatives. However,

this computation is done on the average gradient and a lin-

ear interpolation of the input. SmoothGrad [36], visualizes

the mean gradients of the input, and performs smoothing by

adding to the input image a random Gaussian noise at each

iteration. The FullGrad method [37] offers a more com-

plete modeling of the gradient by also considering the gra-

dient with respect to the bias term, and not just with respect

to the input. We observe that these methods are all class-

agnostic: at least in practice, similar outputs are obtained,

regardless of the class used to compute the gradient that is

being propagated.

The GradCAM method [32] is a class-specific approach,

which combines both the input features and the gradients

of a network’s layer. Being class-specific, and providing

consistent results, this method is used by downstream ap-

plications, such as weakly-supervised semantic segmenta-

tion [21]. However, the method’s computation is based only

on the gradients of the deepest layers. The result, obtained

by upsampling these low-spatial resolution layers, is coarse.

A second class of methods, the Attribution propaga-

tion methods, are justified theoretically by the Deep Tay-

lor Decomposition (DTD) framework [27]. Such methods

decompose, in a recursive manner, the decision made by

the network, into the contributions of the previous layers,

all the way to the elements of the network’s input. The

Layer-wise Relevance Propagation (LRP) method [2], prop-

agates relevance from the predicated class, backward, to the

input image based on the DTD principle. This assumes

that the rectified linear unit (ReLU) non-linearity is used.

Since Transformers typically rely on other types of applica-

tions, our method has to apply DTD differently. Other vari-

ants of attribution methods include RAP [28], AGF [17],

DeepLIFT [33], and DeepSHAP [24]. A disadvantage of

some of these methods is the class-agnostic behavior ob-

served in practice [20]. Class-specific behavior is obtained

by Contrastive-LRP (CLRP) [15] and Softmax-Gradient-

LRP (SGLRP) [20]. In both cases, the LRP propagation

results of the class to be visualized are contrasted with the

results of all other classes, to emphasize the differences and

produce a class-dependent heatmap. Our method is class-

specific by construction and not by adding additional con-

trasting stages.

Methods that do not fall into these two main categories

include saliency based methods [8, 35, 25, 48, 45, 47], Ac-

tivation Maximization [12] and Excitation Backprop [46].

Perturbation methods [13, 14] consider the change to the

decision of the network, as small changes are applied to the

input. Such methods are intuitive and applicable to black-

box models (no need to inspect either the activations or the

gradients). However, the process of generating the heatmap

is computationally expensive. In the context of Transform-

ers, it is not clear how to apply these correctly to discrete

tokens, such as in text. Shapley-value methods [24] have a

solid theoretical justification. However, such methods suf-

fer from a large computational complexity and their accu-

racy is often not as high as other methods. Several variants

have been proposed, which improve both aspects [5].

Explainability for Transformers There are not many

contributions that explore the field of visualization for

Transformers and, as mentioned, many contributions em-

ploy the attention scores themselves. This practice ignores
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most of the attention components, as well as the parts of the

networks that perform other types of computation. A self-

attention head involves the computation of queries, keys,

and values. Reducing it only to the obtained attention scores

(inner products of queries and keys) is myopic. Other layers

are not even considered. Our method, in contrast, propa-

gates through all layers from the decision back to the input.

LRP was applied for Transformers based on the premise

that considering mean attention heads is not optimal due to

different relevance of the attention heads in each layer [42].

However, this was done in a limiting way, in which no rel-

evance scores were propagated back to the input, thus pro-

viding partial information on the relevance of each head.

We note that the relevancy scores were not directly evalu-

ated, only used for visualization of the relative importance

and for pruning less relevant attention heads.

The main challenge in assigning attributions based on at-

tentions is that attentions are combining non-linearly from

one layer to the next. The rollout method [1] assumes that

attentions are combined linearly and considers paths along

the pairwise attention graph. We observe that this method

often leads to an emphasis on irrelevant tokens since even

average attention scores can be attenuated. The method

also fails to distinguish between positive and negative con-

tributions to the decision. Without such a distinction, one

can mix between the two and obtain high relevancy scores,

when the contributions should have cancelled out. Despite

these shortcomings, the method was already applied by oth-

ers [11] to obtain integrated attention maps.

