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Abstract

Recently, the transductive graph-based methods have

achieved great success in the few-shot classification task.

However, most existing methods ignore exploring the class-

level knowledge that can be easily learned by humans from

just a handful of samples. In this paper, we propose an

Explicit Class Knowledge Propagation Network (ECKPN),

which is composed of the comparison, squeeze and cali-

bration modules, to address this problem. Specifically, we

first employ the comparison module to explore the pairwise

sample relations to learn rich sample representations in the

instance-level graph. Then, we squeeze the instance-level

graph to generate the class-level graph, which can help

obtain the class-level visual knowledge and facilitate mod-

eling the relations of different classes. Next, the calibra-

tion module is adopted to characterize the relations of the

classes explicitly to obtain the more discriminative class-

level knowledge representations. Finally, we combine the

class-level knowledge with the instance-level sample repre-

sentations to guide the inference of the query samples. We

conduct extensive experiments on four few-shot classifica-

tion benchmarks, and the experimental results show that the

proposed ECKPN significantly outperforms the state-of-the

art methods.

1. Introduction
Recent deep learning methods rely on a large amount

of labeled data to achieve high performance, which may

have problems in some scenarios, where the cost of data

collection is high, and thus it is difficult to obtain a large

amount of labeled data. The learning schema of these deep

methods is different from that of humans. After being ex-

posed to a few data/samples, human beings can use their

prior knowledge to learn quickly so as to successfully rec-

ognize new classes. Therefore, how to reduce the gap be-

† indicates corresponding author: Changsheng Xu.
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Figure 1. An illustration of the role of class-level knowledge rep-

resentations (e.g., class centers).

tween deep learning methods and human learning abilities

has aroused the interest of many researchers. Few-shot

learning [17, 21, 45], which simulates the human learning

schema, has attracted much attention in the field of com-

puter vision and machine learning.

As a straightforward method to solve the few-shot learn-

ing task, traditional fine-tuning techniques [10] can utilize

the samples of the new classes to update the parameters of

the network pretrained on the classes with sufficient sam-

ples. However, these methods always lead to over-fitting,

since only a few training samples are not enough to rep-

resent the data distributions of the corresponding classes

and learn effective classifiers. A successful attempt to solve

the over-fitting problem is to apply the meta-learning mech-

anism [20] in few-shot learning task. The meta-learning

based methods [3, 43, 30, 31, 23, 37, 7, 28, 12, 11, 52,

47, 2, 29] are composed of two steps: meta-train and meta-

test. Each step (meta-train or meta-test) consists of multi-

ple episodes (sub-tasks), and the data of each episode are

composed of support set and query set. These methods

keep the meta-train environment consistent with the meta-

test to help improve the generalization ability of the mod-

els, thereby solving the problem of over-fitting. Nowadays,

meta-learning has become a general training mechanism in

most of the few-shot learning methods. In this paper, we

also follow this training mechanism.
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Recently, inspired by the success of graph networks in

modeling structure information [14, 8, 42], researchers be-

gan to propose the graph-based meta-learning approaches

for few-shot learning and obtain the state-of-the-art perfor-

mances [38, 12, 28, 29, 47, 27]. These methods treat the

samples as nodes to construct the graph and utilize the ad-

jacency matrix to model the relations of images. There are

two settings of the graph-based meta-learning approaches:

transductive setting and inductive setting. The transductive

methods characterize the relations of samples from both the

support set and the query set for joint prediction, and thus

obtain better performances than inductive methods, which

can only learn a network based on the relations of support

samples and classify each query sample individually.

Existing transductive graph-based methods learn to

propagate the class label from the support set to the query

set by comprehensively considering the instance-level re-

lations of samples. However, these methods ignore the

global context knowledge from the perspective of a cate-

gory. In contrast, people can learn richer representations

of a new category from just a handful of samples, using

them for creating new exemplars, and even creating new

abstract categories based on existing categories [18]. This

inspires us to consider how to explicitly learn the richer

class knowledge to guide the graph-based inference of

query samples. As illustrated in Figure 1, if we only uti-

lize the sample representations and relations to conduct the

few-shot classification task, we may misclassify the query

sample q into class 2. However, if we learn the class-level

knowledge representations explicitly to guide the inference

procedure, we can classify q correctly, because q is closer

to the representation of the class 1.

