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Abstract

In recent years, convolutional neural networks (CNNs)

have become a prominent tool for texture recognition. The

key of existing CNN-based approaches is aggregating the

convolutional features into a robust yet discriminative de-

scription. This paper presents a novel feature aggregation

module called CLASS (Cross-Layer Aggregation of Statis-

tical Self-similarity) for texture recognition. We model the

CNN feature maps across different layers, as a dynamic pro-

cess which carries the statistical self-similarity (SSS), one

well-known property of texture, from input image along the

network depth dimension. The CLASS module characterizes

the cross-layer SSS using a soft histogram of local differen-

tial box-counting dimensions of cross-layer features. The

resulting descriptor encodes both cross-layer dynamics and

local SSS of input image, providing additional discrimina-

tion over the often-used global average pooling. Integrating

CLASS into a ResNet backbone, we develop CLASSNet, an

effective deep model for texture recognition, which shows

state-of-the-art performance in the experiments.

1. Introduction

Texture recognition is an important yet challenging prob-

lem in computer vision, with a broad spectrum of applica-

tions such as material classification [3, 6, 34], terrain recog-

nition [42] and microscopic image analysis [23]. Its impor-

tance comes from the ubiquitousness of texture in our visual

world as well as from the primal visual cue provided by tex-

ture. One main challenge in texture recognition arises from

the various yet contradicting characteristics of textures [12],

e.g., uniformity/deformability and regularity/randomness.

Such variable internal properties, together with the exter-
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nal distortions from environments, lead to large variability

in texture images which is difficult to resolve.

In recent years, deep learning with convolutional neu-

ral networks (CNNs) has emerged as a universal approach

for texture recognition; see e.g. [8, 15, 23, 28, 42, 44–46].

These approaches address the local variability and distor-

tion of texture by leveraging CNNs for learning effective

image features. However, as demonstrated in [8, 46], typi-

cal CNNs with fully-connected (FC) layers are not a good

choice for texture recognition. The reason is, convolutional

feature maps are spatially indexed and the FC layer acting

like a spatial transform does not remove the correlation to

spatial coordinates from its output. As a result, the output of

FC layers may be sensitive to the the transforms in spatial

domain, one main source of variability of textures.

In other words, CNN-based texture recognition requires

a feature aggregation module that can generate a distinct

description from convolutional features which is robust to

spatial transforms. While the robustness to spatial arrange-

ment can be easily achieved by simply accumulating spatial

features, e.g. global average pooling (GAP) [1, 10, 45], the

question is how to ensure and improve the discrimination

during aggregation. Recently, several feature aggregation

schemes for this purpose have been proposed; e.g. Fisher

vector [8] and feature encoding [42, 46]. They aggregate

features based on certain statics of a feature tensor.

In this work, we propose a novel yet effective aggrega-

tion module, named CLASS (Cross-Layer Aggregation of

Statistical Self-similarity), for CNN-based texture recogni-

tion. It differs from existing work in two aspects: utilization

of cross-layer statistics and explicit exploitation of statisti-

cal self-similarity (SSS).

1.1. Motivations and Main Idea

Cross-layer statistics A CNN builds up a hierarchical rep-

resentation of an image based on a series of convolutional

layers. The feature maps from one layer to the next encode

texture structures from a smaller to a larger scale. If we

treat the generation of feature maps of a texture image along

CNN layers as a dynamic evolution process, its characteris-
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tics of dynamics can provide useful clues for texture recog-

nition. It is shown in [25] that the evolution rule of texture

structure across scales is useful for recognition. However,

characterizing cross-layer dynamics of texture features is

non-trivial, e.g. which statistical quantities to use is a ques-

tion, and there is little related work on it. This inspired

us to investigate the exploitation of cross-layer statistics for

CNN-based texture recognition.

SSS in texture While texture contains different yet con-

tradicting properties, one consensus has been reached that

texture can be well modeled by a stochastic process with

statistical stationarity, and a texture image is a realization

of such a process with external distortions. The statistical

stationarity implies that each region on a texture image has

similar values in terms of certain statistics. This property

relates directly to SSS [26]: the patterns at different scales,

although not identical, are represented by the same statis-

tics. In the past, SSS has demonstrated its effectiveness in

characterizing textures, with applications to texture recogni-

tion, analysis and synthesis; see e.g. [2,30,36,38,40,41,47].

Despite its importance, SSS has not been explicitly utilized

in existing CNN-based texture recognition approaches.