Abnar et al. [1] present, in addition to rollout, a sec-

ond method called attention flow. The latter considers the

max-flow problem along the pair-wise attention graph. It

is shown to be sometimes more correlated than the rollout

method with relevance scores that are obtained by applying

masking, or with gradients with respect to the input. This

method is much slower and we did not evaluate it in our

experiments for computational reasons.

We note this concurrent work [1] did not perform an

evaluation on benchmarks (for either rollout or attention-

flow) in which relevancy is assigned in a way that is in-

dependent of the BERT [9] network, for which the methods

were employed. There was also no comparison to relevancy

assignment methods, other than the raw attention scores.

3. Method

The method employs LRP-based relevance to compute

scores for each attention head in each layer of a Transformer

model [41]. It then integrates these scores throughout the at-

tention graph, by incorporating both relevancy and gradient

information, in a way that iteratively removes the negative

contributions. The result is a class-specific visualization for

self-attention models.

3.1. Relevance and gradients

Let C be the number of classes in the classification head,

and t ∈ 1 . . . |C| the class to be visualized. We propagate

relevance and gradients with respect to class t, which is not

necessarily the predicted class. Following literature con-

vention, we denote x(n) as the input of layer L(n), where

n ∈ [1 . . . N ] is the layer index in a network that consists of

N layers, x(N) is the input to the network, and x(1) is the

output of the network.

Recalling the chain-rule, we propagate gradients with re-

spect to the classifier’s output y, at class t, namely yt:

∇x
(n)
j :=

∂yt

∂x
(n)
j

=
∑

i

∂yt

∂x
(n−1)
i

∂x
(n−1)
i

∂x
(n)
j

(1)

where the index j corresponds to elements in x(n), and i

corresponds to elements in x(n−1).

We denote by L(n)(X,Y) the layer’s operation on two

tensors X and Y. Typically, the two tensors are the input

feature map and weights for layer n. Relevance propagation

follows the generic Deep Taylor Decomposition [27]:

R
(n)
j = G(X,Y, R(n−1)) (2)

=
∑

i

Xj

∂L
(n)
i (X,Y)

∂Xj

R
(n−1)
i

L
(n)
i (X,Y)

,

where, similarly to Eq. 1, the index j corresponds to ele-

ments in R(n), and i corresponds to elements in R(n−1).

Eq. 2 satisfies the conservation rule [27], i.e.:

∑

j

R
(n)
j =

∑

i

R
(n−1)
i (3)

LRP [2] assumes ReLU non-linearity activations, resulting

in non-negative feature maps, where the relevance propaga-

tion rule can be defined as follows:

R
(n)
j = G(x+, w+, R(n−1)) =

∑

i

x+
j w

+
ji

∑

j′ x
+
j′w

+
j′i

R
(n−1)
i

(4)

where X = x and Y = w are the layer’s input and weights.

The superscript denotes the operation max(0, v) as v+.

Non-linearities other that ReLU, such as GELU [18],

output both positive and negative values. To address this,

LRP propagation in Eq. 4 can be modified by constructing

a subset of indices q = {(i, j)|xjwji ≥ 0}, resulting in the

following relevance propagation:

R
(n)
j = Gq(x,w, q, R

(n−1))

=
∑

{i|(i,j)∈q}

xjwji
∑

{j′|(j′,i)∈q} xj′wj′i

R
(n−1)
i (5)
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In other words, we consider only the elements that have a

positive weighed relevance.

To initialize the relevance propagation, we set R(0) = 1t,

where 1t is a one-hot indicating the target class t.

3.2. Non parametric relevance propagation:

There are two operators in Transformer models that in-

volve mixing of two feature map tensors (as opposed to a

feature map with a learned tensor): skip connections and

matrix multiplications (e.g. in attention modules). The two

operators require the propagation of relevance through both

input tensors. Note that the two tensors may be of different

shapes in the case of matrix multiplication.

Given two tensors u and v, we compute the relevance

propagation of these binary operators (i.e., operators that

process two operands), as follows:

Ru(n)

j = G(u, v,R(n−1)), Rv(n)

k = G(v, u,R(n−1)) (6)

where Ru(n)

j and Rv(n)

k are the relevances for u and v re-

spectively. These operations yield both positive and nega-

tive values.

The following lemma shows that for the case of addition,

the conservation rule is preserved, i.e.,

∑

j

Ru(n)

j +
∑

k

Rv(n)

k =
∑

i

R
(n−1)
i . (7)

However, this is not the case for matrix multiplication.

