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Abstract

Object detection is an important computer vision task

with plenty of real-world applications; therefore, how to

enhance its robustness against adversarial attacks has

emerged as a crucial issue. However, most of the pre-

vious defense methods focused on the classification task

and had few analysis in the context of the object detection

task. In this work, to address the issue, we present a novel

class-aware robust adversarial training paradigm for the

object detection task. For a given image, the proposed ap-

proach generates an universal adversarial perturbation to

simultaneously attack all the occurred objects in the image

through jointly maximizing the respective loss for each ob-

ject. Meanwhile, instead of normalizing the total loss with

the number of objects, the proposed approach decomposes

the total loss into class-wise losses and normalizes each

class loss using the number of objects for the class. The

adversarial training based on the class weighted loss can

not only balances the influence of each class but also ef-

fectively and evenly improves the adversarial robustness of

trained models for all the object classes as compared with

the previous defense methods. Furthermore, with the re-

cent development of fast adversarial training, we provide a

fast version of the proposed algorithm which can be trained

faster than the traditional adversarial training while keep-

ing comparable performance. With extensive experiments

on the challenging PASCAL-VOC and MS-COCO datasets,

the evaluation results demonstrate that the proposed de-

fense methods can effectively enhance the robustness of the

object detection models.

1. Introduction

Due to the recent breakthroughs of deep learning, deep

learning-based approaches have achieved promising per-

formance for many computer vision tasks, such as object

recognition [8], [23], [7] and object detection [6]. How-

ever, researchers found there exists potential security issues
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Figure 1. Detection results after attacked by different adversar-

ial examples to the vanilla SSD model. (a) ground true, (b) we

craft the adversarial example through the 10-step PGD optimiza-

tion with the budget ǫ = 8 on the multi-task loss as described in

equation (1), (c) the detection result of the proposed class-wise

attack. These detection examples show the adversarial examples

generated by the proposed method can more evenly attack all the

objects occurred in the image than (b).

for deep learning-based approaches. Szegedy et al. [25]

first crafted adversarial examples by adding imperceptible

perturbations to the input images, which can easily fool the

deep learning-based classification models to generate unex-

pected outputs. From then on, many new attack methods,

including Fast Signed Gradient Method (FGSM) [5], Deep-

Fool [16], Projected Gradient Descent (PGD) [14], Carlini

and Wagner Attack (C&W) [1], have been proposed to pro-

duce various adversarial examples that further expose the

vulnerability of the deep learning classification models. On

the other hand, object detection is one of the most important

and active research fields for computer vision with plenty

of real-world applications. Unfortunately, as the classifica-

tion problem, it also suffers from the threat of these adver-

sarial attacks, such as the physical adversarial patch attack

to affect the steering behavior of self-driving cars [24] or

the detection results of a face detector [21]. However, as

compared with the development of attack methods, the de-

fense algorithms to improve the robustness of object detec-

tion models are relatively few.

In order to defend against these attacks, various meth-
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ods have been proposed to enhance the robustness of the
deep learning models, and one of the most effective defense
approaches is adversarial training [26]. In addition, for the
object detection task, the approaches can be roughly catego-
rized into two types: one-stage detector [13], [18] and two-
stage detector [4], [3], [19], and we focus on the one-stage
detector (i.e., single-shot object detector (SSD) [13]) due
to its faster detection speed and more complex nature than
the two-stage detector where the nature of the two-stage de-
tector is more similar with that of image classification task
(i.e., it also performs the classification and regression tasks
on the object proposals generated by the region proposal
network.). Although there exists algorithms [30] to enhance
the robustness of the one-stage detector, there are still some
unsolved problems: vanilla adversarial training using the
overall loss of one-stage object detector does not properly
take all the objects occurred in an image into consideration.
As shown in equation (1), the object detection loss of a spe-
cific object consists of a classification loss to identify the
object class and a regression loss for bounding box regres-
sion of the object. The total loss for all the occurred objects
in a given image can be written as follows:

L =
1

No

(

No
∑

i=1

lcls (Oi, {yi} , θ) + lreg (Oi, {bi} , θ)

)

(1)

where Oi presents i-th matched default box in the image,

No is the number of matched default boxes, lcls and lreg are

the losses of the classification branch and regression branch

respectively.

