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Abstract

Recent years have witnessed significant progress in 3D

hand mesh recovery. Nevertheless, because of the intrinsic

2D-to-3D ambiguity, recovering camera-space 3D informa-

tion from a single RGB image remains challenging. To

tackle this problem, we divide camera-space mesh recovery

into two sub-tasks, i.e., root-relative mesh recovery and

root recovery. First, joint landmarks and silhouette are

extracted from a single input image to provide 2D cues for

the 3D tasks. In the root-relative mesh recovery task, we

exploit semantic relations among joints to generate a 3D

mesh from the extracted 2D cues. Such generated 3D mesh

coordinates are expressed relative to a root position, i.e.,

wrist of the hand. In the root recovery task, the root position

is registered to the camera space by aligning the generated

3D mesh back to 2D cues, thereby completing camera-

space 3D mesh recovery. Our pipeline is novel in that (1)

it explicitly makes use of known semantic relations among

joints and (2) it exploits 1D projections of the silhouette

and mesh to achieve robust registration. Extensive exper-

iments on popular datasets such as FreiHAND, RHD, and

Human3.6M demonstrate that our approach achieves state-

of-the-art performance on both root-relative mesh recovery

and root recovery. Our code is publicly available at

https://github.com/SeanChenxy/HandMesh.

1. Introduction

Monocular 3D mesh recovery has attracted tremendous

attention due to its extensive applications in AR/VR, hu-

man–machine interaction, etc. The task is to estimate 3D

locations of mesh vertices from a single RGB image. It is

particularly challenging owing to highly articulated struc-

tures, 2D-to-3D ambiguity, and self-occlusion. Significant

efforts have been made recently for accurate 2D-to-3D
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Figure 1. Qualitative results of the proposed CMR. We show

silhouette, 2D pose, projection of mesh, side-view mesh, camera-

space mesh and pose (unit: meter). The red rectangles indicate the

camera. Our method is robust enough to handle cases of occlusion,

truncation, and challenging poses.

reconstruction, including [16, 17, 20, 21, 23, 27, 30, 31, 32,

33, 36, 39], to name a few.

Most of the aforementioned methods [6, 9, 16, 20, 21, 22,

27, 40, 43] have difficulty in predicting absolute camera-

space coordinates. Instead, they define a root (i.e., wrist

of the hand) and estimate root-relative coordinates of the

3D mesh. In this aspect, these methods cannot be applied

to many high-level tasks, e.g., hand-object interaction, that

requires camera-space mesh information. To this end, we

propose to jointly solve root-relative mesh recovery and root

recovery by integrating these two sub-tasks into a unified

framework, thereby bridging the gap between root-relative

predictions and camera-space estimation.

RGB images consist of 2D patterns that are indirect cues

of the underlying 3D structure. Therefore, 2D cues have

long been leveraged to assist 3D tasks. For example, 2D
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pose and silhouette have been used to facilitate 3D pose

regression [9, 20, 27, 33, 42, 43, 44].

However, the relationship between 2D cues and 3D

structure remains unclear. We observe that 2D joint land-

marks together with their semantic relations describe the

2D pose, while the silhouette indicates the holistic 3D-

to-2D projection of the hand. They have different 2D

properties and should be treated in different manners in the

3D task. Inspired by these observations, we set to explore

the following aspects of the 2D-to-3D task: (1) different

roles of 2D cues, (2) the reason for their different effects,

and (3) how to construct more effective 2D cues.

In this paper, we propose a camera-space mesh recovery

(CMR) framework to integrate the tasks of 3D hand mesh

and root recovery into a unified framework. CMR consists

of three phases, i.e., 2D cue extraction, 3D mesh recovery,

and global mesh registration. For 2D cue extraction, we

predict joint landmarks and silhouette from a single RGB

image. For mesh recovery, we introduce an Inception

Spiral Module for robust 3D decoding. Moreover, an ag-

gregation method is designed for composing more effective

2D cues. Specifically, instead of implicitly learning the

relations among joints, we exploit their known relations by

aggregating landmark heatmaps in groups, which proves to

be effective for the subsequent 3D task. Finally, camera-

space root location is obtained by a global mesh registration

step that aligns the generated 3D mesh with the extracted

2D landmarks and silhouette. This step is carried out

via an adaptive 2D-1D registration method that achieves

robustness by leveraging matching objectives in different

dimensions. Our full pipeline surpasses state-of-the-art

methods in the 3D mesh and root recovery tasks. While

our approach is mainly described for hand mesh, it can

be readily applied to full-body mesh as shown in the

experiments. Figure 1 demonstrates several example results

of our CMR for camera-space mesh recovery.