In order to address the above problem, we propose

an end-to-end transductive graph neural network, which

is called Explicit Class Knowledge Propagation Network

(ECKPN). The proposed ECKPN is composed of the com-

parison, squeeze and calibration modules, which can be

flexibly stacked to explicitly learn and propagate the

class-level knowledge. (1) Firstly, the comparison mod-

ule captures the rich representations of samples based on

the pairwise relations in a instance-level graph. The vi-

sual features are always structured vectors and many factors

(e.g., frequency, shapes, illumination, textures) could lead

to grouping [46, 51] (i.e., a group of dimensions represents

a semantic aspect or a piece of knowledge). Thus, we adopt

multi-head relations in the message passing of the compari-

son module to characterize the group-wise relations of sam-

ples, which provides fine-grained comparison of different

samples. Each node feature is divided into groups along the

dimension, and adjacency matrices are computed for differ-

ent groups to obtain multiple relation measurements, which

are then aggregated to compute the new node features of the

samples. (2) Then, the squeeze module explores the intra-

class context knowledge by clustering samples with similar

features from the instance-level graph, which results in a

class-level graph. The number of nodes in the class-level

graph is same as the total number of classes. Thus, each

node represents the visual knowledge of a specific class.

(3) Finally, the calibration module explicitly captures the

relationships between different classes and learn more dis-

criminative class knowledge to guide the graph-based in-

ference of query samples. Since the word embeddings of

the class names can provide rich semantic knowledge that

may not be contained in the visual contents, we combine

them with the visual knowledge to obtain the multi-modal

knowledge representations of different classes. Based on

the multi-modal knowledge representations, a class-level

message passing is adopted to exploit the relationship of

different classes. The new class-level knowledge repre-

sentations obtained by message passing are combined with

the corresponding instance-level sample representations to

guide the inference of the query samples.

To sum up, the main contributions of this paper are four-

fold:

• To the best of our knowledge, we are the first to pro-

pose an end-to-end graph-based few-shot learning ar-

chitecture, which can explicitly learn the rich class

knowledge to guide the graph-based inference of query

samples.

• We build multi-head sample relations to explore the

fine-grained comparison of pairwise samples, which

can facilitate the learning of richer class knowledge

based on the pairwise relations.

• We leverage the semantic embeddings of the class

names to construct the multi-modal knowledge repre-

sentations of different classes, which can provide more

discriminative knowledge to guide the inference of the

query samples.

• We conduct extensive experiments on four benchmarks

(i.e., miniImageNet, tieredImageNet, CIFAR-FS and

CUB-200-2011) for the transductive few-shot classi-

fication task, and the results show that the proposed

method achieves the state-of-the-art performances.

2. Related Work
In recent years, researchers have proposed many novel

approaches to address the few-shot learning problems and

achieved great success. As illustrated in [7], we can divide

the existing few-shot learning methods into two categories:

gradient-based [3, 37, 31, 11, 30, 19, 26, 40, 53, 16, 49, 4]

and metric-based [41, 39, 43, 38, 52, 28, 29, 23, 47, 27, 12,

7, 50, 32, 25].

Gradient-based Approaches. These approaches try to

adapt to new classes within a few optimization steps. The

well-known model-agnostic meta-learning [3] (MAML)
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method relies on the meta-learner [20] to realize the fine-

tune updates. Reptile [31] is a first-order gradient-based

meta-learning approach, which points out that MAML can

be simply implemented. It is trained on the sampled tasks

and does not need a training-testing split for each task.

Latent embedding optimization [37] (LEO) is an encoder-

decoder architecture, which utilizes the encoder to explore

the low-dimensional latent embedding space for updating

the representations and the decoder to predict the high-

dimensional parameters. Conditional class-aware meta-

learning [11] (CAML) conditionally transforms embed-

dings to explore the inter-class dependencies. However,

these gradient-based approaches usually fail to learn the ef-

fective sample representations for inference.