As shown in Figure 1 , not all of the detected objects

in an image by an object detector can be attacked success-

fully if we generate the adversarial examples directly using

the total loss described in the equation (1) since the sub-

loss for a specific object (i.e., the loss of a specific object

might go to infinity.) and a specific object class (i.e., in a

given image, there are more objects of a specific class than

other classes.) might dominate the overall loss value during

the generation process of adversarial examples. To address

these issues, we present a novel class-aware robust adver-

sarial training for the object detection task. For a given

image, the proposed approach generates an universal ad-

versarial perturbation to simultaneously attack all the oc-

curred objects in the image through jointly maximizing the

respective loss for each object. For the classification and

regression losses of each object, we clip each of them re-

spectively to avoid the situation that the specific object loss

dominates the overall loss. Meanwhile, instead of normal-

izing the total loss with the number of objects, the proposed

approach decomposes the total loss into class-wise losses

and normalizes each class loss using the number of objects

for the corresponding class to mitigate the situation that the

loss of a specific class dominates others. The adversarial

training based on the proposed class weighted loss can not

only balances the influence of each class but also effectively

and evenly improves adversarial robustness of trained mod-
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Figure 2. The framework of generating class-wise adversarial ex-

amples. In the process of class-wise adversarial generation, we

first separate task-oriented losses into object-wise losses and clip

each classification and regression loss of an object to force the

values of them in the same scale. Then, we generate perturbations

from the weighted class-wise loss. Finally, we add the class-wise

adversarial perturbations into clean images to generate the class-

wise adversarial images.

els for all the object classes as compared with the previous

defense methods. In addition, due to the high computational

cost of vanilla adversarial training, we also adopt the recent

developed fast adversarial training methods [20] into the

proposed approach to accelerate the training speed to suffice

the practical needs of real-world applications. With exten-

sive experiments on the challenging PASCAL VOC [2] and

MS-COCO [12] datasets, the evaluation results demonstrate

that the proposed defense methods can effectively enhance

the robustness of the object detection models. We summa-

rize the main contributions of our work as follows:

• We provide a systematic analysis and design several

efficient and effective adversarial training algorithms

for object detection, especially for the situations when

there are multiple objects from different classes ap-

pearing in a given image. The proposed approaches

can craft adversarial examples which can more evenly

attack all the objects occurred in an image than previ-

ous methods and help improve the adversarial robust-

ness of the trained model with adversarial training.

• We build the connection between the universal adver-

sarial perturbation in the context of image classifica-

tion and the object detection.

2. Related Works

Due to a large amount of related works in the literature,

we briefly review recent relevant works as follows.

2.1. Robustness of the Classification Models

For the adversarial attacks to the deep learning-based

models, Szegedy et al. [25] first presented a method to
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craft adversarial examples by performing one-step back-

propagation given a pretrained classification model, called

Fast Gradient Sign Method (FGSM) [5]. FGSM emphasizes

the significant impact on the direction of the gradient with

respect to the input image. To defend the FGSM attack, they

also proposed the adversarial training by using the adversar-

ial images generated by performing the FGSM approach to

train the original model. In this way, the worst-case error

with the perturbed data would be minimized. From then

on, various attacks and defense algorithms have been pre-

sented [9], [28] [16], [1], [17], [11], [26] for the classifica-

tion tasks. Projected Gradient Descent (PGD) is one of the

strongest “first-order adversary” attacks as shown in [14]

which repeats the optimization of the aforementioned sad-

dle point formulation several times to generate adversarial

examples. In addition, training using this min-max formu-

lation makes the learned model more robust toward adver-

sarial attacks.
Unlike “per-instance attack”, recently Seyed-Mohsen

Moosavi-Dezfooli et al. [15] proposed universal adversar-
ial perturbations and Shafahi et al. [28] proposed univer-
sal adversarial training. For these works, instead of finding
per-instance perturbations for each input image, they refor-
mulate the original optimization problem to craft a univer-
sal attack to multiple instances at a time across different
classes as shown in equation (2). Similarly, based on uni-
versal adversarial perturbation, they also proposed corre-
sponding universal adversarial training schemes as shown
in equation (3).

max
δ

L (θ, δ) =
1

N

N
∑

i=1

l (xi + δ, {yi} , θ) s.t. ‖δ‖p ≤ ǫ (2)

min
θ

max
‖δ‖p≤ǫ

L (θ, δ) =
1

N

N
∑

i=1

l (xi + δ, {yi} , θ) (3)

where l (·, ·, θ) represents the loss function of the train-
ing model, δ is the adversarial perturbation, and ‖δ‖p ≤ ǫ
denotes the ℓp-norm to prevent δ from growing too large.
Moreover, they use a “clipped” version of the loss function,

l (xi + δ, {yi} , θ) = min {l (xi + δ, {yi} , θ) , β} (4)

For the universal adversarial perturbation as shown in equa-

tion (4), Shafahi et al. constrained the loss value at most β
through the clipping operations to prevent the classification

loss of any single image from dominating the overall loss of

multiple images as shown in equation (2).