Cross-layer SSS Wavelet transforms are a prominent tool

for exploiting the SSS of images. Many studies showed that

the SSS of an image is carried along and well expressed

in the wavelet representation [17, 37, 39], which exists not

only over space but also across scales. Indeed, CNNs have

deep relationships to wavelet transforms. For instance, the

hierarchical convolutional feature maps in a CNN can be

viewed as a generalization of the multi-scale representation

in the wavelet domain [10]. Bruna and Mallat [4] showed

that the wavelet scattering transform equals to an un-trained

CNN. Also, the max pooling is similar to taking local max-

imums in wavelet leader representation [39]. Therefore, if

we treat a CNN as a counterpart of wavelet transform, SSS

is likely to be carried from image domain along the feature

maps in the CNN. In other words, SSS occurs both spatially

and across layers in the CNN.

Inspired by above, we model the feature maps of a well-

learned CNN to have cross-layer SSS and construct the

CLASS module to exploit it for aggregation. Our basic idea

is illustrated in Fig. 1. The feature maps selected from dif-

ferent CNN layers are stacked as a feature tensor in order.

The cross-layer SSS is actually the one in the tensor along

the channel dimension. To exploit it locally, a sliding win-

dow is used to sample spatially-local and through-channel

blocks from the tensor. On each sampled block, we calcu-

late the so-called differential box-counting (DBC) dimen-

sion [33], a well-established quantity in fractal geometry

for characterizing SSS. The DBC views a feature tensor as

a hyper-surface and examines the number of boxes required

to cover the surface over different box scales. Then, the his-

togram of the DBC dimensions on all blocks is used as the

descriptor. See Sec. 4.2 for details.

…

feature map from 1st layer

feature map from 𝑻th layer

Figure 1. Illustration of basic idea of CLASS.

1.2. Contributions

Integrating the CLASS module into a ResNet backbone,

we propose CLASSNet, an effective deep network for tex-

ture recognition. Its effectiveness is demonstrated by exten-

sive experiments. To summarize, our main contributions in

this work are as follows.

Exploiting cross-layer statistics in feature aggregation

Different from most existing approaches (e.g. [1, 10, 15])

which aggregate convolutional features inside individual

layers, we propose to perform feature aggregation using a

cross-layer manner. This allows exploiting additional infor-

mation ignored by inner-layer feature aggregation. There

are some approaches (e.g. [44,45]) that merge feature maps

from different layers into a new one, on which feature ag-

gregation is performed. Different from these approaches,

the CLASS module directly calculates statistical quantities

across layers. Our work thus can inspire further studies on

cross-layer analysis for other image classification tasks.

Incorporating SSS and deep representations We exploit

SSS for feature aggregation in CNN-based texture recogni-

tion. While SSS is undoubtedly an essential property for

texture, it has not been explicitly exploited in existing deep-

learning-based approaches. In this paper, we show that the

measurement on SSS provides an effective tool for improv-

ing feature aggregation. This can inspire future studies on

combining SSS and deep CNNs for texture-related tasks.

Friendly SSS-based pooling The calculation of DBC di-

mensions and related computations in CLASS involve sev-

eral complicated operations. We provide an efficient imple-

mentation for it, which enables the module to be painlessly

ported onto and jointly trained with the backbone CNN in

an end-to-end manner (unlike [8]). This allows pre-trained

backbones to be transferred conveniently and effectively via

fine-tuning. In addition, like some recent pooling modules,

CLASS outputs a fixed-size descriptor for arbitrary-size in-

put, allowing CLASSNet to handle varying image sizes.

State-of-the-art (SOTA) performance Benefiting from

the effectiveness of the CLASS module, our CLASSNet

achieved SOTA results on several benchmark datasets.
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2. Related Work

Texture recognition is a long-standing problem and there

have been numerous studies on it. Interested readers are re-

ferred to [23] for a comprehensive survey. In the following,

we selectively review the works related to ours.

Handcrafted features for texture recognition In last two

decades, a number of traditional approaches model texture

by the global distribution of local primitives. Histogram of

textons (e.g. [6, 11, 20, 32, 48, 49]) and BoVW of texture

(e.g. [18, 19]) are two representative frameworks along this

line. Most of these approaches are concentrated on design-

ing local feature descriptors with robustness for local prim-

itive extraction, e.g. LBP [11, 24, 27], RIFT [18, 19], etc.

