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Abstract

This paper tackles the task of Few-Shot Video Object

Segmentation (FSVOS), i.e., segmenting objects in the query

videos with certain class specified in a few labeled support

images. The key is to model the relationship between the

query videos and the support images for propagating the

object information. This is a many-to-many problem and

often relies on full-rank attention, which is computationally

intensive. In this paper, we propose a novel Domain Agent

Network (DAN), breaking down the full-rank attention into

two smaller ones. We consider one single frame of the query

video as the domain agent, bridging between the support

images and the query video. Our DAN allows a linear space

and time complexity as opposed to the original quadratic

form with no loss of performance. In addition, we introduce

a learning strategy by combining meta-learning with on-

line learning to further improve the segmentation accuracy.

We build a FSVOS benchmark on the Youtube-VIS dataset

and conduct experiments to demonstrate that our method

outperforms baselines on both computational cost and ac-

curacy, achieving the state-of-the-art performance. Code is

available at https://github.com/scutpaul/DANet.

1. Introduction

With the number of online videos increasing rapidly,

Video Object Segmentation (VOS) attracts more and more

attention as an important step to various video applications,

such as video retrieval and editing [52]. Based on the user

interaction, existing VOS algorithms have two common set-

tings: unsupervised VOS and semi-supervised VOS. As

shown in Fig. 1, unsupervised VOS [1, 17, 47, 13, 19, 23]

directly segments primary objects in the videos without any

human intervention. The objects often localize in salient

regions. In contrast, semi-supervised VOS [2, 39, 5, 27]
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Figure 1: Problem settings for different VOS tasks. (a)

Unsupervised VOS segments salient objects without guid-

ance. (b) Semi-supervised VOS segments specified objects

in a video given the segmentation mask for the first frame.

(c) Few-shot VOS segments objects across videos with the

same category as objects in the labeled support set.

gives the ground truth segmentation of the first frame and

propagates the labeled object information into subsequent

frames. However, it requires pixel-level annotation of the

first frame for each individual video, which limits the scal-

ability for processing massive amount of videos. While in-

teractive VOS [28, 11] further reduces the required human

efforts to a few strokes, the provided information may be too

coarse for cross-frame segmentation. To trade-off between
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semantics-aware segmentation and cross-video processing,

recent studies [16, 32, 34] leverage new interactions such as

natural languages and class labels.

In this paper, we target on Few-Shot Video Object Seg-

mentation (FSVOS), which is still under explored. FSVOS

aims to segment new object classes across query videos

with only a few annotated support images (Fig. 1). The

support images can be selected randomly outside the query

videos. FSVOS is able to balance between semantics-aware

segmentation and cross-video processing, meeting the de-

mand of applications with surging online videos in real

case.

The key to solving FSVOS is using labeled support im-

ages for guiding the semantics-aware segmentation. Con-

structing correlation among support images and query

videos is a many-to-many problem. There are two major so-

lutions in recent studies, as shown in Fig. 2. The prototype-

based [7, 25, 50] methods convert it into a one-to-many

problem by extracting a class prototype (i.e., a global de-

scriptor) from the support images, which inevitably loses

structural information of the support images. The attention-

based [40, 55, 27, 43] methods fully utilize the labeled sup-

port images and learn a many-to-many attention between

every support-query image pairs. However, the computa-

tional complexity grows exponentially as the number of in-

put images grows.

After delving deep into many-to-many attention, we find

that the attention can be decomposed to reduce compu-

tational cost and thus introduce the following hypothesis.

Given a query q and a pair of key-value k-v, we obtain the

attention feature vA using the typical attention function:

vA = Attention(q, k, v) = Av = σ(
q(k)T√

Ck

)v, (1)

where A is the attention matrix, and σ is a softmax opera-

tion. A scale factor of 1√
Ck

is to maintain the stability of the

numerical scale.

Attention Decomposition Hypothesis. We hypothesize

that the original attention matrix can be replaced with a

product of two smaller attention matrices through an agent

t. The new attention matrix Â is expressed as:

Â = AqtAtk, (2)

where Aqt is the attention between the query q and the agent

t, and Atk is the attention between the agent t and the key

k, defined as:

Aqt = σ(
q(kt)T√

Ck

);Atk = σ(
qt(k)T√

Ck

). (3)

We provide a theoretical support for the above hypoth-

esis, and propose a novel Domain Agent Network (DAN)

accordingly. We treat a single frame of the query video as

Prototype-based Attention-based Our DAN

Domain
agent

A global
descriptor

Figure 2: Different solutions for solving many-to-many

problem. Orange circles represent the support images, and

blue circles represent the query frames. The prototype-

based methods covert it into a one-to-many problem by ex-

tracting a global descriptor from the support images. The

attention-based methods use a full-rank attention to learn

many-to-many mapping. Our Domain Agent Attention de-

composes the full-rank attention using a domain agent.

the agent for this video domain. Our method is possible to

convert the previous exponential growth of computational

complexity into a linear one. Due to the addition of invisible

channel attention to enhance the query features, our atten-

tion module shows better results than the full-rank attention

in both theoretical and practical analyses.