2.2. Adversarial Attack for Object Detection

Unlike image classification problem, object detection is

the task to detect the occurrence of semantic objects in an

image. There are two main categories: one-stage [18, 13]

and two-stage object detectors [4, 3, 6, 19]. The detec-

tion procedure of a two-stage object detector consists of two

steps: (1) the region proposal step and (2) the classification

and localization step. In this paper, we focus on one-stage

detectors which simultaneously predict the bounding boxes

and classify the anchors in a single inference, and the run-

ning speed is much faster than the two-stage ones in solving

real-world problems.

Recently, many adversarial attacks are developed for ob-

ject detection models, and most of them focus on attacking

the two-stage detectors. The first attack algorithm is DAG

proposed by Xie et al. [29], which specifies the adversarial

labels and use back-propagation to iteratively mislead the

predictions of the object detectors. Then, Li et al. [10] de-

signed RAP algorithm which combines the label loss and

shape loss to yield the adversarial perturbation and opti-

mizes the objective function with an iterative gradient based

method. Wei et al. [27] claimed these attack methods focus

on attacking the object proposal-based detector have two

limitations including weak transferability and high compu-

tation cost. Therefore, they proposed UEA to generate ad-

versarial examples using Generative Adversarial Network

(GAN) framework and combine with high-level class loss

and low-level feature loss.
Although many adversarial attacks have been developed

for object detection during the past few years, the defense
methods for object detection are rare. Zhang et al. [30] pro-
posed an adversarial training-based algorithm to enhance
the robustness of the one-stage detector. Their algorithm
decomposes the adversarial training into two task-oriented
domains: Scls for the classification branch and Sreg for the
regression branch of the object detection loss:

Scls ,

{

x
′
cls | arg max

x′

cls
∈Sx

lcls
(

x
′
cls, {yk} , θ

)

}

(5)

Sreg ,

{

x
′
reg | arg max

x′

reg∈Sx

lreg
(

x
′
reg, {bk} , θ

)

}

(6)

where x′
cls and x′

reg represent the adversarial ex-

amples generated from each task, Sx is defined as

Sx = {z | z ∈ B (x, ǫ) ∩ [0, 255]
n
} and B (x, ǫ) =

{z | ‖z − x‖∞ ≤ ǫ} denotes the ℓ∞-ball with the center as

the clean image x and the radius is the perturbation budget

ǫ.
Thus, they presented an adversarial training approach ac-

cording to the task-oriented domain constraint Scls ∪ Sreg

that generates adversarial examples respectively from the
object classification and bounding box regression tasks and
selects the one which maximizes the overall object detec-
tion loss as shown in equation (7).

min
θ

[

max
x′∈Scls∪Sreg

l
(

x
′
, {yk, bk} , θ

)

]

(7)

where x′ is the adversarial example x + δ generated from

the clean image x. Since the classification and regression

losses are considered independently, the generated adver-

sarial examples may not be able to effectively attack both

branches of the object detector.
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3. Methodology

To generate the adversarial examples which can effec-

tively and evenly fool the object detector to change the de-

tection results of all the occurred objects in an image, we

develop a novel class-aware robust adversarial training for

the object detection task. The proposed approach considers

heterogeneous (classification and regression tasks), multi-

ple (multiple objects), and balanced (multiple classes) class

losses to generate adversarial examples for a robust object

detector. The overview of the proposed framework for gen-

erating class-wise adversarial examples is shown in Figure 2

and the details of the proposed approach are described as

follows:

3.1. Multi­task Adversarial Training for Object De­
tection

To address the issues of adversarial training using the
overall object detection loss, we delve into the details of the
object detection loss. Different from the classification task
which only contain a single loss (e.g., cross entropy loss for
the classification task) to predict the results, the loss of the
one-stage detector consists of two different kinds of losses:
(1) the classification loss for predicting the category scores
and (2) the regression loss (e.g., smooth L1 loss) for predict-
ing the box offsets from the input images to detect objects.
Therefore, we have heterogeneous sources of losses from
the classification task and regression task for the generation
of adversarial examples and adversarial training. We can
define the following optimization problem for building the
multi-task adversarial training for object detection.