Our main contributions are summarized as follows:

• We propose a novel aggregation method to collect effec-

tive 2D cues and exploit high-level semantic relations for

root-relative mesh recovery.

• We design an adaptive 2D-1D registration method to

sufficiently leverage both joint landmarks and silhouette

in different dimensions for robust root recovery.

• We present a unified pipeline CMR for camera-space

mesh recovery and demonstrate state-of-the-art perfor-

mance on both mesh and root recovery tasks via extensive

experiments on FreiHAND, RHD, and Human3.6M.

2. Related Work

Root-relative mesh/pose recovery. According to differ-

ent output property, we categorize methods for single-

view RGB-based mesh recovery into three types, i.e.,

RGB→MANO/SMPL [16, 40, 42, 44], RGB→Voxel [15, 27,

32, 39], and RGB→Coord (coordinate) [8, 9, 21, 22].

MANO [35] and SMPL [25] are parameterized 3D mod-

els of hand and human body, factorizing 3D human mesh

into coefficients of shape and pose. Tremendous literature

attempts to predict these coefficients for human/hand mesh

recovery. For example, Zhou et al. [44] estimated MANO

coefficients based on the kinematic chain and developed an

inverse kinematics network to improve prediction accuracy

on pose coefficients. MANO/SMPL can reconstruct 3D

mesh, but they embed 3D information into a parametrized

space (e.g., PCA space), where the 3D structure is less

straightforward (compared to 3D vertices).

Voxel is one type of Euclidean 3D representation, to

which the canonical convolutional operator can be directly

applied [28]. Thereby, the mesh recovery task can be

explored in voxels. For example, Moon et al. [27] pro-

posed an I2L-MeshNet by dividing voxels into three lixel

spaces, where a 2.5D representation is leveraged for human

mesh. The voxel/2.5D-based paradigm has impressive

performance in terms of human mesh recovery because the

merits of Euclidean space are fully leveraged. However,

voxel/2.5D representations are not efficient enough in cap-

turing 3D details (compared to 3D vertices).

Defferrard et al. [7] proposed a graph convolution net-

work (GCN) based on spectral filtering to process 3D

vertices in the non-Euclidean space. Based on GCN, Kolo-

touros et al. [21] developed a graph convolutional mesh

regressor to directly estimate the 3D coordinates of mesh

vertices. Ge et al. [9] also developed a graph-based method

for hand mesh recovery by learning from mixed real and

synthetic data. Instead of spectral filtering, Lim et al. [24]

proposed spiral convolution (SpiralConv) to process mesh

data in the spatial domain. Based on SpiralConv, Kulon et

al. [22] developed an encoder-decoder structure for efficient

hand mesh recovery. We follow the RGB→Coord paradigm

and explore versatile aggregation of 2D cues.

Root recovery. In analogy to root recovery, estimation

of external camera parameters has been widely studied

[3, 16, 42]. For instance, Zhang et al. [42] designed

an iterative regression method to simultaneously estimate

external camera parameters and MANO coefficients. How-

ever, camera parameter estimation from RGB data is an

ill-posed problem, leading to relatively low generalization

performance. Moon et al. [26] proposed RootNet to predict

the absolute 3D human root. RootNet essentially modeled

object size in images, but the pixel-level object area has a

relatively low correlation with 3D root. Rogez et al. [34]

predicted both 2D and 3D pose so that the 3D root loca-

tion can be obtained by aligning predicted 2D pose with

projected 3D pose. We argue that this 2D-3D alignment

cannot sufficiently leverage 2D information and propose an

adaptive 2D-1D registration method for root recovery.
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Figure 2. Overview of our CMR framework.

2D cues in 3D shape/pose recovery. Researchers have

long exploited 2D cues in recovering 3D human shape

and body parts. Pavlakos et al. [33] utilized 2D pose to

regress pose coefficients and used silhouette to estimate

shape coefficients. Varol et al. [39] first predicted 2D joint

landmarks and body part segmentation, both of which were

then combined to predict 3D pose. In this work, we aim to

investigate how 2D cues work in 3D tasks and to leverage

them effectively for hand mesh and root recovery.

3. Our Method

To represent a 3D mesh in camera-space, we divide

it into the root-relative mesh and the camera-space root

location. As shown in Figure 2, CMR includes three phases,

i.e., 2D cue extraction, 3D mesh recovery, and global mesh

registration. In the step of 2D cue extraction, we predict 2D

pose and silhouette, which are used later for both mesh and

root recovery. In the step of 3D mesh recovery, we generate

a root-relative mesh which is then registered to the camera

space in the final phase of the pipeline.