Furthermore, we propose a learning strategy for FSVOS

by combining meta-learning with online learning. We use

meta-learning in the training phase to learn generic object

segmentation across categories. While in the testing phase,

we use online learning to update the feature representation

for the unseen category. We construct a new benchmark for

FSVOS based on the Youtube-VIS dataset. We demonstrate

the feasibility of our method through ablation studies and

compare its performance with several few-shot semantic

segmentation methods. Experimental results show that our

proposed method outperforms existing methods in terms of

both segmentation accuracy and computational cost.

The main contributions of this work are fourfold.

• We delve into the conventional many-to-many atten-

tion and prove that the original attention matrix can be

replaced by the product of two smaller attention matri-

ces bridged by an agent.

• We work on an under-explored task called few-shot

video object segmentation, and propose a novel do-

main agent network based on theoretical support, bal-

ancing the accuracy, computational burden, and speed.

• We present a learning strategy that combines meta-

learning and online learning to improve the general-

ization ability of segmentation and category-specific

feature representations.

• We build up the fist FSVOS benchmark and compare

our model with existing methods to show its efficiency

over both accuracy and the computational cost.
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2. Related Work

2.1. Video Object Segmentation

Traditional unsupervised VOS methods rely on heuris-

tic rules, such as point trajectories [1, 8, 26], object pro-

posals [17, 18], and saliency [47] to segment the primary

objects in the video. With the development of the deep

learning and appearance of large-scale annotated video

dataset [30], many works [13, 38, 19, 35, 23, 57] learn to

segment from the labeled data under the zero-shot setting,

i.e., segmenting objects without human supervision during

test time. Recently, Lu et al. [24] propose a method for VOS

by learning from unlabeled videos.

Caelles et al. [2] is the first work on semi-supervised

VOS, learning to propagate the labeled object in the first

frame into the subsequent frames for the query video. The

propagation-based methods [5, 39, 49] use the consistency

of the object motion for learning, while the matching-based

methods [53, 54, 46] use different approaches to find the

best correspondence between the first frame and the query

frame for propagation. Besides, other methods use the

memory network [27, 22] to store the features of the previ-

ous frames for a video, which helps to segment object over

time. Furthermore, works in [16, 32, 34] utilize weakly-

supervised information, such as natural language and class

labels, to segment objects across videos.

2.2. Fewshot Semantic Segmentation

Few-shot semantic segmentation aims to learn segmen-

tation for the novel class only from a few examples. Sha-

ban et al.[33] propose a two-branch network consisting of

the conditioning branch and the segmentation branch. The

feature extracted from the support images by the condition-

ing branch guides the segmentation of the query images on

the segmentation branch. Some methods [7, 25, 44, 50] are

based on the idea of prototype from metric learning to solve

the problem. Recent works [55, 43] leverage the graph at-

tention operation to obtain the attention feature for guiding

the segmentation. Besides, Tian et al.[37] propose to adap-

tively enhance the query features with training-free prior

mask to overcome improper usage of high-level informa-

tion from training classes.

2.3. Manytomany Attention

Attention mechanisms have recently received much re-

search attention due to the excellent performance. Many-

to-many attention is applied in many tasks depending on the

use of query and key. Vaswani et al. [40] propose to learn

self-attention in the feature space. The memory-based VOS

methods [27, 32] leverage the many-to-many attention to

learn the guidance information from the memory features to

the query features. The graph attention methods [41, 55, 43]

learn a graph matching attention by modeling the input im-

ages as a dichotomous graph. However, directly using these

full-rank attentions in FSVOS suffers from expensive com-

putational cost, especially when the number of processing

images increases. We instead introduce a method to decom-

pose the full-rank attention with the theoretical guarantee.

2.4. Online Learning

Some methods [2, 42, 29, 20] apply online learning to

solve semi-supervised VOS problem for improving perfor-

mance during the test time. However, it is time-consuming

to learn a video-specific representation. Our framework also

uses online training to improve performance. The differ-

ence from the previous methods is that we fine-tune on each

unseen category instead of each video.