min
θ

max
‖δ‖p≤ǫ

L (θ, δ) = l̂cls (x+ δ, {y} , θ)

+ l̂reg (x+ δ, {b} , θ)

(8)

where l̂t∈{cls,reg} (·, {y, b} , θ) represents the confidence
loss and localization loss used for the one-stage detectors re-
spectively. Furthermore, the naive loss function as shown in
equation (1) suffers from a significant impact that each task-
oriented loss is unbounded, and one of the task-oriented
losses can be extremely large during the adversarial train-
ing process. In the worst case, the value of the loss might
go to infinity and dominate the overall object detection loss.
To address this issue, we propose a “clipped” version for
each task-oriented loss function,

l̂t∈{cls,reg} (x+ δ, {y} , θ) = min
{

l̂t (x+ δ, {y} , θ) , βt

}

(9)

As we have shown in equation (9), this method can not only

avoid the mutual interference between each task but also

prevent any task-oriented loss from dominating the overall

objective function for object detection by regularizing each

task-oriented loss values at most βt. In the experimental

result section, we will perform an ablation studies to show

the effect of clipping the loss with different thresholds, βt.

With this objective function, it will search an adversarial

perturbation which can jointly and effectively maximizes

both task-oriented losses for all the objects occurred in an

image.

3.2. Object­wise Adversarial Training for Object
Detection

Besides the task-oriented losses, we propose the sec-
ond objective function that further delves into the object
detection loss in the multiple object aspect by considering
the scenarios that there usually exist multiple objects in an
image for the object detection task. We thus propose the
object-wise adversarial training for object detection and for-
mulate this problem as a min-max optimization problem as
follows:

min
θ

max
‖δ‖p≤ǫ

L (θ, δ) =

No
∑

i=1

l̂
o
cls (Oi + δ, {yi} , θ)

+

No
∑

i=1

l̂
o
reg (Oi + δ, {bi} , θ)

(10)

As we discuss in the multi-task adversarial training, the
clipped version of the loss function would prevent the single
task-oriented loss function to dominate the overall training
loss. Since each task-oriented loss for a specific object (i.e.,
the loss of a specific object goes to infinity.) might domi-
nate the overall loss value during the generation process of
adversarial examples, we similarly propose a “clipped” ver-
sion for the proposed object-wise loss function as shown in
equation (11) which can bound the task-oriented losses of
each object at most βo. We can then generate the adversar-
ial perturbation for the multiple objects in an image using a
similar way as the universal adversarial attack proposed in
[28] for the attacks of multiple images in the classification
setting.

l̂
o
t∈{cls,reg} (Oi + δ, {yi} , θ) = min

{

l̂t (Oi + δ, {bi} , θ) , βo

}

(11)

3.3. Class­wise Adversarial Training for Object De­
tection

Furthermore, for the object detection task, it usually
not only contains multiple objects but various classes for
a given image. To prevent the loss of a specific object class
from dominating the overall object detection loss (i.e., in a
given image, there are more objects of a specific class than
other classes.), we propose the third objective function as
shown in equation (12). Instead of normalizing the total
loss with the number of objects, the proposed approach de-
composes the total loss into class-wise task-oriented losses
and normalizes each class loss using the number of objects
for the corresponding class in a given image. The adversar-
ial training based on the proposed class weighted loss can
effectively balances the influence of each class during ad-
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versarial training.

LC
′ =

1

C

C
∑

i=1

1

ni

ni
∑

j=1

l̂
o
cls (Oj , {yj} , θ) + l̂

o
reg (Oj , {bj} , θ)

(12)

where C is the number of classes in one image, nc is the

number of the matched default boxes in the class c.