Metric-based Approaches. These methods usually em-

bed the support and query samples into the same feature

space at first, and then compute the similarity of features

for prediction. Relation Networks [41] exploit the pair-wise

relations between support samples and query samples us-

ing the distance metric network. Matching Networks [43]

combine the attention mechanism and memory together to

present an end-to-end differentiable nearest-neighbor clas-

sifier. Prototypical Networks [39] leverage the mean of the

sample features of each class to build the prototype repre-

sentations at first, and then compute the similarity between

the query sample representation and the prototype repre-

sentation for inference. Recently, task-dependent adap-

tive metric [32] (TADAM) and task-adaptive projection net-

work [50] (TapNet) have been proposed to explore the task-

dependent metric space to enhance the performance of ex-

isting few-shot models.

The core of the metric-based approaches is exploring the

relations between the query samples and the support sam-

ples/classes. Inspired by the success of graph neural net-

works (GNNs) [14, 8, 42] on modeling the relationships

and propagating information among points, researchers pro-

posed many graph-based methods [38, 12, 28, 29, 47, 27]

to conduct few-shot learning tasks and have achieved great

success. For example, GNN-FSL [38] is the first work to

build an end-to-end trainable graph neural network architec-

ture to conduct the few-shot classification task. Transduc-

tive Propagation Network [28] (TPN) is the first to employ

the GNNs to conduct the transductive inference. It utilizes a

closed-form solution to perform iterative label propagation.

Edge-Labeling Graph Neural Network [12] (EGNN) ex-

ploits the similarity/dissimilarity between nodes to dynami-

cally update edge-labels. Transductive relation-propagation

graph neural network (TRPN) explicitly considers the rela-

tions of support-query pairs for few-shot learning. Recent

distribution propagation graph network (DPGN) [47] builds

a dual graph to model the distribution-level relations of sam-

ples and outperforms most existing methods in the classifi-

cation task. However, existing graph-based methods ignore

exploring the class-level knowledge explicitly, which may

limit their inference ability as illustrated in Figure 1.

3. Method
3.1. Problem Statement

As illustrated in Section 1, we utilize the meta-learning

mechanism to conduct the few-shot classification task.

For each episode in the meta-train, we sample N classes

from Ctrain (the class set of the training data Dtrain)

to construct the support and query set. The support

set S ⊂ Dtrain contains K samples for each class

(i.e., the N -way K-shot setting), which can be denoted

as S = {(x1, y1), (x2, y2), ..., (xN×K , yN×K)}, where

xi represents the i-th sample and yi denotes the la-

bel of xi. The query set includes T samples from

the N classes in total, which can be denoted as Q =
{(xN×K+1, yN×K+1), ..., (xN×K+T , yN×K+T )}.

For the transductive setting, we need to train a classifi-

cation model which can leverage the N × K labeled sup-

port samples and the T unlabeled query samples to correctly

predict the labels of the T query samples. The training pro-

cedure is employed episode by episode until convergence.

Given the test data set Dtest and its corresponding class set

Ctest, we construct the support and query set for the episode

(in the meta-test) in a similar way as in the meta-train. Note

that Ctrain ∩ Ctest = ∅. In the meta-test, we utilize the

model learned in the meta-train to predict the labels of the

query set samples. The prediction/classification results are

used to estimate the effectiveness of the model.

Notations. In this paper, Xi;m denotes the m-th row of

the matrix Xi and Xi;m,n denotes the element located in the

m-th row and n-th column of the matrix Xi.

3.2. Explicit Class Knowledge Propagation Net­
work

In this section, we introduce the technical details of the

proposed Explicit Class Knowledge Propagation Network

(ECKPN). As illustrated in Figure 2, we first utilize the

support and query samples to build an instance-level graph.

Then, we leverage the comparison module to update the

sample representations based on the pairwise node relations

in the instance-level graph. In this module, we construct

the multi-head relations to help model the fine-grained re-

lations of the samples to learn rich sample representations.