3. Theoretical Support for the Hypothesis

Before introducing our domain agent network, we first

provide a proof for the attention decomposition hypothesis

discussed in the Introduction.

The regular attention [40] is a kind of dot-then-

exponentiate function K(x, y) = exp(xy), and the softmax

function can be seen as adding the normalization into this

non-linear kernel function K(x, y). For a period of time,

the studies [31, 15, 9] in approximating non-linear kernels,

convert the problem to find the mapping function ϕ as:

K(x, y) = E[ϕ(x)ϕ(y)]. (4)

Recently, the study [4] proposes to use the random

feature map [31] for building the map estimator for the

softmax-kernel. More concretely, it has been proven that

a positive random feature mapping function can be used to

approximate the softmax-kernel function without bias, ex-

pressed as follows:

ϕ(x) =
1√
m
exp(−‖x‖2

2
)(exp(ωT

1
x), ..., exp(ωT

mx)),

(5)

where deterministic vectors ω1, .., ωm
iid∼ N (0, IC) are ran-

domly sampled. These randomly sampled vectors are used

to map the original features x ∈ R
C from C-dimension into

a m-dimensional space, where the computed inner prod-

uct of ϕ(x) ∈ R
m and ϕ(y) ∈ R

m can approximate the

softmax-kernel SM(x, y).
We adapt the above function of Eq. 4 to decompose the

full-rank attention matrix into the following form:

A = σ(
q(k)T√

Ck

) = E[q′(k′)T], (6)

where q′, k′ ∈ R
L×m are composed of rows ϕ(qTi )

T,

ϕ(kTi )
T respectively.

In the same way, we can approximate the two attention

matrices of Eq. 3 as:

Aqt = E[q′((kt)′)T];Atk = E[(qt)′(k′)T], (7)
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Figure 3: The architecture of our Domain Agent Network. The core of our DAN is the domain agent attention module

highlighted in the red box. We decompose the full-rank attention into the product of two smaller ones, connected by an

agent. Our DAN enables more efficient computation for the FSVOS task.

where the ϕ use the same deterministic vectors. After that,

we can restate the replaced matrix in Eq. (2) to the follow-

ing:

Â = E[q′((kt)′)T(qt)′(k′)T]. (8)

According to the associativity of matrix multiplication,

we can extract the middle multiplication part ((kt)′)T(qt)′

and get the following result:

((kt)′)T(qt)′ = At, (9)

where ((kt)′)T ∈ R
m×L and (qt)′ ∈ R

L×m. We denote L

as the length of the features and m as the number of chan-

nels. In contrast to the previous attention matrix A that

models correlation between features of pixel to pixel spa-

tially, the correlation matrix At ∈ R
m×m can be regarded

as a channel-wise attention matrix.

Combining the Eq. 8 and Eq. 9, we can get the replaced

attention matrix as follows:

Â = E[q′At(k′)T] = E[q̃′(k′)T], (10)

where the channel attention matrix can be seen as acting on

the features of the query frames. In particular, each channel

of the query feature is re-weighted by its correlation with

the other channels. For each channel i of the computed

q̃′, we have q̃′i =
∑m

j=1
(At

i,jq
′
j). Therefore, compared to

the original attention matrix, our new matrix approximately

adds a channel-wise attention, which may even better than

the original one. In the following sections, we will intro-

duce how we incorporate the hypothesis into the model de-

sign and prove its efficiency through experiments.

4. Domain Agent Network

In this section, we present our Domain Agent Network

(DAN) based on the hypothesis, as shown in Fig. 3.

4.1. Method Overview

The goal of FSVOS is to segment out the objects with

the same class as the labeled support images for the query

videos. We separate the video dataset into two sets Dtrain

and Dtest based on the class labels, where the Dtrain is

used for training and Dtest is used for testing. There is

no overlapping class between Dtrain and Dtest. Both the

training set Dtrain and the testing set Dtest are composed

of several episodes. Each episode contains a support set Sc

and a query set Q for the class label c, where the query set

Q = {xq
i }Ni=1

has a video with N frames. And the support

set Sc = {xs
c,i,m

s
c,i}Mi=1

has a set of labeled image-mask

pairs under the class label c. The network learns to predict

mask Ŷc = {m̂q
c,i}Ni=1

for each frame in the query set.