3.4. Fast Adversarial Training for Object Detection

Since the proposed defense methods focus on the com-

plex object detection models, it requires much more com-

putational resources to train a model than those of an image

classification model, and the efficiency of the adversarial

training is a critical point to train a robust detector within

a reasonable amount of time and computational resources

for the real world applications. However, the high com-

putational cost of the iterative gradient back-propagation

of the PGD-based adversarial training makes it less prac-

tical. Shafahi et al. [20] recently proposed a fast adversar-

ial training algorithm which recycles the gradient informa-

tion to reduce the cost of generating adversarial examples

when updating the model parameters. With the fast adver-

sarial training, the training process could be 7 to 30 times

faster than the original adversarial training. We thus adopt it

into the proposed algorithm. Finally, the final version of the

proposed algorithm takes the heterogeneous tasks, multiple

objects, balanced class losses and fast training into con-

sideration, and the details of the proposed fast class-wise

adversarial training for object detection are summarized in

Algorithm 1. Due to limited space, we also refer the read-

ers to Appendix for more running time analysis for the fast

adversarial training.

Algorithm 1 Fast Class-wise Adversarial Training

Require: dataset D, training epoch Nep, perturbation

bound ǫ, learning rate γ
1: for epoch = 1, ..., Nep/m do

2: for minibatch B ∼ D do

3: for iter = 1 to m do

4: Compute gradient of loss with respect to δ
5: dδ ← Ex∈B

[

∇δLC
′ (θ, x+ δ)

]

6: Update θ with momentum stochastic gradient

7: gθ ← µgθ − Ex∈B [∇θL (θ, x+ δ)]
8: θ ← θ + γgθ
9: Update perturbation δ with gradient

10: δ ← δ + ǫsign (dδ)
11: Project δ to ℓp-ball

12: end for

13: end for

14: end for

4. Experimental Results

In this section, we first describe the experimental set-

tings and then show the evaluation results of the proposed

adversarial defense approaches for the object detectors on

the challenging PASCAL VOC [2] and MS-COCO [12]

datasets in the following sections.

4.1. Datasets and Evaluation Settings

For the PASCAL VOC dataset, we adopt the standard

“07+12” protocol, which contains a total of 16, 551 images,

40, 058 objects, and 20 classes for training. On the test-

ing phase, we use the test set of the PASCAL VOC 2007

dataset with a total of 4, 952 testing images. To evaluate

the performance of the object detector after adversarial at-

tacks, we compute the average precision (AP) for the cat-

egory of interest and the “mean average precision” (mAP)

for the overall performance. For the MS-COCO dataset, we

train the model using its training set in 2017 with a total

of 118, 287 images, and the number of object categories is

80. For testing, we evaluate the results using its validation

set in 2017 with a total of 5, 000 images. The mAP with

IoU threshold 0.5 is used for evaluating the robustness of a

detector.

In addition, we also introduce the algorithms for com-

parison in all the experiments as follows:

• STD: the object detector trained with natural training

using clean images.

• CLS1: the model trained using Acls for PGD-based ad-

versarial training.

• REG1: the model trained using Areg for PGD-based

adversarial training.

• MTD1/MTD-fast: the model that we trained with

our own implementation with normal/fast adversarial

training in [30] where we denote the generated adver-

sarial examples as multi-task domain attack (MDA).

• TOAT: the model trained with the proposed task-

oriented PGD-based adversarial training.

• OWAT: the model trained with the proposed object-

wise PGD-based adversarial training where we also

denote the generated adversarial examples as the

object-wise attack (OWA).

• CWAT: the model trained with the proposed class-wise

PGD-based adversarial training where we also denote

1Since the official implementation is not available, we re-implement it

with the same setting as presented in [30]. In addition, since the paper did

not describe the parameter, the number of steps for the PGD-based adver-

sarial training, we can only choose the one closest to their results as the

foundation of performance comparison, and we also present the original

result of CLS, REG, and MTD.
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Figure 3. The robustness of each model under attacks with ǫ = 8
from different number of steps in PASCAL VOC 2007 test set.

the generated adversarial examples as the class-wise

attack (CWA).

4.2. Implementation Details

We conduct experiments using the one-stage detectors,

SSD, with the VGG-16 network backbone as the main eval-

uation test bed where we use a modified version of the

VGG-16 with batch normalization layers. All the models

used in the experiments are fine-tuned from the pretrained

SSD model using the training set of the corresponding ob-

ject detection benchmarks and the SGD optimizer with an

initial learning rate, 10−2, momentum, 0.9, and weight de-

cay 0.0005 with the multi-box loss. The learning rates are

decayed at 16th and 20th epochs respectively with the de-

cay factor equal to 0.1. The resolution of the resized input

image is 300 × 300. The range of the pixel values is be-

tween [0, 255] and then shifted according to the mean of

pixel intensities of the whole dataset. For adversarial train-

ing, we use the budget ǫ = 8 to generate the adversarial ex-

amples as the inputs. To be more specific, we denote Acls as

the classification-task adversarial examples generated only

considering the overall classification loss and Areg as the

regression-task adversarial examples generated only con-

sidering the overall regression loss. For our fast PGD-based

adversarial training, we set m = 4. In addition, the SSD

and its adversarial robust version are also trained with the

online hard example mining strategy (OHEM) [22] to sam-

ple hard negative samples. We set βt = βo = 6 for all the

experiments in this paper.