Next, we squeeze the instance-level graph to the class-level

graph to explore the class-level visual knowledge explic-

itly. In the calibration module, we perform the class-level

message passing operation based on the relationships of the

classes to update the class-level knowledge representations.

Since the semantic word embeddings of the classes can pro-

vide rich prior knowledge, we combine them with the class-

level visual knowledge to construct the multi-modal class

knowledge representations before the message passing of

the calibration module. Finally, the class-level knowledge
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Figure 2. The overall framework of our proposed ECKPN. We take the 3-way 1-shot classification task as an example in this figure.

Our ECKPN is composed of the comparison, squeeze and calibration modules, which can learn and propagate the class-level knowledge

explicitly. Note that our comparison module contains L message passing layers, but we just illustrate one layer for simplicity.

representations are combined with the instance-level sample

representations to guide the inference of the query samples.

3.2.1 Comparison Module: Instance-level Message

Passing with Multi-head Relations

For an image i, we employ a deep CNN model as backbone

to extract its d-dimensional visual feature v
(0)
i ∈ Rd. In

each episode, we treat the support and query set samples as

nodes to build the graph G = (V (0), A(0)), where V (0) is

the initial node feature matrix and A(0) is the initial adja-

cency matrix set which represents the sample relations. As

illustrated in [46, 51], the visual features always contain

some concepts that could lead to grouping, i.e., the feature

dimensions from the same group represent similar knowl-

edge. However, existing graph-based few-shot learning

methods usually directly utilize the global visual features to

compute the similarities of the samples to construct the ad-

jacency matrix, which cannot characterize the fine-grained

relations well. In this paper, we separate the visual features

into K chunks (i.e., V (l) = [V
(l)
1 , V

(l)
2 , ..., V

(l)
K ] ∈ Rr×d)

and compute the similarities in each chunk to explore the

multi-head relations of samples (i.e., K adjacency matrices

A
(l)
1 , A

(l)
2 , ..., A

(l)
K ∈ Rr×r), where r denotes the number

of samples in each episode, [∗, ∗] denotes the concatenation

operation and l denotes that the matrix is generated in the

l-th graph layer. Note that each chunk V
(l)
i has the dimen-

sion of d/K. We also compute the global relation matrix

A
(l)
g ∈ Rr×r based on the unchunked visual features.

We utilize the global (A
(l)
g ) and multi-head ({A

(l)
i }Ki=1)

relations jointly (i.e., A(l) = {A
(l)
g , A

(l)
1 , ..., A

(l)
K }) to prop-

agate the information in the instance-level graph to update

the sample representations. In this way, we can explore

the relations of samples more sufficiently and learn richer

sample representations. In the l-th layer, we leverage the

updated sample representations V (l) to construct the new

adjacency matrices A
(l)
g and A

(l)
i as follows:

A
(l)
g;m,n = fg((V

(l)
m − V

(l)
n )2), A

(l)
i;m,n = fi((V

(l)
i;m − V

(l)
i;n )

2)
(1)

where Vm denotes the visual feature of the m-th image,

Vi;m denotes the i-th chunk of Vm, and (∗)2 denotes the

element-wise square operation. fi : Rd/K → R1 and

fg : Rd → R1 are the mapping functions.

Inspired by the recent success of TRPN [29] in the few-

shot classification task, we utilize the following matrix to

mask the adjacency matrix:

Mm,n =

{
−1 if m, n ∈ S and ym 6= yn
1 otherwise

(2)

where m and n are the samples in S∪Q and ym is the label

of sample m. This ensures that, for two samples from differ-

ent categories, the higher the feature similarity of them, the

more commonality decreases in the message passing pro-

cess. For the two samples from the same category, the re-

sults are exactly the opposite.