Our DAN mainly consists of three components: an en-

coder network, a domain agent attention module, and a de-

coder network. As shown in Fig. 3, given the support and

the query sets as inputs, two encoders sharing the same

weight extract features for the support set and the query set

respectively. We then compute two attention matrices: one

is the correlation between the domain agent and the sup-

port set, and the other is the correlation between the do-

main agent and the query set. We derive the final attention

features by weighting the support features with the above

two attention matrices. After concatenating the attention

features with the feature values of the query set, we use a

decoder to predict the final segmentation masks. We fur-
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Figure 4: Comparison between conventional full-rank at-

tention and our domain agent attention.

ther propose a learning strategy for FSVOS by combining

meta-learning with online learning. We then discuss the ar-

chitecture of DAN and the learning strategy in details.

4.2. Encoder and Decoder

We use a Siamese-architecture for designing encoders

that share the same weight. The previous work [56] finds

that the features from high layers are less generalized in the

few-shot scenario. We thus use ResNet-50 [10] pretrained

on ImageNet [6] without the block-4 as our encoder back-

bone to obtain the generic feature representation. Since the

goal of FSVOS is to identify the objects in the query set that

have the same category as those labeled in the support set,

we compute features for foreground objects by weighting

the support features with the ground truth masks.

After processing by the domain agent module, we con-

catenate the feature values of the query set vQ with the at-

tention features vA before sending into the decoder, denoted

as fa. The decoder then predicts segmentation masks for

the query set. Specifically, we design our decoder based

on the upsample operation [48] and the skip-connection.

We upsample the feature fa to revert to the size of the in-

put image. Meanwhile, we fuse the lower-level features

of the query frames into the upsample features by skip-

connections.

4.3. Domain Agent Attention Module

Calculating the correlation among images in the sup-

port set and query set often involve many-to-many atten-

tion matrix computation. As discussed in Sec. 3, we delve

deep into the typical many-to-many attention matrix and de-

compose it to save computational cost. We have proven

that the attention matrix can be replaced by the product of

two smaller matrices through an agent. As mentioned in

Eq. 10, the replaced matrix essentially adds channel-wise

attention. Earlier studies [12, 3] on channel-wise attention

directly learn a single dimension (1 × C) weight for re-

weighting the importance of each channel. A recent study

[45] propose to learn a C × C cross-channel weight, lead-

ing to better performance. We use the similar approach

by learning the channel-wise attention dynamically to high-

light the important feature channels based on the correla-

tion among each channel. Simultaneously, we observe that

the frames within a single video are similar. The channel-

wise attention learned from one frame could approximate

the channel-wise attention for the other frames. Therefore,

we use the middle frame as the agent for a video to guaran-

tee the learned channel-wise attention is informative.

Formally, the query features are mapping to queries qQ,

and key-value pairs kQ - vQ through a single convolutional

layer. Similarly, the support features are mapping to queries

qS and key-value pairs kS - vS with the dimensions as fol-

lows:





qQ ∈ R
N×Lq , qS ∈ R

M×Lq , Lq = H ×W × Cq,

kQ ∈ R
N×Lk , kS ∈ R

M×Lk , Lk = H ×W × Ck,

vQ ∈ R
N×Lv , vS ∈ R

M×Lv , Lv = H ×W × Cv,
(11)

and we set Cq = Ck in our case.

The frame t, sampled from the query video, is called do-

main agent. Following Eq. 3, the attention matrix AQt be-

tween Q and t and the attention matrix AtS between t and

Sc are calculated as follows:

AQt = σ(
qQ(kt)T√

Ck

);AtS = σ(
qt(kS)T√

Ck

), (12)

where qt and kt are query and key of the agent feature sam-

pled from the qQ and kQ. Afterward, we obtain the atten-

tion feature vA, denoted as:

vA = AvS = AQtAtSvS , (13)

where we calculate the AtSvS first to avoid storing and cal-

culating the large matrix A as shown in Fig. 4. In summary,

the memory storage and time cost of our attention module

are O((N+M)(HW )2) and O((N+M)(HW )2C), while

the memory storage and time cost of full-rank attention

module are O((NM)(HW )2) and O((NM)(HW )2C).

4.4. Learning Strategy

In this subsection, we combine two learning methods to

learn our DAN, as shown in Fig. 5. Meta-learning aims to

learn a generalized meta-learner that enables adaption to a

new task with the training in similar tasks. Many recent

works [36, 55, 14] exploit meta-learning in few-show tasks

to generalize on unseen classes. During the training phase,

we use meta-learning to learn generic semantics-aware ob-

ject segmentation. In each training episode, we sample the

support and query set under the same class label. Following

the previous works [44, 56, 37], we fix the parameters of the
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Figure 5: Learning strategy for DAN. We use meta-learning

during training and online learning for testing. For each

phase, we fix the weights of modules in the grey box, and

only train the weights of modules in the blue box.

encoders and only train the domain agent attention module

and the decoder.