Then the global distribution is mainly encoded by the count

of primitive occurrences, such as histogram.

There are some studies exploring other global descrip-

tors. The VLAD [16] aggregates 1st-order statistics on the

accumulated differences between a local descriptor and its

correspondences. The FV [29] models the distribution of

local descriptors by mixture of Gaussian and encodes both

1st- and 2nd-order statistics on it. The MFS [40] employs

statistical quantities from fractal geometry.

CNN-based texture recognition There is an increasing

number of approaches leveraging CNNs as a powerful fea-

ture extractor for texture recognition. One pioneering work

can be traced back to Bruna and Mallat [4]. They proposed

the scattering transform implemented by a CNN for robust

texture classification. While enjoying invariance to certain

spatial transforms, their CNN is not learned but with fixed

weights, which cannot leverage the power of deep learning.

The seminal work using a learned CNN can be traced

back to Cimpoi et al. [8]. They demonstrated that a vanilla

CNN architecture with FC layers is ineffective for texture

recognition, as the CNN’s output is highly correlated to the

spatial order of pixels. Therefore, they applied FV [29] for

encoding the convolutional features on a pre-trained CNN.

Song et al. [35] attached learnable locally-connected layers

to the output of FV-CNN for feature refinement. Owing to

the complexity of FV, the weights of the pre-trained back-

bone CNN in these two approaches cannot be fine-tuned on

texture data for improvement.

To enable fine-tuning, Andrearczyk and Whelan [1] em-

ployed a simple GAP layer which averages the feature map

of each channel to obtain a spatially-orderless description.

The GAP is also used by Fujieda et al. [10]. They pro-

posed to improve the model expressibility by generalizing

intermediate CNN layers to perform wavelet-like spectral

analysis. The GAP may discard significant details as it sim-

ply accumulates spatial elements. To address this, Lin and

Maji [21] applied the bi-linear pooling [22] which captures

the 2nd-order relationship among channels. It calculates the

Kronecker product between a feature tensor and itself and

averages the results over spatial locations. Dai et al. [9]

proposed to combine bi-linear pooling with GAP via con-

catenation for improving discrimination.

The aforementioned pooling modules are non-learnable.

The DeepTEN proposed by Zhang et al. [46] ports the dic-

tionary learning and residual encoding pipeline on top of

convolutional layers, which allows learning inherent visual

vocabularies together with the CNN for adaptive pooling.

Bu et al. [5] proposed a locality-aware coding layer which

performs dictionary learning and feature encoding on con-

volutional features with considerations on their locality con-

straints. Xue et al. [42] combined DeepTEN and GAP, by

which local appearance and global context are simultane-

ously captured. The combination is done by applying bi-

linear pooling [22] to the features pooled from DeepTEN

and GAP. In their another work [43], differential angular

images are taken into account as additional input. Instead

of encoding a single convolutional layer, Hu et al. [15] pro-

posed to perform feature aggregation on different convo-

lutional blocks individually and fuse the results by an FC

layer. Their aggregation module is similar to Xue et al. [42].

Zhai et al. [45] proposed to learn visual attributes for

texture recognition. They constructed a model called MAP-

Net which uses a multi-branch architecture to progressively

learn visual texture attributes in a mutually reinforced man-

ner. A spatially-adaptive GAP is applied on each branch for

feature aggregation. In their later work [44], they proposed

a model called DSRNet with a dependency learning mod-

ule, which exploits the spatial dependency among texture

primitives for capturing structural information of texture.

SSS-based texture recognition There are many ap-

proaches recognizing textures based on SSS. Most of them

apply fractal analysis to characterizing SSS on input im-

ages. Xu et al. [40] calculated multi-fractal spectra on im-

age intensities and gradients. Varma and Garg [36] esti-

mated fractal dimensions on image patches for local de-

scription. Wendt et al. [38] applied multi-fractal analysis to

wavelet leader representations. Quan et al. [31] applied la-

cunarity analysis on LBPs. Badri et al. [2] combined multi-

fractal spectrum and scattering transform [4]. All these ap-

proaches are not based on deep learning.

3. DBC for SSS Characterization

The SSS implies that the patterns at different scales can

be represented by the same statistics. The DBC dimen-

sion [33] in fractal geometry is originally proposed for char-

acterizing the SSS in a 2D gray-scale image. Its basic idea

is viewing a gray-scale image as a 3D plane and examining

the number of 3D boxes required to cover the surface over

different box scales. See Fig. 2 for an illustration.