3.1. Mesh Recovery by Semantic Aggregation

2D cues for 3D mesh recovery. The first phase of our

pipeline extracts 2D pose and silhouette. Both 2D pose and

silhouette are represented by heatmaps. To refine the 2D

cues gradually, we use a multi-stack hourglass network [29].

The 3D mesh is defined by its shape and pose [35]. The

silhouette is a holistic 3D-to-2D projection so it captures

important shape cues. However, it can hardly describe the

pose accurately. On the other hand, joint landmark locations

are very informative for the pose. Given their different

roles, how to better combine them becomes an interesting

question. Therefore, we have an insight that to improve

accuracy of the subsequent 3D tasks, it is essential not only

pa
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tip
s

Figure 3. Examples of sub-poses for high-level semantic relations.

From top to bottom: part, level, and tip grouping.

to improve the accuracy of the 2D tasks respectively, but

also to better aggregate them according to their semantic

relations. Specifically, we propose to aggregate a series of

2D cues denoted as follows:

• Hp: N heatmaps of 2D poses. Each heatmap corresponds

to a joint landmark.

• Hs: a single heatmap of the silhouette.

• cat(Hp,Hs): concatenating heatmaps of Hp and Hs to

aggregate 2D pose and silhouette.

• sum(Hp): combining all the joint landmarks as a single

heatmap to aggregate joint locations.

• group(Hp): concatenating Hp and tip-, part- , or level-

grouped landmarks to aggregate joint semantics for high-

level semantic relations.

2D silhouette and joint landmarks represent pixel-level

locations in different aspects. A straightforward way of

combining them is cat(Hp,Hs). Another simple baseline,

sum(Hp), would discard semantics of individual joints

by encoding their locations in a single heatmap. Thus,

comparing Hp and sum(Hp) would reveal the effect of joint

semantics. These simple baselines, as we will show, are

inferior to more semantically meaningful ways of aggrega-

tion: group(Hp). That is, we sum the joint heatmaps in

groups. As shown in Figure 3, three ways of grouping are

introduced, i.e., by part, by level, and by tip grouping. Part

grouping integrates joint landmarks on a finger, leg, arm, or

torso, while level grouping integrates joint landmarks at the

kinematic level [44]. Tip grouping integrates pairwise part

tips. As a result, group(Hp) forms sub-poses that exploit

high-level semantic relation of 2D joints.

Spiral decoder. The second phase of our pipeline gener-

ates the root-relative 3D mesh from the aggregated 2D cues

using an improved spiral convolution decoder.

A 3D mesh M contains vertices V = {vi =
(xi, yi, zi)}

M
i=1 and faces F . Convolution methods for M
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Figure 4. Neighbor selection of different spiral convolutions. Left:

SprialConv++ [10]. Right: Our method (ISM) that features

hierarchical receptive fields (shown in red, orange, and green).
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Figure 5. Spiral decoder. We improve the spiral decoder by ISM,

multi-scale mechanism, and self-regression.

essentially process vertex features f(v). SpiralConv [24] is

a graph-based convolution operator, which processes vertex

features in the spatial domain. By explicitly formulat-

ing the order of aggregating neighboring vertices, Spiral-

Conv++ [10] presents an efficient version of SpiralConv.

SpiralConv++ depends on a spiral manner of neighbor

selection and adopts a fully-connected layer for feature

fusion:

0-ring(v) = {v}

(k + 1)-ring(v) = N(k-ring(v)) \ k-disk(v)

k-disk(v) = ∪i=0,..,ki-ring(v)

SpiralConv++(v) = W (f(k-disk(v))) + b,

(1)

where N represents vertex neighborhood, W and b are

weights and bias shared for ∀v ∈ V .

As shown in Figure 4(left), SpiralConv++ collects vertex

neighbors (black dots) of the cell (red star) in a spiral

manner. Then these neighbors are treated indiscriminately

by a fully connected layer. Inspired by Inception and

residual models [13, 38], we design an Inception Spiral

Module (ISM) to enhance the receptive field of SpiralConv.

Specifically, as shown in Figure 4(right), we distinguish

neighbors according to the spiral hierarchy (red, orange, and

green dots) and adopt parallel layers with diverse receptive

field for 3D decoding. The ISM can be described as

oi(v) = Wif(i-disk(v)) + bi i = 0, 1, 2, 3

ISM(v) = o0(v) + [o1(v), o2(v), o3(v)].
(2)

Mesh span 1

axis k

axis 2

axis 1

Silhouette span 1

Contours2D mesh

endpoints

Figure 6. Multiple 1D projections for the mesh and silhouette.

where [·] denotes concatenating. In ISM we keep the num-

ber of parameters manageable by controlling the channel

size of o. Note that the i-disk for each vertex may contain

different number of elements. Similar to SpiralConv++, we

truncate it to obtain a fixed-length sequence so that Wi and

bi can be shared for all the vertices.