During the testing phase, DAN inputs a few support im-

ages with the labeled class that is unseen in the training

time. To better adapt features into the domain of the new

class, we propose to use the online learning. As shown in

Fig. 5, we fix the domain agent attention module and de-

coder and only train the encoders. This is because we want

to maintain the ability on modeling the correlation between

the support and query sets, but learning better input features

for the test class. Rather than using online learning on each

test video individually, which is time-consuming, we only

use the support images to finetune the encoders, shortening

the initiation time.

5. Experiments

In this section, we demonstrate the effectiveness of our

proposed Domain Agent Network and the importance of the

key components through ablation studies in Sec. 5.1. We

report the computational cost in Sec. 5.2. Besides, we com-

pare our method with existing few-shot image semantic seg-

mentation models in Sec. 5.3 and show qualitative results in

Sec. 5.4.

Dataset and Metrics. Since FSVOS is an under-

explored problem, we set up a new benchmark based on

the Youtube-VIS dataset [51]. The training set consists of

2,238 YouTube videos with 3,774 instances covering 40 cat-

egories. We evenly divide the dataset into four folds and

cross-validate over all the folds. Each fold contains 30 cat-

egories for training and 10 categories for testing. We fol-

low previous VOS methods [30, 2, 57] for using the region

similarity (J ) and the contour accuracy (F) to measure the

performance. We denote k-shot as using the number of k

support images for segmentation. The default setting is 5-

shot in our experiments. More specifically, we randomly

sample 5 images from a single class as the support set, and

consecutive frames from the other videos under the same

Methods Fold-1 Fold-2 Fold-3 Fold-4 Mean

F FAN 38.7 61.0 59.7 57.6 54.2

Ours 40.3 62.3 60.2 59.4 55.6

J FAN 39.3 64.0 61.2 59.9 56.1

Ours 41.5 64.8 61.3 61.4 57.2

Table 1: The effect of our domain agent attention. We de-

note FAN as the method of replacing our domain agent at-

tention with the conventional full-rank attention.

class as the query set. We run the experiment 5 times for

each fold and report the average performance to ensure the

confidence of the results.

Implementation Details. We use Adam as our opti-

mizer for DAN. We set the learning rate to 1e-5 for meta-

learning, and 5e-6 for online learning. We use a combina-

tion of cross-entropy loss and IoU loss with 5LCE + LIoU

for meta-learning and only cross-entropy loss LCE for on-

line learning. We train DAN for 75,000 iterations with a

batch size of 4 for meta-learning and 100 iterations with a

batch size of 1 for online learning. We set the resolution to

(241,425) for the inputs.

5.1. Ablation Study

We compare with two baselines respectively in this sub-

section. (1) We replace our domain agent attention with the

original full-rank attention (FAN). (2) We train DAN with-

out online learning, and directly use the model trained by

meta-learning for testing.

5.1.1 The Effect of Domain Agent Attention

To avoid the influence of the online learning, we did not

conduct finetuning during testing time for both FAN and

our method. As shown in Tab. 1, our DAN outperforms

traditional FAN by a large margin on both metrics. The ac-

curacy increases by 1.4% for edges and 1.1% for regions.

Since both the encoders and the decoder have the same ar-

chitecture between our DAN and FAN, the performance gap

should contribute to the proposed attention module. In other

words, our method can better localize on the target objects

through the introduced channel-wise attention, underlining

the effect of the domain agent attention module. In addition,

our approach effectively reduces the memory footprint and

computing time, as shown in the Sec. 5.2.

5.1.2 The Effect of Online learning

To validate the effect of our learning strategy, we perform

online learning for testing in this experiment. The purpose

of online learning is to enhance the feature representation

for unseen classes during the training. Since the encoder

has pretrained on the ImageNet, covering many categories
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Learning strategies
F J

w/o online w/o online

Deer 61.5 63.6 64.7 66.6

Giraffe 70.8 73.2 68.1 70.2

Hand 46.2 50.5 50.2 57.0

Parrot 58.9 59.3 64.6 65.0

Person 30.0 36.2 20.7 29.4

Skateboard 24.8 36.8 9.6 16.3

Surfboard 49.8 49.2 22.2 23.0

Tennis racket 17.9 23.7 10.7 14.4

Mean 45.0 49.1 38.8 42.7

Table 2: The effect of online learning for unseen class over

the ImageNet.

of the Youtube-VIS, to prevent the encoder from corrupting

well-trained features, we only examine categories that are

not presented in the ImageNet.