A gray-scale image I ∈ R
M×M is represented as a 3D

plane z = I(x, y). The xy-plane is partitioned into non-

overlapping grids of size of s × s pixels, where s ∈ Z+
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image surface𝑧 = 𝐼(𝑥, 𝑦)
box

𝑠

Least Squares Regression

𝑑DBC log1/𝑠

= 𝑁1# = 𝑁2#

= 𝑁3# = 𝑁𝑆#…

Figure 2. Illustration of DBC method.

varies from 1 to S (zero padding on I is used to ensure

M/s ∈ Z). Let gmax(i, j) and gmin(i, j) denote the max-

imum and minimum gray levels on the (i, j)th grid re-

spectively. Let ns(i, j) be the number of boxes of size

s × s × hs required to be placed one after another on the

(i, j)th grid to fill the image surface (i.e. gray-level varia-

tions) of that grid, where hs = sImax/M is the box height

and Imax = maxx,y I(x, y). Let Ns denote the number of

boxes required to fill the whole image surface at the box

scale s. Then ns and Ns can be directly calculated by

ns(i, j) = ⌈gmax(i, j)/hs⌉ − ⌈gmin(i, j)/hs⌉+ 1, (1)

Ns =
∑

i,j

ns(i, j). (2)

Note that ⌈gmax/hs⌉ and ⌈gmin/hs⌉ are the indices of the

boxes that contain the maximum and minimum gray lev-

els on the corresponding grid respectively. With estimated

Ns, ∀s, DBC applies linear least-squares regression to fit

the points {(log 1/s, logNs)}s into a line. The slope of that

line is defined as the DBC dimension of I and calculated by

∑
S

s=1
(S log Ns −

∑
S

s′=1
log Ns′ )(

∑
S

s′=1
log s′ − S log s)

∑
S

s=1
(S log s−

∑
S

s′=1
log s′)2

. (3)

DBC for 3D tensors In this work, we adapt DBC to pro-

cess 3D feature tensors instead of 2D images. The adaption

is straightforward. Consider a feature tensor P(x, y, z) ∈
R

M×N×T of spatial size M ×N and T channels, which is

represented by a 4D plane in terms of magnitude. Now the

partition is performed on the xyz-plane which results in 3D

grids of size s × s × s̄. Accordingly, the boxes are of size

s×s× s̄×hs, and gmax(x, y, z) and gmin(x, y, z) denote the

maximum and minimum magnitudes on the (x, y, z)th grid

respectively. Then we have

ns(i, j, k) = ⌈
gmax(i, j, k)

hs

⌉ − ⌈
gmin(i, j, k)

hs

⌉+ 1, (4)

Ns =
∑

i,j,k

ns(i, j, k). (5)

Then the DBC dimension is calculated based on (3),(4),(5).

4. CLASSNet

4.1. Architecture

The architecture of CLASSNet is illustrated in Fig. 3,

where we use ResNet [14] as the backbone. Briefly, ResNet

sequentially connects a series of residual blocks (RBs), a

GAP layer and an FC layer. Each RB is mainly composed

of several convolutional (Conv) layers and a skip connec-

tion. For convenience, we also refer to the 1st Conv layer as

the 1st RB. The CLASS module is placed on top of all RBs

and connected to the FC layer. It collects the feature tensor

output by each RB as input, and aggregates them into a sin-

gle description. The descriptions generated from CLASS

and GAP are then concatenated as the texture representa-

tion which is passed to the FC layer for classification. The

details on the CLASS module are given in the next.

4.2. The CLASS Module

There are four stages in CLASS: size normalization,

cross-layer grouping, DBC pooling, and aggregation,

Size normalization Suppose the total number of RBs is

T . Let Wt, t = 1, · · · , T ∈ R
Mt×Nt×Zt denote the fea-

ture tensor output by the tth RB, with varying spatial size

Mt ×Nt and varying channel number Zt over t. To facili-

tate subsequent processing, CLASS first normalizes {Wt}t
to the same size. This is done by applying 1 × 1 convolu-

tions that transform each tensor Wt to a Z-channel one and

then upsampling it to a fixed spatial size M × N using bi-

linear interpolation, where M = maxt Mt, N = maxt Nt.

The resulting equal-size feature tensors are denoted by Vt ∈
R

M×N×Z , t = 1, · · ·T .