The overall architecture of our 3D mesh decoder is

shown in Figure 5. Our design improves the spiral decoder

in three aspects: (1) we replace SpiralConv with ISM;

(2) we leverage multi-scale prediction and coarse-to-fine

fusion; and (3) we introduce a self-regression mechanism

by concatenating scale-level predictions with the same-

scale feature. Meanwhile, we use a convolutional decoder

which runs in parallel with the spiral decoder to refine the

estimation of 2D pose and silhouette.

3.2. Root Recovery by Global Mesh Registration

1D projections. The silhouette reflects holistic 3D-to-

2D projection and contains strong geometric information

for root recovery. Given the intrinsic matrix K of the

camera, predicted 3D vertices V can be projected into the

2D space by KV , resulting in a 2D mesh which consists

of 2D vertices V2D = {v2D
i = (x2D

i , y2Di )}Mi=1 with the

original connectivity. Ideally, the 2D mesh should align

well with the silhouette. However, they cannot be directly

aligned because (1) the large number of 2D points leads to

prohibitive computational cost, i.e., the silhouette contains

thousands of pixels while the 2D mesh has 778 (for hand) or

6,890 (for human body) vertices; (2) 2D mesh vertices have

no explicit correspondence with respect to the silhouette.

To overcome these difficulties, we design a group of

1D projections to align the silhouette with the 2D mesh.

First, the silhouette is converted into contours C = {c =
(xc

i , y
c
i )}

C
i=1 by edge detection [5]. We define a set of

1D axes A = {aj = (xa
j , y

a
j )}

A
j=1. These axes have

unit length and are uniformly distributed, i.e., the angle

difference between neighboring axes is π/A. As shown

in Figure 6, we project contours and 2D vertices onto aj ,

resulting in their 1D span, i.e., SC
j = {ci · aj}

C
i=1 and

SV
2D

j = {v2D
i · aj}

M
i=1.
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Adaptive 2D-1D registration. We denote the camera-

space root by t = (xr, yr, zr) and 2D joint landmark

predictions by P = {pi = (xp
i , y

p
i )}

N
i=1. Given K and

joint regressor J defined by MANO [35] or SMPL [25], the

camera-space 3D vertices V + t can be converted into 2D

joints by Q = KJ(V + t) = {qi = (xq
i , y

q
i )}

N
i=1. Since P

and Q have intrinsic correspondence, we define the energy

function for 2D matching as

E2D =
∑N

i=1(pi − qi)
2, (3)

whose solution is denoted as t2D = argmint E2D(t).
Further, we use V + t to implement the aforementioned

3D-2D-1D projection. Camera-space SV
2D

is thereby

produced. Then the 1D correspondence is obtained using

two endpoints of the 1D span. The energy function for

alignment of 1D spans is defined as

E1D =
∑A

j=1{(max(SC
j )−max(SV

2D

j ))2

+(min(SC
j )−min(SV

2D

j ))2}.
(4)

In 1D space, t1D = argmint E1D(t). Both 2D and

1D optimizations are based on quadratic programming [2].

With t1D and t2D, we develop an adaptive method for the

final root t∗ with their distance d = ||t2D − t1D||2:

t∗ =



















t1D if d > δ1

δ1 − d

δ1 − δ2
t2D +

d− δ2
δ1 − δ2

t1D else if d > δ2

t2D otherwise

(5)

where δ1 > δ2, both of which are robust hyper-parameters

according to 3D scale. Without wide search, we empirically

use 0.06, 0.02 for the hand and 1.0, 0.5 for the body. This

design attempts to sufficiently leverage the merits of 2D-

1D registration. It is known that 2D pose is more fragile

than silhouette. Hence, 2D pose is prone to be erroneous

when there is a huge 2D-1D discrepancy, and silhouette is

more dependable if d > δ1. From another perspective, joint

correspondence is more explicit than that of 1D projection.

Thereby, the 2D process is more reliable if 2D and 1D

results are similar (d < δ2). The whole process of adaptive

2D-1D registration is presented in Figure 7, from which

we can see that geometrical information is sufficiently

exploited from 3D to 1D spaces for root recovery.