Lemma 1. Given two tensors u and v, consider the rele-

vances that are computed according to Eq. 6. Then, (i) if

layer L(n) adds the two tensors, i.e., L(n)(u, v) = u + v

then the conservation rule of Eq. 7 is maintained. (ii) if the

layer performs matrix multiplication L(n)(u, v) = uv, then

Eq. 7 does not hold in general.

Proof. (i) and (ii) are obtained from the output derivative of

L(n) with respect to X. In an add layer, u and v are inde-

pendent of each other, while in matrix multiplication they

are connected. A detailed proof of Lemma 1 is available in

the supplementary.

When propagating relevance of skip connections, we en-

counter numerical instabilities. This arises despite the fact

that, by the conservation rule of the addition operator, the

sum of relevance scores is constant. The underlying reason

is that the relevance scores tend to obtain large absolute val-

ues, due to the way they are computed (Eq. 2). To see this,

consider the following example:

u =

(

ea

eb

)

, v =

(

1− ea

1− eb

)

, R =

(

1
1

)

(8)

Ru =

(

ea

ea−ea+11
eb

eb−eb+1
1

)

=

(

ea

eb

)

, Rv =

(

1− ea

1− eb

)

(9)

where a and b are large positive numbers. It is easy to verify

that
∑

Ru +
∑

Rv = ea + 1− ea + eb + 1− eb =
∑

R.

As can be seen, while the conservation rule is preserved, the

relevance scores of u and v may explode. See supplemen-

tary for a step by step computation.

To address the lack of conservation in the attention

mechanism due to matrix multiplication, and the numerical

issues of the skip connections, our method applies a nor-

malization to Ru(n)

j and Rv(n)

k :

R̄u(n)

j = Ru(n)

j

∣

∣

∣

∑

j R
u(n)

j

∣

∣

∣

∣

∣

∣

∑

j R
u(n)

j

∣

∣

∣
+
∣

∣

∣

∑

k R
v(n)

k

∣

∣

∣

·
∑

i R
(n−1)
i

∑

j R
u(n)

j

R̄v(n)

k = Rv(n)

k

∣

∣

∣

∑

k R
v(n)

k

∣

∣

∣

∣

∣

∣

∑

j R
u(n)

j

∣

∣

∣
+
∣

∣

∣

∑

k R
v(n)

k

∣

∣

∣

·
∑

i R
(n−1)
i

∑

k R
v(n)

k

Following the conservation rule (Eq. 3), and the initial

relevance, we obtain
∑

i R
(n)
i = 1 for each layer n.

The following lemma presents the properties of the nor-

malized relevancy scores.

Lemma 2. The normalization technique upholds the fol-

lowing properties: (i) it maintains the conservation rule,

i.e.:
∑

j R̄
u(n)

j +
∑

k R̄
v(n)

k =
∑

i R
(n−1)
i , (ii) it bounds the

relevance sum of each tensor such that:

0 ≤
∑

j

R̄u(n)

j ,
∑

k

R̄v(n)

k ≤
∑

i

R
(n−1)
i (10)

Proof. See supplementary.

3.3. Relevance and gradient diffusion

Let M be a Transformer model consisting of B blocks,

where each block b is composed of self-attention, skip con-

nections, and additional linear and normalization layers in

a certain assembly. The model takes as an input a sequence

of s tokens, each of dimension d, with a special token for

classification, commonly identified as the token [CLS]. M

outputs a classification probability vector y of length C,

computed using the classification token. The self-attention

module operates on a small sub-space dh of the embedding

dimension d, where h is the number of “heads”, such that

hdh = d. The self-attention module is defined as follows:

A(b) = softmax(
Q(b) ·K(b)T

√
dh

) (11)

O(b) = A(b) ·V(b) (12)

where (·) denotes matrix multiplication, O(b) ∈ R
h×s×dh

is the output of the attention module in block b,

Q(b),K(b),V(b) ∈ R
h×s×dh are the query key and value
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inputs in block b, namely, different projections of an input

x(n) for a self-attention module. A(b) ∈ R
h×s×s is the at-

tention map of block b, where row i represents the attention

coefficients of each token in the input with respect to the to-

ken i. The softmax in Eq. 11 is applied, such that the sum

of each row in each attention head of A(b) is one.