As shown in Tab. 2, the performance of truly unseen

classes increase a lot. For online learning, we set the num-

ber of training iterations to 100, which only takes 20s. This

is insignificant compared to the time required for processing

the entire video sets.

5.2. Computational Cost

Previous experiments have shown that our model out-

performs the previous full-rank attention model. As dis-

cussed in Sec. 4.3, our attention module can save compu-

tational cost theoretically with a linear growth compared to

the quadratic one. Therefore, we collect the memory and

time usages as the number of inputs growing. To guaran-

tee consistent and comparable results, we test the models

on one 2080Ti GPU.

Memory Cost. As shown in Fig. 6, our method uses

significantly less memory than FAN. When the support and

query set individually contain 40 images, the memory con-

sumption of our model is only 8.79 GiB, while FAN already

uses 10.76 GiB when taking 20 images as input per set. Af-

ter visualizing the tendency of the growth for each method,

we can find that FAN grows exponentially, which makes it

almost impossible to process more support and query im-

ages with limited memory. Instead, our method provides

viable solution to process more support images, and more

query frames for realistic applications.

Time Cost. To examine the time usage of our model,

we test on different number of input query frames, ranging

from 5 to 40, under different k-shot settings. As shown in

Fig. 7, both FAN and DAN can benefit from processing a

larger number of query frames. This is mainly due to the

overhead of computing features for support images that can

be mitigated as the query frames increasing. As can be seen

that our DAN always takes less time for processing, under

0

5

10

15

20

25

5-5 5-10 10-10 10-20 20-20 20-40 40-40

M
em

o
ry

 (
G

iB
)

# of support images - # of query images

FAN DAN

Figure 6: Comparison on memory cost. We show the mem-

ory usage along with the number of input images. We draw

the tendency of different methods with dot lines.
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Figure 7: Comparison on time cost. We show the time usage

along with the number of query frames in different settings.

We use a format of “Method - k” in the legend to indicate

method with k support images.

the benefit of our decomposition of attention matrix.

5.3. Comparisons to Existing Methods

The closest problem to ours is few-shot semantic seg-

mentation working on individual images. We thus com-

pare our method with the state-of-the-art image-based meth-

ods, which can be adapted to our task easily by process-

ing each frame one by one. Particularly, we compare

with (1) PFENet [37], an attention-based method relying

on a semantic prior; (2) PPNet [21], a prototype-based

method by finding prototypes of support images via K-

means; (3) PMMs [50], another prototype-based method

using Expectation-Maximization (EM) algorithm for find-

ing prototypes.

As shown in Tab. 3, we generally outperform the above

methods, especially on the metric of contour accuracy (F).

This is because of our method models this many-to-many
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Figure 8: Qualitative comparisons of our method with baseline and applicable methods, including FAN, PMMs [50],

PFENet [37], and PPNet [21].

Methods Fold-1 Fold-2 Fold-3 Fold-4 Mean

F
PMMs [50] 34.2 56.2 49.4 51.6 47.9

PFENet [37] 33.7 55.9 48.7 48.9 46.8

PPNet [21] 35.9 50.7 47.2 48.4 45.6

Ours 42.3 62.6 60.6 60.0 56.3

J
PMMs [50] 32.9 61.1 56.8 55.9 51.7

PFENet [37] 37.8 64.4 56.3 56.4 53.7

PPNet [21] 45.5 63.8 60.4 58.9 57.1

Ours 43.2 65.0 62.0 61.8 58.0

Table 3: Comparisons to existing applicable methods.

attention to contain detailed information and fuse lower-

level features to the upsample features by skip-connections.

Compared to these methods, our approach models the cross-

frame correlation through the agent, allowing the network to

embrace certain temporal information.

5.4. Qualitative Results

Comparisons to Other Methods. Fig. 8 visualizes the

qualitative results of our method compared to those gener-

ated by FAN and methods mentioned in Sec. 5.3. We can

see that the segmentation masks generated by our method

are more compact with the target objects. In the first row,

the segmentation results of PFENet, PPNet and FAN are in-

complete. Although PMMs segments on the right object,

the boundary of the segmentation is not accurately aligned

with the object. In contrast, we have a much better result

near the boundary. In the second row, the query frame con-

tains two objects, a person and a car. The segmentation

predicted by PMMs, PPNet and FAN mistakenly include a

partial region of the person, while our method is more ac-

curate and only segment out the target car.