3.3. Loss Functions

We use L1 norm for loss terms of 3D mesh/pose

Lmesh,Lpose3D, and our 2D pose/silhouette losses

Lpose2D,Lsil are based on binary cross entropy (BCE). We

adopt normal loss Lnorm and edge length loss Ledge for

smoother reconstruction [9]. Formally, we have

Lmesh = ||V − V⋆||1,Lpose3D = ||JV − J ⋆||1,

Lpose2D = BCE(U,U⋆),Lsil = BCE(S, S⋆),

Lnorm =
∑

k∈F

∑

(i,j)⊂k

|
Vi − Vj

||Vi − Vj ||2
· n⋆

k
|,

Ledge =
∑

k∈F

∑

(i,j)⊂k

|||Vp
i − Vp

j ||2 − ||V⋆
i − V⋆

j ||2|,

(6)

where F ,V are faces and vertices of a mesh; J,J are

the pose regressor and 3D joints; n⋆
k

indicates unit normal

vector of face k; U, S are heatmaps of 2D pose and

silhouette; and ⋆ denotes the ground truth. Following [27],

U⋆ is constructed with Gaussian distribution.

Our overall loss function is Ltotal = Lmesh+Lpose3D+
λpLpose2D + λsLsil + λnLnorm + Ledge, where λp =
10, λs = 0.5, λn = 0.1 are used to balance different terms.

4. Experiments

4.1. Experimental Setup

We conduct experiments on several commonly-used

benchmarks as listed below.

FreiHAND [46] is a 3D hand dataset with 130,240 train-

ing images and 3,960 evaluation samples. The annota-

tions of the evaluation set are not available, so we submit

our predictions to the official server for online evaluation.

Rendered Hand Pose Dataset (RHD) [45] consists of

41,258 and 2,728 virtually rendered samples for training

and testing on hand pose estimation, respectively.

Human3.6M [14] is a large-scale 3D body pose bench-

mark containing 3.6 million video frames with annota-

tions of 3D joint coordinates. SMPLify-X [30] is used

to obtain ground-truth SMPL coefficients. We follow

existing methods [6, 16, 27, 32] to use subjects S1, S5,

S6, S7, S8 for training and subjects S9, S11 for testing.

COCO is a wild dataset with annotations of 2D human

joints. Following previous work [6, 20, 27], we use

the SMPL coefficients to produce the 3D human mesh.

COCO is used for training.

We use the following metrics in quantitative evaluations.
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Method PA-MPJPE ↓ PA-MPVPE ↓

YoutubeHand [22] 8.82 9.06

+ Our spiral decoder 8.46 8.54

Table 1. Comparison of our spiral decoder with baseline.

Stack 1 Stack 2 PA-MPJPE ↓ PA-MPVPE ↓

− − 8.46 8.54

Hs − 8.05 8.10

Hp − 7.71 7.77

cat(Hp,Hs) − 7.83 7.95

sum(Hp) − 7.89 7.94

group(Hp) − 7.55 7.60

Hs group(Hp) 7.47 7.55

Hp group(Hp) 7.39 7.46

Table 2. Effects of 2D-cues aggregations after each “Stack”.

MPJPE/MPVPE measures the mean per joint/vertex posi-

tion error in terms of Euclidean distance (mm) between

the root-relative prediction and ground-truth coordinates.

PA-MPJPE/MPVPE is the MPJPE/MPVPE based on pro-

crustes analysis [11] with global variation being ignored.

CS-MPJPE/MPVPE measures MPJPE/MPVPE in the

camera space for evaluation of the root recovery task.

AUC is the area under the curve of PCK (percentage of

correct keypoints) vs. error thresholds.

Implementation details. Our backbone is based on

ResNet [13] and we use the Adam optimizer [19] to train the

network with a mini-batch size of 32. Serving as network

inputs, image patches are cropped and resized to resolutions

of 224 × 224 (for the hand) or 256 × 256 (for the body).

Because of different data amounts, the total number of

iterations is set as 38 and 25 epochs for tasks on hand and

body. The initial learning rate is 10−4, which is divided by

10 at the 20th or 30th epoch. Data augmentation includes

random box scaling/rotation, color jitter, etc.

4.2. Ablation Study

Baseline. Our ablation studies are based on ResNet18.

YoutubeHand [22] serves as the baseline, but its code and

models are inaccessible. Our re-implemented model obtains

9.06mm PA-MPVPE (see Table 1). With our spiral decoder,

8.54mm PA-MPVPE is achieved. Thus, our designs can

strengthen the robustness of 2D-to-3D decoding.