Following the propagation procedure of relevance and

gradients, each attention map A(b) has its gradients ∇A(b),

and relevance R(nb), with respect to a target class t, where

nb is the layer that corresponds to the softmax operation

in Eq. 11 of block b, and R(nb) is the layer’s relevance.

The final output C ∈ R
s×s of our method is then defined

by the weighted attention relevance:

Ā(b) = I + Eh(∇A(b) ⊙R(nb))+ (13)

C = Ā(1) · Ā(2) · . . . · Ā(B) (14)

where ⊙ is the Hadamard product, and Eh is the mean

across the “heads” dimension. In order to compute the

weighted attention relevance, we consider only the positive

values of the gradients-relevance multiplication, resembling

positive relevance. To account for the skip connections in

the Transformer block, we add the identity matrix to avoid

self inhibition for each token.

For comparison, using the same notation, the rollout [1]

method is given by:

Â(b) = I + EhA
(b) (15)

rollout = Â(1) · Â(2) · . . . · Â(B) (16)

We can observe that the result of rollout is fixed given an

input sample, regardless of the target class to be visualized.

In addition, it does not consider any signal, except for the

pairwise attention scores.

3.4. Obtaining the image relevance map

The resulting explanation of our method is a matrix C of

size s× s, where s represents the sequence length of the in-

put fed to the Transformer. Each row corresponds to a rele-

vance map for each token given the other tokens - following

the attention computation convention in Eq. 14, 11. Since

this work focuses on classification models, only the [CLS]

token, which encapsulates the explanation of the classifica-

tion, is considered. The relevance map is, therefore, derived

from the row C[CLS] ∈ R
s that corresponds to the [CLS]

token. This row contains a score evaluating each token’s

influence on the classification token.

We consider only the tokens that correspond to the ac-

tual input, without special tokens, such as the [CLS] token

and other separators. In vision models, such as ViT [11],

the content tokens represent image patches. To obtain the

final relevance map, we reshape the sequence to the patches

grid size, e.g. for a square image, the patch grid size is√
s− 1 ×

√
s− 1. This map is upsampled back to the size

of the original image using bilinear interpolation.

Transformer
Block

Output
Gradients

Relevance
Input

Attetion

Transformer
Block

Figure 1: Illustration of our method. Gradients and relevan-

cies are propagated through the network, and integrated to

produce the final relevancy maps, as described in Eq. 13, 14.

4. Experiments

For the linguistic classification task, we experiment with

the BERT-base [9] model as our classifier, assuming a max-

imum of 512 tokens, and a classification token [CLS] that

is used as the input to the classification head.

For the visual classification task, we experiment with the

pretrained ViT-base [11] model, which consists of a BERT-

like model. The input is a sequence of all non-overlapping

patches of size 16×16 of the input image, followed by flat-

tening and linear layers, to produce a sequence of vectors.

Similar to BERT, a classification token [CLS] is appended

at the beginning of the sequence and used for classification.

The baselines are divided into three classes: attention-

maps, relevance, and gradient-based methods. Each has dif-

ferent properties and assumptions over the architecture and

propagation of information in the network. To best reflect

the performance of different baselines, we focus on methods

that are both common in the explainability literature, and

applicable to the extensive tests we report in this section,

e.g. Black-box methods, such as Perturbation and Shapely

based methods, are computationally too expensive and in-

herently different from the proposed method. We briefly

describe each baseline in the following section and the dif-

ferent experiments for each domain.

The attention-map baselines include rollout [1], follow-

ing Eq. 16, which produces an explanation that takes into

account all the attention-maps computed along the forward-

pass. A more straightforward method is raw attention, i.e.

using the attention map of block 1 to extract the relevance

scores. These methods are class-agnostic by definition.

Unlike attention-map based methods, the relevance prop-

agation methods consider the information flow through the

entire network, and not just the attention maps. These base-

lines include Eq. 4 and the partial application of LRP that

follows [42]. As we show in our experiments, the different

variants of the LRP method are practically class-agnostic,

meaning the visualization remains approximately the same

for different target classes.

A common class-specific explanation method is Grad-

CAM [32], which computes a weighted gradient-feature-

map to the last convolution layer in a CNN model. The best

786



way we found to apply GradCAM was to treat the last at-

tention layer’s [CLS] token as the designated feature map,

without considering the [CLS] token itself. We note that

the last output of a Transformer model (before the classifi-

cation head), is a tensor v ∈ R
s×d, where the first dimension

relates to different input tokens, and only the [CLS] token

is fed to the classification head. Thus, performing Grad-

CAM on v will impose a sparse gradients tensor ∇v, with

zeros for all tokens, except [CLS].