The Effect of Online Learning. Fig. 9 shows the seg-

mentation results of our method with and without online

learning. Though our method is able to localize the tar-

get object without online learning, the result is less satis-

factory by including some irrelevant objects (e.g., the hel-

met in the first row) or with some missing regions (e.g., the

tennis racket in the second row). After finetuning with on-

(a) w/o online learning (b) w/ online learning

Figure 9: Qualitative comparisons of our method training

with and without online learning.

line learning, we can notice that the segmentation results

become more complete and compact.

6. Conclusion

In this paper, we propose a novel domain agent net-

work for solving the few-shot video object segmentation

task. The key idea is to decompose the typical many-

to-many attention matrix into the product of two smaller

ones through an agent. We include theoretical proof to

demonstrate the validity and efficiency of the decomposi-

tion. We also propose a learning strategy by combining

meta-learning with online learning to further improve the

performance. Through extensive experiments, we demon-

strate the benefit of our method both quantitatively and

qualitatively.
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Laura Leal-Taixé, Daniel Cremers, and Luc Van Gool. One-

shot video object segmentation. In CVPR, 2017. 1, 3, 6

[3] Long Chen, Hanwang Zhang, Jun Xiao, Liqiang Nie, Jian

Shao, Wei Liu, and Tat-Seng Chua. Sca-cnn: Spatial and

channel-wise attention in convolutional networks for image

captioning. In CVPR, pages 5659–5667, 2017. 5

[4] Krzysztof Choromanski, Valerii Likhosherstov, David Do-

han, Xingyou Song, Andreea Gane, Tamas Sarlos, Peter

Hawkins, Jared Davis, Afroz Mohiuddin, Lukasz Kaiser,

et al. Rethinking attention with performers. In arXiv preprint

arXiv:2009.14794, 2020. 3

[5] Hai Ci, Chunyu Wang, and Y. Wang. Video object segmen-

tation by learning location-sensitive embeddings. In ECCV,

2018. 1, 3

[6] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei.

ImageNet: A Large-Scale Hierarchical Image Database. In

CVPR, 2009. 5

[7] Nanqing Dong and E. Xing. Few-shot semantic segmenta-

tion with prototype learning. In BMVC, 2018. 2, 3

[8] Katerina Fragkiadaki, Geng Zhang, and Jianbo Shi. Video

segmentation by tracing discontinuities in a trajectory em-

bedding. In CVPR, pages 1846–1853. IEEE, 2012. 3

[9] Raffay Hamid, Ying Xiao, Alex Gittens, and Dennis De-

Coste. Compact random feature maps. In ICML, pages 19–

27, 2014. 3

[10] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In CVPR,

pages 770–778, 2016. 5

[11] Yuk Heo, Yeong Jun Koh, and Chang-Su Kim. Interactive

video object segmentation using global and local transfer

modules. In ECCV, 2020. 1

[12] Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation net-

works. In CVPR, pages 7132–7141, 2018. 5

[13] Suyog Dutt Jain, Bo Xiong, and Kristen Grauman. Fusion-

seg: Learning to combine motion and appearance for fully

automatic segmentation of generic objects in videos. In

CVPR, pages 2117–2126. IEEE, 2017. 1, 3

[14] Muhammad Abdullah Jamal and Guo-Jun Qi. Task agnostic

meta-learning for few-shot learning. In CVPR, pages 11719–

11727, 2019. 5

[15] Purushottam Kar and Harish Karnick. Random feature maps

for dot product kernels. In AISTATS, pages 583–591, 2012.

3

[16] Anna Khoreva, Anna Rohrbach, and Bernt Schiele. Video

object segmentation with referring expressions. In ECCV,

pages 7–12, 2018. 2, 3

[17] Yong Jae Lee, Jaechul Kim, and Kristen Grauman. Key-

segments for video object segmentation. In ICCV, pages

1995–2002. IEEE, 2011. 1, 3

[18] Fuxin Li, Taeyoung Kim, Ahmad Humayun, David Tsai, and

James M Rehg. Video segmentation by tracking many figure-

ground segments. In ICCV, pages 2192–2199, 2013. 3

[19] Siyang Li, Bryan Seybold, Alexey Vorobyov, Alireza Fathi,

Qin Huang, and C-C Jay Kuo. Instance embedding transfer

to unsupervised video object segmentation. In CVPR, pages

6526–6535, 2018. 1, 3

[20] Xiaoxiao Li and Chen Change Loy. Video object segmen-

tation with joint re-identification and attention-aware mask

propagation. In ECCV, 2018. 3

[21] Yongfei Liu, Xiangyi Zhang, Songyang Zhang, and Xum-

ing He. Part-aware prototype network for few-shot semantic

segmentation. In ECCV, 2020. 7, 8

[22] Xinkai Lu, W. Wang, Martin Danelljan, Tianfei Zhou, J.