Effects of various 2D cues. This paper explores cues

of 2D pose and silhouette for 3D mesh recovery, and a

two-stack network is leveraged. At first, discarding the

second stack, we only use one encoder-decoder structure for

exposing details of 2D-cue effects. As shown in Table 2, Hs

leads to 8.10mm PA-MPVPE while sum(Hp) reduces PA-

MPVPE to 7.94mm. Both Hs and sum(Hp) are heatmaps

that contain location information, so the locations of joint

landmarks are more instructive than that of a holistic shape.

This phenomenon is evident, because pose is more difficult

to estimate than shape, and joint locations can directly

n
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H
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u
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p
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H
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g
r
o
u
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p
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Figure 8. Comparison of feature representations after various 2D

cues. Hs and sum(Hp) invite holistic shape and pose. Hp implies

semantic relation while group(Hp) induces more exhaustive joint

relations by explicit semantic aggregation. The input image is

shown in the first row of Figure 1.

provide cues on poses. Furthermore, Hp leads to an

improved PA-MPVPE of 7.77mm by providing both joint

locations and semantics. Compared to sum(Hp), it is seen

that joint semantics is also important. In addition, the effect

of cat(Hp,Hs) is worse than that of Hp. Therefore, there

is no complementary benefit from 2D pose and silhouette.

To reveal potential reasons for different effects of 2D

cues, we dissect feature representation acted by them.

It is known that channel-specific feature usually embeds

semantics, so we focus on typical channels in the first

encoding block in the 3D mesh recovery phase. As shown

in Figure 8, this block tends to describe trivial properties

such as edges (see “none”). If Hs is employed, holistic

2D shapes emerge, but pose cues are ignored. With

sum(Hp), holistic 2D shapes still can be learned based on

joint landmark locations. Thus, this phenomenon can be

the reason why there exists no complementary benefit in

joint landmarks and silhouette. Moreover, holistic joint

locations can also be captured with sum(Hp). As for Hp,

although joint information is provided in separate heatmaps,

the features after Hp have a tendency that multiple joints are

simultaneously activated. Features shown in Hp of Figure 8

imply semantic relation of joints, which can have significant

impact on 3D tasks. However, relation representation

invited by Hp is not exhaustive enough. Specifically, the

left two representations have similar patterns while both
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Parts Levels Tips PA-MPJPE ↓ PA-MPVPE ↓

7.71 7.77

X 7.58 7.65

X 7.63 7.69

X 7.58 7.65

X X 7.55 7.60

X X X 7.62 7.70

Table 3. Effects of semantic aggregation of joint landmarks.

Model Root recovery CJ ↓ CV ↓

Absolute coordinate prediction 77.6 77.4

CMR-P
(2D AUC=0.762,

mIoU=0.824)

PnP 98.9 99.0

RootNet 63.0 62.9

2D (ours) 53.7 53.7

1D (ours,A=2) 55.8 55.8

2D+1D (ours,A=2) 52.7 52.7

2D+1D (ours,A=12) 52.1 52.1

CMR-PG
(2D AUC=0.798,

mIoU=0.826)

RootNet 62.7 62.7

2D (ours) 51.5 51.5

1D (ours,A=2) 54.3 54.3

2D+1D (ours,A=2) 51.1 51.1

2D+1D (ours,A=12) 50.6 50.6

CMR-SG
(2D AUC=0.790,

mIoU=0.832)

RootNet 62.8 62.7

2D (ours) 52.0 52.0

1D (ours,A=2) 52.6 52.6

2D+1D (ours,A=2) 50.4 50.4

2D+1D (ours,A=12) 49.7 49.8

Table 4. Root recovery ablation/comparison. 2D AUC and mIoU

indicate the accuracy of 2D pose and silhouette. Because official

evaluation do not support them, 2D AUC is about RHD while

mIoU is based on our silhouette annotation. PnP [18] and RootNet

[26] are compared. “CJ, CV” denote CS-MPJPE/MPVPE.

the 3rd and 4th representations mainly focus on the tips of

thumb and middle finger.

Effects of semantic aggregation. Instead of implied rela-

tion learning, group(Hp) aims to aggregate joint semantics

for explicit semantic relation. Referring to Table 3, part-

, level-, and tip-based relations have instructive effects,

and the integration of part- and tip-based relations leads

to better performance on mesh recovery. Part-based ag-

gregation provides within-part relations while tip-based

aggregation models pairwise cross-part relations, so they

are complementary for creating robust semantic relations.

As a result, group(Hp) surpasses Hp by 0.17mm on PA-

MPVPE, i.e., 7.60mm. Referring to Figure 8, compared to

Hp, group(Hp) captures more exhaustive semantic relation,

e.g., finger parts and various combinations of fingertips.