Evaluation settings For the visual domain, we follow

the convention of reporting results for negative and pos-

itive perturbations, as well as showing results for seg-

mentation, which can be seen as a general case of ”The

Pointing-Game” [19]. The dataset used is the validation

set of ImageNet [31] (ILSVRC) 2012, consisting of 50K

images from 1000 classes, and an annotated subset of

ImageNet called ImageNet-Segmentation [16], containing

4,276 images from 445 categories. For the linguistic do-

main, we follow ERASER [10] and evaluate the reason-

ing for the Movies Reviews [44] dataset, which consists of

1600/200/200 reviews for train/val/test. This task is a binary

sentiment analysis task. Providing explanations for ques-

tion answering and entailment tasks of the other datasets in

ERASER, which require input sizes of more than 512 to-

kens (the limit of our BERT model), is left for future work.

The positive and negative perturbation tests follow a two-

stage setting. First, a pre-trained network is used for ex-

tracting visualizations for the validation set of ImageNet.

Second, we gradually mask out the pixels of the input im-

age and measure the mean top-1 accuracy of the network.

In positive perturbation, pixels are masked from the high-

est relevance to the lowest, while in the negative version,

from lowest to highest. In positive perturbation, one ex-

pects to see a steep decrease in performance, which indi-

cates that the masked pixels are important to the classifi-

cation score. In negative perturbation, a good explanation

would maintain the accuracy of the model, while remov-

ing pixels that are not related to the class. In both cases,

we measure the area-under-the-curve (AUC), for erasing be-

tween 10%− 90% of the pixels.

The two tests can be applied to the predicted or the

ground-truth class. Class-specific methods are expected to

gain performance in the latter case, while class-agnostic

methods would present similar performance in both tests.

The segmentation tests consider each visualization as

a soft-segmentation of the image, and compare it to the

ground truth segmentation of the ImageNet-Segmentation

dataset. Performance is measured by (i) pixel-accuracy,

obtained after thresholding each visualization by the

mean value, (ii) mean-intersection-over-union (mIoU), and

(iii) mean-Average-Precision (mAP), which uses the soft-

segmentation to obtain a score that is threshold-agnostic.

The NLP benchmark follows the evaluation setting of

ERASER [10] for rationales extraction, where the goal is

to extract parts of the input that support the (ground truth)

classification. The BERT model is first fine-tuned on the

training set of the Movie Reviews Dataset and the various

evaluation methods are applied to its results on the test set.

We report the token-F1 score, which is best suited for per-

token explanation (in contrast to explanations that extract an

excerpt). To best illustrate the performance of each method,

we consider a token to be part of the “rationale” if it is part

of the top-k tokens, and show results for k = 10 . . . 80 in

steps of 10 tokens. This way, we do not employ threshold-

ing that may benefit some methods over others.

4.1. Results

Qualitative evaluation Fig.2 presents a visual comparison

between our method and the various baselines. As can

be seen, the baseline methods produce inconsistent perfor-

mance, while our method results in a much clearer and con-

sistent visualization.

In order to show that our method is class-specific, we

show in Fig. 3 images with two objects, each from a dif-

ferent class. As can be seen, all methods, except Grad-

CAM, produce similar visualization for each class, while

our method provides two different and accurate visualiza-

tions.

Perturbation tests Tab. 1 presents the AUC obtained for

both negative and positive perturbation tests, for both the

predicted and the target class. As can be seen, our method

achieves better performance by a large margin in both tests.

Notice that because rollout and raw attention produce con-

stant visualization given an input image, we omit their

scores in the target-class test.

Segmentation The segmentation metrics (pixel-accuracy,

mAP, and mIoU) on ImageNet-segmentation are shown in

Tab. 2. As can be seen, our method outperforms all base-

lines by a significant margin.

Language reasoning Fig. 4 depicts the performance on the

Movie Reviews “rationales” experiment, evaluating for top-

K tokens, ranging from 10 to 80. As can be seen, while

all methods benefit from increasing the amount tokens, our

method consistently outperforms the baselines. See supple-

mentary for a depiction of the obtained visualization.