In the l-th layer, we utilize the A(l−1), V (l−1) and M to

generate the V (l) as follows:

V
(l) = Tr([‖Ki=1 ((A

(l−1)
i ⊙M)V

(l−1)
i ), (A(l−1)

g ⊙M)V (l−1)])
(3)

where ‖ denotes the concatenation operation, ⊙ denotes the

element-wise multiplication operation and Tr denotes the

transformation function: Rr×2d → Rr×d. We repeat the

above message passing L times and obtain the new sample

features V (L) which will be used in the squeeze module.
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3.2.2 Squeeze Module: Class-level Visual Knowledge

Learning

In order to obtain the class-level knowledge representations,

we squeeze the instance-level graph to generate the class-

level graph, where the nodes represent the visual knowl-

edge of the classes. For instance, we squeeze the nodes in

the instance-level graph into 5 clusters/nodes so as to obtain

the visual knowledge of the classes for the 5-way classifica-

tion task. Specifically, we first utilize the ground truth to su-

pervise the assignment matrix generation, and then squeeze

samples according to the assignment matrix to obtain the

class-level knowledge representations Vc ∈ Rr1×d, where

r1 denotes the number of classes in each episode.

In this paper, we feed V (L) and A
(L)
g into the standard

graph neural network [14] to compute the assignment ma-

trix P ∈ Rr×r1 for simplicity.

P = softmax((A(L)
g ⊙M)V (L)

W ) (4)

where W ∈ Rd×r1 denotes the trainable weight matrix and

the softmax operation is applied in a row-wise fashion.

Each element Puv in the assignment matrix P represents the

probability that node u in the original graph is allocated to

node v in the class-level graph. After generating the assign-

ment matrix P , we utilize the following equation to gener-

ate the initial class-level knowledge representations:

Vc = P
T
V

(L)
(5)

where T denotes transpose operation. In the class-level

graph, each node feature can be considered as the weighted

sum of the node features with the same label in the instance-

level graph. In this way, we obtain the class-level visual

knowledge representations, which will facilitate modeling

the relations of different classes in the calibration module.

3.2.3 Calibration Module: Class-level Message Pass-

ing with Multi-modal Knowledge

Since the class word embeddings can provide the informa-

tion that may not be contained in the visual content, we

combine them with the generated class-level visual knowl-

edge to construct the multi-modal knowledge representa-

tions. Specifically, we first leverage the GloVe (pretrained

on a large text corpora with self-supervised constraint) [33]

to obtain the d1-dimensional semantic embeddings of class

labels. The Common Crawl version of the GloVe is used in

this paper, which is trained on 840B tokens. More details

can be found in [33]. After obtaining the word embeddding

ei ∈ Rd1 of the i-th class, we employ a mapping network

g : Rd1 → Rd to map it into a semantic space which has the

same dimension with the visual knowledge representation,

i.e., zi = g(ei) ∈ Rd. Finally, we obtain the multi-modal

class representations as follows:

V
′

c = [Vc, Z] (6)

where Z ∈ Rr1×d is the matrix of semantic word embed-

dings. In this way, we can obtain richer class-level knowl-

edge representations.

The adjacency matrix (Ac) of the class-level graph repre-

sents the relations of the class representations and its value

denotes the connectivity strength of the class pairs. In this

paper, we leverage the following equations to compute the

adjacency matrix Ac and the new class-level knowledge

representations V
′′

c .

Ac = P
T
AgP, V

′′

c = AcV
′

c W
′

(7)

where W
′

∈ R2d×2d is a trainable weight matrix. In or-

der to make each sample contain the corresponding class

knowledge learned in (7), we utilize the assignment matrix

to map the class knowledge back to the instance-level graph

as follows:

Vr = PV
′′

c (8)

where Vr ∈ Rr×2d denotes the refined features. Finally,

we combine Vr with V (L) by concatenation to generate the

sample representations Vf for query inference.

3.3. Inference
To infer the class labels of query samples, we utilize Vf

to compute the corresponding adjacency matrix Af as fol-

lows:

Af ;m,n = fl((Vf ;m − Vf ;n)
2) (9)

where Vf ;m and Vf ;n are the representations of the m-th

sample and the n-th sample, respectively. fl : R
3d → R1

is a mapping function. For each query sample, we leverage

the class labels of the support samples to predict its label:

ỹv = softmax
(N×K∑

u=1

Af ;u,v · one-hot(yu)
)

(10)

where one-hot denotes the one-hot encoder.