Besides, the two-stack network can provide more effec-

tive 2D cues, leading to better PA-MPVPE (see Table 2).

Let CMR-P, CMR-SG, and CMR-PG be models shown in

the 3rd, 7th, and 8th rows of Table 2 for later analysis.

Effects of adaptive 2D-1D registration. We train a

model that directly predicts absolute camera-space coordi-

Method PJ ↓ PV ↓ CJ ↓ CV ↓

Boukhayma et al. [3] 35.0 13.2 − −

ObMan [12] 13.3 13.3 85.2 85.4

MANO CNN [46] 11.0 10.9 71.3 71.5

YotubeHand [22] 8.4 8.6 − −

Pose2Mesh [6] 7.7 7.8 − −

I2L-MeshNet[27] 7.4 7.6 60.3 60.4

CMR-SG (ResNet18) 7.5 7.6 49.7 49.8

CMR-PG (ResNet18) 7.4 7.5 50.6 50.6

CMR-SG (ResNet50) 7.0 7.1 48.8 48.9

CMR-PG (ResNet50) 6.9 7.0 48.9 49.0

Table 5. Results on FreiHAND. “PJ, PV, CJ, CV” denote PA-

MPJPE, PA-MPVPE, CS-MPJPE, and CS-MPVPE, respectively.

nates for comparison. Although this operation easily suf-

fers from overfitting, it can handle the single-dataset task,

obtaining 77.4mm CS-MPVPE (see Table 4). Perspective-

n-Point (PnP) is a standard approach that solves external pa-

rameters of a camera based on pairwise 2D-3D points [18].

Based on 2D joint landmarks and root-relative 3D joints

from CMR-P, the PnP method can predict absolute root

coordinates. However, it obtains 99.0mm CS-MPVPE,

lagging considerably behind the baseline. With our 2D

or 1D registration, CMR-P achieves 53.7mm or 55.8mm

CS-MPVPE, so both our 2D and 1D designs are valid. In

detail, 2D registration is better because of unambiguous 2D-

3D correspondence. Furthermore, based on our proposed

adaptive fusion, the adaptive 2D-1D registration achieves

52.7mm CS-MPVPE. When A = 12, the 2D-1D process

can induce a better CS-MPVPE of 52.1mm. Thus, our

adaptive 2D-1D registration can sufficiently leverage 2D

cues from joint landmarks and silhouette for root recovery.

With CMR-PG and CMR-SG, the same tendency

emerges, which also validates the effectiveness of our

designs. Note that CMR-PG induces better 2D pose (i.e.,

0.798 AUC) while CMR-SG invites better silhouette (i.e.,

0.832 mIoU), so their 2D and 1D performances are distinct.

Overall, CMR-SG achieves the best performance on root

recovery and camera-space mesh recovery.

4.3. Comparisons with Existing Methods

We perform a comprehensive comparison on the Frei-

HAND dataset. As shown in Table 5, our proposed

CMR outperforms other methods in terms of all the afore-

mentioned metrics. Specifically, ResNet50-based CMR-

PG achieves the best performance on root-relative mesh

recovery, i.e., 7.0mm PA-MPVPE and 6.9mm PA-MPJPE.

In Table 5, we evaluate the root recovery performance

of camera-space mesh on the FreiHAND dataset. Our

CMR outmatches ObMan [12] and I2L-MeshNet [27] by

36.5mm and 11.5mm on CS-MPVPE. To the best of our

knowledge, CMR achieves state-of-the-art performance on

camera-space mesh recovery, i.e., 48.9mm CS-MPVPE

and 48.8mm CS-MPJPE. From Figure 9, we can see that
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ObMan (CVPR2019): AUC=0.736
Bouk et al.  (CVPR2019): AUC=0.738
ManoCNN (ICCV2019): AUC=0.783
YoutubeHand (CVPR2020): AUC=0.83
Pose2Mesh (ECCV2020): AUC=0.85
I2L_MeshNet (ECCV2020): AUC=0.85
CMR-PG (ours): AUC=0.861
CMR-SG (ours): AUC=0.858
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Camera-space mesh (FreiHAND)
Obman (CVPR2019): AUC=0.168
ManoCNN (ICCV2019): AUC=0.184
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CMR-SG+RootNet: AUC=0.211
CMR-PG (ours): AUC=0.303
CMR-SG (ours): AUC=0.306
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Z&B et al.  (ICCV2017): AUC=0.675
Spurr et al.  (CVPR2018): AUC=0.849
Cai et al.  (ECCV2018): AUC=0.887
Zhou et al.  (CVPR2020): AUC=0.856
Spurr et al.  (ICCV2019): AUC=0.901
Ge et al.  (CVPR2019): AUC=0.92
Beak et al.  (ICCV2019): AUC=0.926
Yang et al.  (CVPR2019): AUC=0.943
CMR-PG (trained w/o RHD ): AUC=0.872
CMR-SG (trained w/o RHD): AUC=0.852
CMR-PG (ours): AUC=0.944
CMR-SG (ours): AUC=0.949

Figure 9. PCK vs. error thresholds. Our CMR significantly outperforms all the other methods.