Ablation study. We consider three variants of our method

and present their performance on the segmentation and pre-

dicted class perturbation experiments. (i) Ours w/o ∇A(b),

which modifies Eq. 13 s.t. we use A(b) instead of ∇A(b),

(ii) ∇A(1)R(n1), i.e. disregarding rollout in Eq. 14, and us-

ing our method only on block 1, which is the block closest

to the output, and (iii) ∇A(B−1)R(nB−1) which similar to

(ii), only for block B − 1 which is closer to the input.

As can be seen in Tab. 3 the ablation ∇A(1)R(n1) in

which one removes the rollout component, i.e., Eq. 14,
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Input rollout [1] raw-attention GradCAM [32] LRP [3] partial LRP [42] Ours

Figure 2: Sample results. As can be seen, our method produces more accurate visualizations.

Input rollout [1] raw-attention GradCAM [32] LRP [3] partial LRP [42] Ours

Dog →

Cat →

Elephant →

Zebra →

Figure 3: Class-specific visualizations. For each image we present results for two different classes. GradCam is the only

method to generate different maps. However, its results are not convincing.
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rollout [1] raw attention GradCAM [32] LRP [3] partial LRP [42] Ours

Negative
Predicted 53.1 45.55 41.52 43.49 50.49 54.16

Target - - 42.02 43.49 50.49 55.04

Positive
Predicted 20.05 23.99 34.06 41.94 19.64 17.03

Target - - 33.56 41.93 19.64 16.04

Table 1: Positive and Negative perturbation AUC results (percents) for the predicted and target classes, on the ImageNet [31]

validation set. For positive perturbation lower is better, and for negative perturbation higher is better.

rollout [1] raw attention GradCAM [32] LRP [3] partial LRP [42] Ours

pixel accuracy 73.54 67.84 64.44 51.09 76.31 79.70

mAP 84.76 80.24 71.60 55.68 84.67 86.03

mIoU 55.42 46.37 40.82 32.89 57.94 61.95

Table 2: Segmentation performance on the ImageNet-segmentation [16] dataset (percent). Higher is better.

10 20 30 40 50 60 70 80
# of Tokens

0.00

0.05

0.10

0.15

0.20

0.25

to
ke

n-
F1

Ours
partial LRP
raw attention
GradCAM
LRP
rollout

Figure 4: token-F1 scores on the Movie Reviews reasoning

task.

Segmentation Perturbations

Acc. mAP mIoU Pos. Neg.

Ours w/o ∇A(b) 77.66 85.66 59.88 18.23 52.88

∇A(1)R(n1) 78.32 85.25 59.93 18.01 52.43

∇A(B−1)R(nB−1) 60.30 73.63 39.06 27.33 37.42

Ours 79.70 86.03 61.95 17.03 54.16

Table 3: Performance of different variants of our method.

while keeping the relevance and gradient integration, and

only considering the last attention layer, leads to a moder-

ate drop in performance. Out of the two single block vi-

sualizations ((ii), and (iii)), the combined attention gradient

and relevancy at the b = 1 block, which is the closest to

the output, is more informative than the block closest to the

input. This is the same block that is being used for the raw-

attention, partial LRP, and the GradCAM methods. The

ablation that considers only this block outperforms these

methods, indicating that the advantage of our method stems

mostly from the combination of relevancy as we compute it

and attention-map gradients.

5. Conclusions

The self-attention mechanism links each of the tokens to

the [CLS] token. The strength of this attention link can

be intuitively considered as an indicator of the contribution

of each token to the classification. While this is intuitive,

given the term “attention”, the attention values reflect only

one aspect of the Transformer network or even of the self-

attention head. As we demonstrate, both when using a fine-

tuned BERT model for NLP and with the ViT model, atten-

tions lead to fragmented and non-competitive explanations.

Despite this shortcoming and the importance of Trans-

former models, the literature with regards to interpretability

of Transformers is sparse. In comparison to CNNs, multiple

factors prevent methods developed for other forms of neu-

ral networks (not including the slower black-box methods)

from being applied. These include the use of non-positive

activation functions, the frequent use of skip connections,

and the challenge of modeling the matrix multiplication that

is used in self-attention.

Our method provides specific solutions to each of these

challenges and obtains state-of-the-art results when com-

pared to the methods of the Transformer literature, the LRP

method, and the GradCam method, which can be applied

directly to Transformers.
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