4.3. Evaluation Results on Pascal VOC and MS­
COCO

In this subsection, we show the evaluation results on

both the Pascal VOC and MS-COCO datasets, where the

MS-COCO dataset is more close to the real-world object

detection scenarios and more challenging for testing on

the robustness of object detectors. The results of differ-

ent models under the PGD-10 attack with attack budget

ǫ = 8, and other attacks, including FGSM, CWA and

DAG2, are summarized in Table 1 and 2. We can find that

2We implement DAG algorithm into our one-stage models, the results

are similar with the UEA experiments.

attack clean
FGSM PGD-10

CWA DAG
Acls Areg Acls Areg

STD 0.752 0.162 0.25 0.012 0.043 0.006 0.291

CLS 0.467 0.309 0.343 0.236 0.334 - -

REG 0.519 0.263 0.344 0.146 0.279 - -

MTD-fast 0.466 0.311 0.418 0.221 0.351 0.182 0.486

TOAT-6 0.430 0.300 0.397 0.218 0.334 0.197 0.466

OWAT 0.518 0.327 0.434 0.229 0.372 0.203 0.504

CWAT 0.513 0.325 0.433 0.224 0.367 0.199 0.503

Table 1. The evaluation results of various adversarial trained SSD

model with the VGG16-BN backbone network under FGSM PGD-

10 attacks with ǫ = 8, CWA, and DAG in PASCAL VOC 2007 test

set.

attack clean
FGSM PGD-10

CWA
Acls Areg Acls Areg

STD 0.451 0.133 0.167 0.030 0.029 0.003

MTD1 0.190 0.127 0.146 0.110 0.135 0.082

MTD-fast 0.242 0.167 0.182 0.130 0.134 0.077

TOAT-6 0.182 0.120 0.148 0.098 0.123 0.074

OWAT 0.211 0.129 0.169 0.100 0.140 0.074

CWAT 0.237 0.168 0.189 0.142 0.155 0.092

Table 2. The adversarial robustness of each model using SSD

VGG16-BN model under FGSM, PGD-10, and CWA attacks with

ǫ = 8 in the MS-COCO test set.

for the Pascal VOC dataset, the proposed OWAT achieves

the best performance than other compared methods while

CWAT achieves comparable performance as compared with

OWAT. For the MS-COCO dataset, CWAT achieves the

highest performance under the PGD-10 adversarial attack

over MTD-fast, TOAT, and OWAT. As shown in Figure 4,

most of the images in the Pascal VOC contains much fewer

objects than the MS-COCO, especially in different classes.

Note that CWAT is less effective when the number of classes

in a single image is few. That is why CWAT just achieves

comparable performance to OWAT. The evaluations result

of the MS-COCO dataset confirms the CWAT could effec-

tively balance class loss to prevent the loss of a specific

class from dominating the overall object detection loss, es-

pecially when we focus on comparing the results of CWAT

and OWAT.

4.4. Ablation Study

4.4.1 Attack under Different Number of PGD Steps

and Different Budgets

To evaluate the performance of the proposed adversarial

training for object detection and compare with previous

methods, we first attack the models using the adversarial ex-

amples generated with different number of PGD steps. As

shown in Figure 3, the proposed OWAT and CWAT both

can enhance the robustness for these settings. With the

proposed CWAT, the performance can be significantly en-

hanced as compared with our implemented MTD-fast where
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Figure 4. The accumulation of number of objects and number of categories contained in an image, and the total results of the number of

images toward different compositions.

(a) ǫ = 0 (b) ǫ = 4 (c) ǫ = 8

Figure 5. The detection results of the class-wise adversarial attack

with PGD-10 in different ǫ, using the clean SSD as the targeted

model. White label, yellow label, magenta label, blue label, green

label, and black label represent classes of the dining table, chair,

potted plant, sofa, tv-monitor, and respectively. (The more detailed

qualitative and quantitative results can be found in Appendix.)