3.4. Loss Function
The overall framework of the proposed ECKPN can be

optimized in an end-to-end form by the following loss func-

tion:

L = λ0L0 + λ1L1 + λ2L2 (11)

where λ0, λ1 and λ2 are hyper-parameters that are set to

1.0, 0.5 and 1.0 in the experiment. L0, L1 and L2 are ad-

jacency loss, assignment loss and classification loss respec-

tively, that will be introduced as follows.

Adjacency Loss: As illustrated in Section 3.2.1, for

each graph network layer l ∈ {1, ..., L} in the compari-

son module, we have multiple adjacency matrices A
(l)
g and

{A
(l)
i }Ki=1 for message passing between support and query

samples. In addition, we have the adjacency matrix Af for

query inference in Section 3.3. To ensure these adjacency

matrices to be able to capture the correct sample relations,

we use the following loss function:

L0 = −
∑

A∗∈As

(
sum(A∗HGt)

sum(HGt)
+

sum((1−A∗)H(1−Gt))

sum(H(1−Gt))
)

(12)
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where As = {A
(1)
g , ..., A

(L)
g }∪{Af}∪{A

(1)
i , ..., A

(L)
i }Ki=1

and sum(∗) denotes the sum of all elements in the matrix.

H ∈ Rr×r is the query mask and Gt ∈ Rr×r is the ground

truth matrix which are defined as follows:

Hm,n =

{
0 if m ∈ S

1 otherwise
, Gt;m,n =

{
1 if ym = yn
0 otherwise

(13)

where m and n denote the nodes in the graph.

Assignment Loss: To ensure that the assignment ma-

trix P computed in the squeeze module (illustrated in Sec-

tion 3.2.2) can correctly cluster the samples with the same

label, we utilize the following cross-entropy loss function:

L1 = Lce(P, one-hot
(
[Cs, Cq])

)
(14)

where one-hot([Cs, Cq]) denotes the ground truth one-hot

class vectors of the support and query samples.

Classification Loss: To constrain that the proposed

ECKPN can predict the correct query labels, we use the fol-

lowing loss function:

L2 =
∑

v∈Q

Lce(ỹv, yv) (15)

where Lce denotes the cross-entropy loss function.

4. Experiments

4.1. Datasets

MiniImageNet [43] and tieredImageNet [35] are two

popular few-shot benchmarks derived from the ILSVRC-

12 dataset [36]. The miniImageNet contains 100 classes

with 600 images per class. Each image is RGB-colored

and has the size of 84 × 84. The tieredImageNet contains

779165 images of size 84 × 84 sampled from 608 classes.

CIFAR-FS [1] is reorganized from the CIFAR-100 dataset

for the few-shot classification task. It contains 100 classes

with 60000 images in total. Each image has the size of

32×32. CUB-200-2011 [44] is a medium-scale dataset used

for fine-grained classification. It has 11788 images of size

84× 84 from 200 bird categories. We follow the popularly

used train/val/test setting proposed in [35, 36, 1, 47, 29].

The statistics of these benchmarks are shown in Table 1.

4.2. Experimental Setup

Architectures. We utilize two popular backbones

(Conv-4 [3, 12] and ResNet-12 [9, 30, 47]) to encode the in-

put images into 128 dimensions. Both Conv-4 and ResNet-

12 consist of four blocks. Each block in Conv-4 is com-

posed of 3×3 convolutions, a batch normalization (BN) and

a LeakyReLU activation. Each residual block in ResNet-12

contains 3 convolutional layers with the size of 3× 3. Each

convolutional layer is followed by a 2×2 max-pooling layer.