Cross-layer grouping For the analysis along network lay-

ers, we construct Z feature tensors denoted by Uz, z =
1, · · · , Z, by reorganizing Vts as follows. Let V

z′

t ∈
R

M×N represent Vt(:, :, z
′) which is the feature map of the

z′th channel on the tth RB. The feature tensor Uz is then

defined by

Uz = [V z
1 ;V z

2 ; · · · ;V z
T ] ∈ R

M×N×T , ∀z, (6)

where [·; ·] denotes the concatenation along the 3rd dimen-

sion. In other words, we pick up one feature map from each

Vt in order and stack them into a new feature tensor.

DBC pooling Suppose SSS is carried from input image to

the intermediate feature maps across different RBs. Then

Uz is modeled as a volumetric representation with SSS,

where the SSS presents both spatially and across its channel

dimension. Considering the spatial homogeneity of texture,

we characterize the cross-layer statistics on spatially-local

and through-channel blocks. For this purpose, we resort to

the DBC method mentioned in Sec. 3, one effective tool for

measuring SSS in image data. Concretely, a sliding window

is applied to sampling 3D local patches of size 7×7×T . On
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Figure 3. Illustration of architecture of CLASSNet.

each sampled patch we apply the DBC analysis, by which

a DBC value is obtained on a local patch. With such op-

erations, the 3D tensor Uz is transformed to a 2D map de-

noted by Dz ∈ R
M×N . Then we have a feature tensor

D = [D1; · · · ;DZ ] ∈ R
M×N×Z of DBC values.

Concretely, given a sampled 3D patch P , we calculate its

DBC dimension using (3),(4),(5). To capture SSS across all

RBs, we fix the 3rd dimension of the boxes to s̄ = T , and

vary its 1st and 2nd dimensions: s ∈ [1, 4]. The box height

is set to hs = s
maxx,y,z P(x,y,z)

min(M,N) .

Aggregation Before aggregation, a series of 1× 1 convo-

lutions are applied to D for feature refinement, which gen-

erates L refined feature maps: Yℓ ∈ R
M×N , ℓ = 1 · · · , L

(L = 1, 4 for ResNet-18/50). On each Yℓ, we calculate

a soft histogram from it as follows. Let {βk ∈ R, k =
1, ...,K} denote a set of learnable bin centers (K = 8 in

our implementation). The soft histogram is calculated via

applying softmax to the residual error vector [(Y (x, y) −
β1)

2, · · · , (Y (x, y)− βK)2]:

h
(ℓ)
0 (k) =

M,N∑

i,j

exp(−s2k(Y (x, y)− βk)
2)

∑K

k′=1 exp(−s2k′(Y (x, y)− βk′)2)
, (7)

for all k, where {sk ∈ R}Kk=1 is a set of scaling factors

learned together with {βk}k. It can be seen that the soft his-

togram counts the contribution of Y (x, y) to the bin of βk

according to their ℓ2 residual error in a soft manner. For im-

provement, we also calculate soft histograms h
(ℓ)
1 , · · · ,h

(ℓ)
4

on 4 uniformly-divided regions of Yℓ and concatenate them

as h
(ℓ) = [h

(ℓ)
0 , · · · ,h

(ℓ)
4 ]. The bin centers are shared in

h
(ℓ) but individual across different ℓ. Finally the CLASS

outputs h = [h(1), · · · ,h(L)].

4.3. Implementation and Training

At first glance, the CLASS module involves some seem-

ingly complicated operations. However, it can be effec-

tively implemented by the basic operations in deep net-

works supported by existing deep learning platform, so that

the associated CLASSNet can be effectively trained. Re-

call that the main computations involved in CLASS include

(3)∼(7). The implementation of (3),(5),(6) is straightfor-

ward. The computation of (4) involves gmax, gmin, i.e. taking

maximum/minimum values across local blocks with differ-

ent block sizes, which can be implemented by 3D max/min

pooling with varying pooling sizes. The computation of (7)

can be done using softmax activation.

There are not many additional trainable parameters in-

troduced by CLASS, which just include the weights of the

convolutional layers for size normalization and that for gen-

erating Yℓ from Dzs in DBC pooling, as well as the learn-

able bin centers and scaling factors in soft histogram aggre-

gation. These parameters are jointly trained with those of

the ResNet backbone, using the KL-divergence loss with a

fixed number of epochs.
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Figure 4. Samples images from six datasets.