Shen, and L. Gool. Video object segmentation with episodic

graph memory networks. In ECCV, 2020. 3

[23] Xiankai Lu, Wenguan Wang, Chao Ma, Jianbing Shen, Ling

Shao, and Fatih Porikli. See more, know more: Unsuper-

vised video object segmentation with co-attention siamese

networks. In CVPR, pages 3623–3632, 2019. 1, 3

[24] Xiankai Lu, Wenguan Wang, Jianbing Shen, Yu-Wing Tai,

David J Crandall, and Steven CH Hoi. Learning video object

segmentation from unlabeled videos. In CVPR, pages 8960–

8970, 2020. 3

[25] Khoi Nguyen and Sinisa Todorovic. Feature weighting and

boosting for few-shot segmentation. In ICCV, 2019. 2, 3

[26] Peter Ochs, Jitendra Malik, and Thomas Brox. Segmentation

of moving objects by long term video analysis. In PAMI,

volume 36, pages 1187–1200. IEEE, 2013. 3

[27] S. Oh, Joon-Young Lee, N. Xu, and S. Kim. Video object

segmentation using space-time memory networks. In ICCV,

pages 9225–9234, 2019. 1, 2, 3

[28] Seoung Wug Oh, Joon-Young Lee, Ning Xu, and Seon Joo

Kim. Fast user-guided video object segmentation by

interaction-and-propagation networks. In CVPR, pages

5247–5256, 2019. 1

[29] Federico Perazzi, A. Khoreva, Rodrigo Benenson, B.

Schiele, and Alexander Sorkine-Hornung. Learning video

object segmentation from static images. In CVPR, pages

3491–3500, 2017. 3

[30] Federico Perazzi, Jordi Pont-Tuset, Brian McWilliams, Luc

Van Gool, Markus Gross, and Alexander Sorkine-Hornung.

A benchmark dataset and evaluation methodology for video

object segmentation. In CVPR, pages 724–732, 2016. 3, 6

[31] Ali Rahimi and Benjamin Recht. Random features for large-

scale kernel machines. In NeurIPS, volume 20, pages 1177–

1184, 2007. 3

[32] Seonguk Seo, Joon-Young Lee, and Bohyung Han. Urvos:

Unified referring video object segmentation network with a

large-scale benchmark. In ECCV, 2020. 2, 3

[33] Amirreza Shaban, Shray Bansal, Zhen Liu, Irfan Essa, and

Byron Boots. One-shot learning for semantic segmentation.

In BMVC, 2017. 3

[34] Mennatullah Siam, Naren Doraiswamy, Boris N. Oreshkin,

Hengshuai Yao, and Martin Jagersand. Weakly supervised

few-shot object segmentation using co-attention with visual

and semantic embeddings. In IJCAI, pages 860–867, 2020.

2, 3

[35] Hongmei Song, Wenguan Wang, Sanyuan Zhao, Jianbing

Shen, and Kin-Man Lam. Pyramid dilated deeper convlstm

14048



for video salient object detection. In ECCV, September 2018.

3

[36] Flood Sung, Yongxin Yang, Li Zhang, Tao Xiang,

Philip H.S. Torr, and Timothy M. Hospedales. Learning to

compare: Relation network for few-shot learning. In CVPR,

June 2018. 5

[37] Zhuotao Tian, Hengshuang Zhao, Michelle Shu, Zhicheng

Yang, Ruiyu Li, and Jiaya Jia. Prior guided feature enrich-

ment network for few-shot segmentation. In PAMI, 2020. 3,

5, 7, 8

[38] Pavel Tokmakov, Karteek Alahari, and Cordelia Schmid.

Learning motion patterns in videos. In CVPR, pages 3386–

3394, 2017. 3

[39] P. Tokmakov, Alahari Karteek, and C. Schmid. Learning

video object segmentation with visual memory. In ICCV,

2017. 1, 3

[40] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-

reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia

Polosukhin. Attention is all you need. In NeurIPS, pages

5998–6008, 2017. 2, 3
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