MTD [30] is the recent state-of-the-art adversarial training

method for object detection. In addition, by taking both

training time and the training settings of other related works

into consideration, we choose PGD-10 to generate the ad-

versarial examples for training. Moreover, we also evaluate

the robustness of models under different budgets as shown

in Figure 5. We also evaluate each model under the adver-

sarial attacks with different budgets, and we summarize the

results in Appendix.

4.5. The Impact of Different Thresholds βcls and
βreg in Multi­task Adversarial Training

To analyze the effect of the “clipping” parameters of βcls

and βreg , we further explore the proposed TOAT in different

clipping parameters as follows.

• TOAT-inf : the model trained using TOAT and with the

values of βcls and βreg set as∞.

• TOAT-i: the model trained using TOAT and with the

values of βcls and βreg as i.

• TOAT-k-l: the model trained using TOAT and with the

values of βcls as k and βreg as l.

As shown in Table 5, we can find that βcls and βreg have

important impacts on the adversarial robustness. As a re-

sult, the “clipping” parameters can prevent one of the task-

oriented losses from dominating by the other. To choose

the proper clipping thresholds, we first run two experiments

with same βcls and βreg called TOAT-i. For example, we

set βcls = βreg = 2 and βcls = βreg = 4 to analyze the

impact on different parameters. We can explore that TOAT-

2 has better performance defended against lreg attacks. On

the other hand, TOAT-4 has better performance defended

against lcls attacks. Therefore, if βcls and βreg are in differ-

ent settings and and balance both task-oriented losses, we

can optimize the adversarial training and get the better ro-

bustness. Therefore, we test TOAT with different βcls and

βreg called TOAT-k-l. After a simple testing process, we

choose the clipping parameters βcls = βreg = 6 as the final

set and implement it into the OWAT and CWAT models.

4.6. The Impact of Task­oriented Attack and Class­
wise Attack for Object Detection

As described in the methodology section, not all of

the objects in an image would be attacked successfully.

To analyze the potential influences between each object

in an image, we explore this impact by delving into the

object losses with adversarial attack in each class and by

comparing the clean SSD model with CWAT.
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Clean SSD OWAT SSD CWAT SSD

MDA OWA CWA MDA OWA CWA MDA OWA CWA

aeroplane 0.010 0.019 0.002 0.383 0.370 0.365 0.354 0.373 0.353

bicycle 0.024 0.092 0.001 0.354 0.365 0.357 0.334 0.340 0.338

bird 0.003 0.003 0.001 0.118 0.117 0.103 0.106 0.110 0.111

boat 0.006 0.001 0.000 0.186 0.174 0.126 0.165 0.161 0.116

bottle 0.037 0.019 0.001 0.101 0.101 0.099 0.101 0.102 0.100

bus 0.023 0.011 0.001 0.292 0.316 0.278 0.298 0.312 0.266

car 0.020 0.010 0.092 0.409 0.423 0.425 0.411 0.429 0.435

cat 0.000 0.001 0.000 0.148 0.162 0.100 0.146 0.157 0.087

chair 0.005 0.004 0.001 0.095 0.095 0.109 0.109 0.107 0.109

cow 0.000 0.002 0.000 0.054 0.050 0.058 0.089 0.069 0.033

diningtable 0.005 0.005 0.000 0.317 0.317 0.220 0.288 0.290 0.207

dog 0.003 0.000 0.000 0.080 0.083 0.071 0.116 0.125 0.093

horse 0.007 0.003 0.002 0.369 0.373 0.277 0.336 0.329 0.284

motorbike 0.002 0.003 0.002 0.317 0.328 0.277 0.301 0.317 0.265

person 0.035 0.012 0.016 0.317 0.317 0.311 0.314 0.319 0.316

pottedplant 0.007 0.091 0.000 0.099 0.097 0.095 0.096 0.096 0.094

sheep 0.001 0.012 0.001 0.144 0.150 0.161 0.173 0.156 0.149

sofa 0.001 0.000 0.000 0.155 0.174 0.134 0.156 0.160 0.142

train 0.018 0.002 0.001 0.315 0.321 0.259 0.251 0.262 0.248

tvmonitor 0.007 0.004 0.002 0.249 0.251 0.241 0.253 0.264 0.235

mAP 0.011 0.015 0.006 0.225 0.229 0.203 0.220 0.224 0.199

Table 3. The average precision of each category under different

PGD-10 attacks including MDA, OWA, and OWA with different

robust SSD models in PASCAL VOC 2007 test set.