5. Experiments

5.1. Datasets

Six benchmark datasets are used for evaluation, whose

characteristics are summarized as follows. (a) Ground Ter-

rain in Outdoor Scenes (GTOS) [43] is a dataset of outdoor

ground materials with 40 categories, with a training/testing

split given. (b) GTOS-Mobile [42] is a dataset collected

from GTOS via mobile phone, which consists of 100011
material samples from 31 categories. (c) Materials in Con-

text 2500 (MINC-2500) [3] is a dataset of 23 material cat-

egories, each of which contains 2500 images. It provides

five training/test splits. (d) KTH-TIPS2b [6] is a dataset

composed of 4752 images from 11 material categories. (e)

Describable Texture Dataset (DTD) [7] contains 47 cate-

gories of wild textures, with 120 images per category. It

provides 10 preset splits into equally-size training, valida-

tion and test sets. (f) Flickr Material Dataset (FMD) [34] is

composed of 10 different material categories, with 100 im-

ages each category. These datasets cover a broad spectrum

of textures. See Fig. 4 for some examples.

Our experimental evaluation mainly follows [44,46]. We

use the provided splits on GTOS and MINC-2500, and the

splits as [44] for DTD. As for KTH-TIPS2b and FMD,

each dataset is randomly divided into 10 splits with rec-

ommended split size, and the mean accuracy across splits

are recorded. We report the result in the form of “mean ±
s.t.d.%”. The results on DTD, FMD, KTH-TIPS2b, MINC-

2500 and GTOS are based on 5-time statistics, and the re-

sults on GTOS-Mobile are averaged over 2 runs.

5.2. Implementation Details

Our model is implemented with PyTorch and run on a

single RTX Titan GPU. On GTOS-Mobile, it takes around

0.51 hours per epoch during training and 0.01 seconds to

test an image. Following existing work, the ResNet18 and

ResNet50 [14] are used as the backbone network respec-

tively. The SGD optimizer with momentum of 0.9 is used

for training, and the batch size is set to 32. The learning

rate with cosine decay is initialized to 2× 10−3 for GTOS-

Mobile and 1 × 10−3 for other datasets. The training is

finished after 30 epochs. The ResNet backbone is initial-

ized with pre-trained models. Other network parameters

are initialized by the default Kaiming [13]. Following exist-

ing literature (e.g. [42, 46]), all images in training and test

are resized to 256 × 256 and then cropped to 224 × 224.

Horizontal flipping with probability 0.5 is applied to input

images for data augmentation in training.

5.3. Comparison against State­of­the­arts

We select 11 CNN-based texture recognition approaches

in recent years for performance comparison, including FC-

CNN [8], FV-CNN [8], BP-CNN [21], LFV [35], FA-

SON [9], DeepTEN [46], DEPNet [42], LSCNet [5], MAP-

Net [45], DSR [44] and HistNet [28]. The classification re-

sults of these approaches on all six datasets are summarized

in Tab. 1. The results are quoted from existing literature

(mainly from [44]) whenever possible, or left blank other-

wise. The best results using ResNet18 and ResNet50 are

distinguished by different colors.

Results using ResNet18 backbone Using ResNet18, our

CLASSNet performs the best on all the benchmark datasets

in terms of mean classification accuracy, while the s.t.d. re-

sults are comparable to other models. Particularly, com-

pared to the second best performer, it shows noticeable im-

provement of more than 3% accuracy on KTH and GTOS,

and of around 1.6% accuracy on GTOS-Mobile. Such re-

sults have demonstrated the power of CLASSNet.

Results using ResNet50 backbone Overall, the compet-

itiveness of CLASSNet using ResNet50 is not as high as

that using ResNet18, but CLASSNet is still very compet-

itive. As the best performer on KTH, FMD, MINC and

GTOS, CLASSNet shows noticeable advantages on KTH

and MINC and is slightly better than DSR on FMD and

GTOS. It performs worse than DSRNet and MAPNet on

DTD and GTOS-Mobile. Recall that the feature maps

along network depth are converted into a new feature ten-

sor before DBC pooling in our method. The number of
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Table 1. Performance comparison of different methods in terms of classification accuracy (%). The best result on each dataset is marked in

red/blue for ResNet18 and ResNet50 respectively.