A global average-pooling is applied in the end of the fourth

block. Before feeding the images to the backbones, we

follow the recent few-shot learning approaches [5, 48, 47]

to perform data augmentation, i.e., color jittering, random

crop and horizontal flip. Note that the mapping and transfor-

Dataset Classes Images Train/Val/Test

miniImageNet 100 60000 64/16/20

tieredImageNet 608 779165 351/97/160

CIFAR-FS 100 60000 64/16/20

CUB-200-2011 200 11788 100/50/50

Table 1. The statistics of the four few-shot classification bench-

marks.

mation functions fi, fg , fl and Tr are single-layer convolu-

tional networks with batch normalization and LeakyReLU.

Training. We train our model on miniImageNet, tiered-

ImageNet, CIFAR-FS and CUB-200-2011 for 200K, 200K,

100K and 100K iterations respectively. In each iteration, we

construct 28 episodes for meta-training. Adam optimizer

[13] is used in all experiments with the initial learning rate

0.001. We set the weight decay to 1e-5 and decay the learn-

ing rate by 0.1 every 15K iterations.

Evaluation. We conduct the 5-way 1-shot and 5-shot

experiments on the four benchmarks for few-shot classifi-

cation task. We follow [47, 29] to construct 10K episodes

in the meta-test and report the mean prediction accuracy of

them to measure the effectiveness of the proposed ECKPN.

4.3. Classification Results
We compare the classification results of the proposed

ECKPN with the recent state-of-the-art few-shot methods

and report the classification results of the 5-way 1-shot and

5-shot under different backbones (Conv-4 and ResNet-12)

in Table 2, 3 and 4. From these experimental results, we

have the following observations. (1) The proposed ECKPN

achieves the state-of-the-art classification results compared

with the recent methods on all four benchmarks for both the

5-shot and 1-shot setting, which demonstrates the effective-

ness of our model. Especially for the 1-shot setting on the

miniImageNet dataset, the proposed method equipped with

the Conv-4 and ResNet-12 achieves improvement of 2.88%

and 2.71% respectively compared with the second-best ap-

proach DPGN. These results demonstrate the necessity of

modeling the class-level knowledge in the few-shot classi-

fication task. (2) The proposed method achieves more im-

provements in the 1-shot setting than in the 5-shot setting.

Since the number of samples in the 5-shot setting is larger

than in the 1-shot setting, with more samples, the recent

graph-based methods can adapt to the novel classes better

based on only the sample relations, which reduces the per-

formance gain of our ECKPN. However, our ECKPN can

still achieve the improvements of 0.7%-0.8% under the 5-

shot setting on all four benchmarks.

4.4. Semi­supervised Classification Results
In this part, we apply the proposed ECKPN in the semi-

supervised classification task to further evaluate its gener-

alization ability. Specifically, we follow [12, 28] to par-

tially label the support samples with different ratios (i.e.,

20%, 40%, 60% and 100%). The label ratio 20% means that

20% labeled and 80% unlabeled support samples are used
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Method Backbone 5way-1shot 5way-5shot