The Robustness of Different SSD Models on Each

Category: To verify the effectiveness of the proposed

approaches and to improve the adversarial robustness for

each object class evenly, we show the per-class perfor-

mances after various adversarial attacks. As shown in

Table 3, the proposed approach significantly improves the

adversarial robustness for each class, which also proves the

effectiveness of our approach.

The Effectiveness of Different Attack Methods on

Each Category: To delve into the effectiveness of different

proposed attack methods, we can also figure out by the

per-class performances after defense these adversarial

attacks. As shown in Table 3, the MDA proposed by [30] is

similar to the proposed OWA in this paper. Additionally,

the proposed CWA is much more powerful than others,

which also proves our concept mentioned in the intro-

duction section that the class-wise adversarial attack can

attack each class in a balanced way. However, there are few

categories OWAT and CWAT will fail such as bicycle and

car. In our observation, the categories which will cause the

attack fail almost present as a large object in the images.

Due to the SSD limitation of the large scale detection, it

may cause the attack fail toward the large objects.

4.7. Evaluation using Different Network Architec­
ture

We also evaluate the SSD models using different back-

bone networks. In addition to the original VGG-16BN

backbone, we also use the SSD model with the ResNet-50

as a backbone from the implementation of ScratchDet [31].

As shown in Table 4, the proposed method can improve

the robustness of the SSD models significantly by 20% to

30% mAP across different backbone networks, demonstrat-

ing that the proposed CWAT can consistently improve the

attack clean
FGSM PGD-10

CWA DAG
Acls Areg Acls Areg

VGG16
STD 0.752 0.162 0.250 0.012 0.043 0.006 0.291

CWAT 0.513 0.324 0.433 0.222 0.366 0.199 0.503

ResNet50
STD 0.806 0.344 0.420 0.070 0.062 0.016 0.795

CWAT 0.483 0.318 0.401 0.244 0.340 0.250 0.482

Table 4. The robustness of different one-stage models including

SSD with different backbone networks under FGSM ,PGD-10, and

CWA attacks with ǫ = 8 in the PASCAL VOC 2007 test set.

attack clean
FGSM PGD-10

CWA DAG
Acls Areg Acls Areg

TOAT-inf 0.469 0.266 0.374 0.173 0.310 0.165 0.456

TOAT-2 0.535 0.302 0.408 0.191 0.297 0.132 0.502

TOAT-4 0.477 0.288 0.396 0.190 0.327 0.183 0.463

TOAT-6 0.430 0.300 0.397 0.218 0.334 0.197 0.466

TOAT-8 0.343 0.289 0.389 0.204 0.331 0.189 0.457

TOAT-2-4 0.512 0.304 0.388 0.211 0.292 0.131 0.487

TOAT-4-2 0.479 0.296 0.404 0.203 0.337 0.178 0.472

TOAT-2-6 0.529 0.325 0.403 0.226 0.302 0.146 0.503

TOAT-6-2 0.467 0.289 0.382 0.204 0.316 0.175 0.452

Table 5. The evaluation results of different clipping hyperparam-

eters of the proposed TOAT for the classification and regression

losses for the adversarially trained SSD model with the VGG16-

BN backbone network under FGSM PGD-10 attacks with ǫ = 8,

CWA, and DAG in PASCAL VOC 2007 test set.

adversarial robustness of the object detectors with different

backbone networks.

5. Conclusion

In this work, we present several robust adversarial

training for object detection. For a given image, the

proposed approach can generate an effective universal

adversarial perturbation to simultaneously attack all the

occurred objects in the image through jointly maximizing

the respective loss for each object. Additionally, the pro-

posed class-wise adversarial training for object detection

can not only balances the influence of each class but also

effectively and evenly improves adversarial robustness of

trained models for all the object classes as compared with

the previous defense methods. Meanwhile, with the recent

development of fast adversarial training, we provide a fast

version of the proposed algorithm, which can be trained

faster than the traditional adversarial training while keeping

performance comparable. With extensive experiments on

the challenging PASCAL-VOC and MS-COCO datasets,

the evaluation results demonstrate that the proposed de-

fense methods can effectively enhance the robustness of the

object detection models.
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