Method Source Backbone

DTD KTH FMD MINC GTOS GTOS-Mobile

mean std mean std mean std mean std mean std mean std

FC-CNN CVPR15 VGGVD 62.9 0.8 81.8 2.5 77.4 1.8 - - - - - -
FV-CNN CVPR15 VGGVD 72.3 1.0 75.4 1.5 79.8 1.8 - - 77.1 - - -
BP-CNN CVPR16 VGGVD 69.6 0.7 75.1 2.8 77.8 1.9 - - - - - -
BP-CNN CVPR16 ResNet18 - - - - - - - - - - 75.43 -

LFV ICCV17 VGGVD 73.8 1.0 82.6 2.6 82.1 1.9 - - - - - -
FASON CVPR17 VGGVD 72.3 0.6 76.5 2.3 - - - - - - - -

DeepTEN CVPR17 ResNet18 - - - - - - - - - - 76.12 -
DeepTEN CVPR17 ResNet50 69.6 - 82.0 3.3 80.2 0.9 81.3 - 84.5 2.9 - -
DEPNet CVPR18 ResNet18 - - - - - - - - - 82.18 -
DEPNet CVPR18 ResNet50 73.2 - - - - - 82.0 - - - - -
LSCNet PR19 VGG16 71.1 - 76.9 - 82.4 - - - - - - -
LSCNet PR19 ResNet18 - - - - 76.3 - - - - - - -
LSCNet PR19 ResNet50 - - - - 81.2 - - - - - - -
MAPNet ICCV19 VGGVD 74.1 0.6 82.7 1.5 82.9 0.9 - - 80.8 2.5 82.00 1.6
MAPNet ICCV19 ResNet18 69.5 0.8 80.9 1.8 80.8 1.0 - - 80.3 2.6 82.98 1.6
MAPNet ICCV19 ResNet50 76.1 0.6 84.5 1.3 85.2 0.7 - - 84.7 2.2 86.64 1.5
DSRNet CVPR20 VGGVD 74.9 0.7 83.5 1.5 84.0 0.8 - - 81.8 2.2 82.94 1.6
DSRNet CVPR20 ResNet18 71.2 0.7 81.8 1.6 81.3 0.8 - - 81.0 2.1 83.65 1.5
DSRNet CVPR20 ResNet50 77.6 0.6 85.9 1.3 86.0 0.8 - - 85.3 2.0 87.03 1.5
HistNet ArXiv20 ResNet18 - - - - - - - - - - 79.75 0.8
HistNet ArXiv20 ResNet50 72.0 1.2 - - - - 82.4 0.3 - - - -

CLASSNet (Ours) ResNet18 71.5 0.4 85.4 1.1 82.5 0.7 80.5 0.6 84.3 2.2 85.25 1.3
CLASSNet (Ours) ResNet50 74.0 0.5 87.7 1.3 86.2 0.9 84.0 0.6 85.6 2.2 85.69 1.4

channels in the new tensor is the same for the ResNet18

and ResNet50 backbones. Such a fixed channel number

makes our model hard to utilize all benefits brought by the

deeper structure of ResNet50 over ResNet18. Thus, the

performance improvement on ResNet50 is not as high as

ResNet18, but the result remains SOTA.

Overall comparison In comparison to DSRNet, the top

performer in other methods, CLASSNet performs better

across all datasets when fixing backbones to ResNet18, and

it shows advantages on 4/6 datasets when using ResNet50.

Such results indicate that the CLASS module works partic-

ularly well for lighter-weight backbones, and sees its values

particularly in the scenarios where a lighter-weight model

is preferred due to limitations of computational resources.

Indeed, DSRNet and CLASSNet encode texture from dif-

ferent aspects: spatial dependency vs. cross-layer SSS,

which can be combined. Three closely-related methods to

ours are DeepTEN, DEPNet and HistNet. They all exploit

histograms of local features but without considering cross-

layer statistics. The superior performance of CLASSNet to

them indicates the benefits of CLASS.

Model complexity comparison In addition to classifica-

tion accuracy, we also compare the methods in terms of (a)

model size measured by the number of model parameters;

and (b) efficiency measured by the floating-point operations

per second of the model. See Tab. 2 for the comparison with

DeepTEN and DEPNet. The complexity of our model is

comparable to others in terms of both criteria.

Table 2. Complexity comparison of different models in terms of

number of model parameters (#Params) and floating-point opera-

tions per second (FLOPs).