Human3.6M Human3.6M+COCO

Method Type MPJPE ↓ PA-MPJPE ↓ MPJPE ↓ PA-MPJPE ↓ FPS ↑ GPU Mem. ↓

HMR [16] RGB→SMPL 184.7 88.4 153.2 85.5 − −

SPIN [20] RGB→SMPL 85.6 55.6 72.9 51.9 − −

Pose2Mesh [6] Pose→Coord 64.9 48.7 67.9 49.9 4 6G

I2L-MeshNet [27] RGB→Voxel 82.6 59.8 55.7 41.7 25 4.6G

GraphCMR [21] RGB→Coord 148.0 104.6 78.3 59.5 − −

CMR-PG (ours, ResNet18) RGB→Coord 67.9 49.9 59.0 44.7 59 1.5G

CMR-PG (ours, ResNet50) RGB→Coord 69.8 47.9 57.3 42.6 30 1.9G

Table 6. Results of root-relative mesh recovery on Human3.6M. In each column, the best number is highlighted in bold, and the second

best number is highlighted with an underline.

the proposed CMR outperforms all the compared methods

on 3D PCK by a large margin. With the root-relative

mesh from CMR, we demonstrate that our adaptive 2D-

1D registration consistently outperforms RootNet [26] as

shown in Table 4.

Referring to CMR-PG’s PA-MPJPE and CS-MPJPE in

Table 5, only an error of 6.9mm is incurred by relative pose

with an error larger than 40mm from global translation,

rotation, and scaling. Thus, compared with root-relative

information, camera-space 3D reconstruction is more es-

sential to improve the practicability of hand mesh recovery,

and we advocate studying the camera-space problem.

In Figure 9, we compare our CMR with several pose

estimation methods [1, 4, 9, 37, 41, 42, 44, 45] on the RHD

dataset. Following the criterion of PA-MPJPE, the predicted

3D pose are processed with procrustes analysis. The AUC

of CMR-PG and CMR-SG is 0.944 and 0.949, respectively,

surpassing all the other methods. In addition, we directly

use the FreiHAND models for RHD test, inducing compa-

rable AUC of 0.872 and 0.852. Hence, the cross-domain

generalization ability of CMR is verified.

In Table 6, we compare our method with several state-

of-the-art approaches on body mesh recovery task using the

Human3.6M and COCO datasets. Pose2Mesh [6] uses joint

coordinates as the input and its performance downgrades

slightly if the COCO dataset is added. As an RGB-to-

voxel method, I2L-MeshNet performs better when both the

Human3.6M and COCO datasets are used. By contrast,

our CMR is more robust to different choices of training

data and we achieve comparable or even better numbers of

MPJPE and PA-MPJPE. Moreover, our approach has faster

inference speed and consumes less GPU memory.

In Figure 1, we show several qualitative evaluation

results on the FreiHAND and Human3.6M datasets. As

demonstrated in this figure, our CMR can deal with a variety

of complex situations for camera-space mesh recovery, e.g.,

challenging poses, object occlusion, and truncation.

5. Conclusions and Future Work

In this work, we aim to recover 3D hand and human

mesh in camera-centered space and we present CMR to

unify tasks of root-relative mesh recovery and root recovery.

We first investigate 2D cues including 2D joint landmarks

and silhouette for 3D tasks. Then, an aggregation method

is proposed to collect effective 2D cues. Through aggre-

gation of joint semantics, high-level semantic relations are

explicitly captured, which is instructive for root-relative

mesh recovery. We also explore 2D information for root

recovery and design an adaptive 2D-1D registration to suffi-

ciently leverage 2D pose and silhouette to estimate absolute

camera-space information. Our CMR achieves state-of-the-

art performance on both mesh and root recovery tasks when

evaluated on FreiHAND, RHD, and Human3.6M datasets.

In the future, we plan to integrate 2D semantic infor-

mation together with biomechanical relationship for more

robust monocular 3D representation. We are also interested

in extending our CMR with a human/hand detector in a top-

down manner for multi-person tasks.
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