Model
#Params (≈, M) FLOPs (≈, G)

ResNet18 ResNet50 RestNet18 ResNet50

Backbone 11.19 23.57 1.82 4.11
DeepTEN 11.37 23.90 1.82 4.12
DEPNet 12.01 25.56 1.82 4.11

CLASSNet 11.23 23.70 1.83 4.14

5.4. Ablation Studies

We conduct the following ablation studies for analyzing

the effectiveness of CLASS in CLASSNet. We generate a

baseline model from CLASSNet by removing its CLASS

module, which is denoted by ’w/o CLASS’. To further ver-

ify the effectiveness of the SSS-based statistics, we replace

the DBC dimension calculation step on each sampled 3D

local block, with a simple global averaging pooling opera-

tion. In other words, we only use mean for the cross-layer

statistics, rather than the DBC-based SSS statistics. The re-

sulting baseline model is denoted by ’DBC→Mean’. These

two baseline models are trained with the same scheme as

ours. Their results using ResNet18 backbone on GTOS-

Mobile and MINC are listed in Tab. 3 for comparison.
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(a) ’w/o CLASS’ (ResNet18) (b) ’w/o CLASS’ (ResNet50) (c) CLASSNet (ResNet18) (d) CLASSNet (ResNet50)

Figure 5. Confusion matrices of several models on GTOS-Mobile.

It can be seen that the decrease of performance caused

by the removal of CLASS module is noticeable on both

datasets. This suggests that the cross-layer SSS encoded by

our CLASS module does provide additional discriminabil-

ity to the CNN-based texture representation. We can also

see that ’DBC→Mean’ performs moderately better than

’w/o CLASS’. This result indicates that cross-layer statis-

tics do benefit texture recognition. However, its results are

still worse than original CLASSNet. The reason is proba-

bly that, the simple mean cannot capture essential proper-

ties of texture and thus the resulting texture representation

is insufficiently discriminative. In comparison, CLASSNet

employs DBC-based statistics to characterize SSS, one es-

sential property of texture, leading to better results.

Table 3. Performance comparison of CLASSNet and baselines in

terms of classification accuracy (%) in ablation studies. ResNet18

is used as the backbone.

Dataset w/o CLASS DBC →Mean CLASSNet

GTOS-Mobile 81.91 ± 1.5 83.43 ± 2.0 85.25 ± 1.3
MINC-2500 77.98 ± 0.5 78.63 ± 0.4 80.50 ± 0.6

5.5. Confusion Analysis

To examine the behavior of CLASSNet on individual

categories, we calculate its confusion matrices on GTOS-

Mobie using ResNet18 and ResNet50 backbones respec-

tively, and show them in Fig. 5. We also include the base-

line ’w/o CLASS’ for comparison. It can be seen that the

confusion matrices of CLASSNet are more diagonally con-

centrated and cleaner than those of ’w/o CLASS’. Many

confusing categories for ’w/o CLASS’ can be well dis-

tinguished in CLASSNet. This suggests that CLASSNet

can generate texture descriptions with stronger robustness

and higher discrimination. Comparing the two confusion

matrices of CLASSNet, we can see that CLASSNet with

ResNet50 shows slight improvement on some confusing

categories for CLASSNet with ResNet18, e.g. Sand versus

Cement; and it also brings more confusion on some classes,

e.g. Paper versus Large Limestone. Some confusing cases

for CLASSNet with ResNet18 are shown in Fig. 6, where

each confusing image pair has quite similar appearance and

their SSS is similar as well. It is not surprising that CLASS-

Net is not good at handing these cases.

Paper Sand Small limestone Soil Stone brick

Large limestone Cement Pebble Root Asphalt

Figure 6. Confusing cases of CLASSNet on GTOS-Mobile. Top:

samples from the class c∗ of the worst accuracy. Bottom: samples

from the class where most samples in c
∗ are incorrectly predicted.

5.6. More Results

See supplementary materials for additional results.

6. Summary

The special characteristics of texture differ from those of

general visual data and make texture recognition become a

fundamental, longstanding yet challenging problem in com-

puter vision. This paper proposed an effective CNN-based

approach that exploits cross-layer SSS for texture recogni-

tion. It exploited the cross-layer dynamics of feature maps

and made use of SSS-related statistics for improving the

discrimination in aggregating CNN features. The charac-

terization of cross-layer SSS is done by the CLASS mod-

ule which calculates DBC-based descriptions on cross-layer

feature maps. Since cross-layer SSS helps to reveal the un-

derlying process of texture, the texture representation gen-

erated by the CLASS module is effective for classification.

Equipped with CLASS, the CLASSNet achieved SOTA re-

sults in the experiments. Cross-layer SSS may benefit other

applications, and it will be studied in our future work.
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