MatchingNet [43] Conv-4 43.56 ±0.84 55.31 ±0.73

ProtoNet [39] Conv-4 49.42 ±0.78 68.20 ±0.66

RelationNet [41] Conv-4 50.44 ±0.82 65.32 ±0.70

Dynamic [5] Conv-4 56.20 ±0.86 71.94 ±0.57

Reptile [31] Conv-4 49.97 ±0.32 65.99 ±0.58

MAML [3] Conv-4 48.70 ±1.84 55.31 ±0.73

Meta-SGD [26] Conv-4 50.47 ±1.87 64.03 ±0.94

GNN-FSL [38] Conv-4 50.33 ±0.36 66.41 ±0.63

TPN [28] Conv-4 55.51 ±0.86 69.86 ±0.65

EGNN [12] Conv-4 - 76.34 ±0.48

TRPN [29] Conv-4 57.84 ±0.51 78.57 ±0.44

DPGN [47] Conv-4 66.01 ±0.36 82.83 ±0.41

ECKPN Conv-4 68.89±0.34 83.59±0.44

LEO [37] Others 61.76 ±0.08 77.59 ±0.12

CloserLook [15] Others 51.75 ±0.80 74.27 ±0.63

CTM [22] Others 62.05 ±0.55 78.63 ±0.06

wDAE [6] Others 61.07 ±0.15 76.75 ±0.11

AWGIM [7] Ohers 63.12 ±0.08 78.40 ±0.11

AFHN [23] Others 62.38 ±0.72 78.16 ±0.56

FEAT [48] ResNet-12 62.96 ±0.02 78.49 ±0.02

TADAM [32] ResNet-12 58.50 ±0.30 76.70 ±0.30

TapNet [50] ResNet-12 61.65 ±0.15 76.36 ±0.10

MataGAN [53] ResNet-12 52.71 ±0.64 68.63 ±0.67

Shot-Free [34] ResNet-12 59.04 ±0.43 77.64 ±0.39

SNAIL [30] ResNet-12 55.71 ±0.99 68.88 ±0.92

MTL [40] ResNet-12 61.20 ±1.80 75.53 ±0.80

MetaOptNet [19] ResNet-12 62.64 ±0.61 78.63 ±0.46

DeepEMD [52] ResNet-12 65.91 ±0.82 82.41 ±0.56

DPGN [47] ResNet-12 67.77 ±0.32 84.60 ±0.43

ECKPN ResNet-12 70.48±0.38 85.42±0.46

Table 2. Few-shot classification accuracies (%) on miniImageNet.
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Figure 3. Semi-supervised few-shot classification accuracies (%)

in 5-way 5-shot on miniImageNet.

to train the model in each episode. We compare the pro-

posed ECKPN with the recent GNN-FSL [38], EGNN [12]

and TRPN [29] equipped with Conv-4. We show the 5-way

5-shot classification results in Figure 3. As shown, the pro-

posed ECPKN achieves better performances than existing

methods under all label ratios, which demonstrates the ef-

fectiveness of capturing the class-level knowledge to guide

the inference of the query samples.

Method Backbone 5way-1shot 5way-5shot

MatchingNet [43] Conv-4 54.02 ±0.00 70.11 ±0.00

ProtoNet [39] Conv-4 53.31 ±0.89 72.69 ±0.74

RelationNet [41] Conv-4 54.48 ±0.93 71.32 ±0.70

Reptile [31] Conv-4 52.36 ±0.23 71.03 ±0.22

MAML [3] Conv-4 51.67 ±1.81 70.30 ±0.08

Meta-SGD [26] Conv-4 62.95 ±0.03 79.34 ±0.06

GNN-FSL [38] Conv-4 43.56 ±0.84 55.31 ±0.73

TPN [28] Conv-4 57.53 ±0.96 72.85 ±0.74

EGNN [12] Conv-4 - 80.15 ±0.30

TRPN [29] Conv-4 59.26 ±0.50 79.66 ±0.45

DPGN [47] Conv-4 69.43 ±0.49 85.92 ±0.42

ECKPN Conv-4 70.45 ±0.48 86.74±0.42

wDAE [6] Others 68.18 ±0.16 83.09 ±0.12

CTM [22] Others 64.78 ±0.11 81.05 ±0.13

LEO [37] Others 66.33 ±0.05 81.44 ±0.09

AWGIM [7] Others 67.69 ±0.11 82.82 ±0.13

MetaOptNet [19] ResNet-12 65.81 ±0.74 81.75 ±0.53

TapNet [50] ResNet-12 63.08 ±0.15 80.26 ±0.12

DeepEMD [52] ResNet-12 71.16 ±0.87 86.03 ±0.58

Shot-Free [34] ResNet-12 66.87 ±0.43 82.64 ±0.39

DPGN [47] ResNet-12 72.45 ±0.51 87.24 ±0.39

ECKPN ResNet-12 73.59 ±0.45 88.13 ±0.28

Table 3. Few-shot classification accuracies (%) on tieredImageNet.
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Figure 4. The visualization of the support-query similarities in 5-

way 1-shot setting. (a), (b) and (c) represent the similarities of

support and query samples in the first, third and last layers of the

comparison module. (d) denotes the ground truth support-query

similarities. The white denotes the high confidence and the black

denotes the low confidence.

4.5. Ablation Studies

In this part, we conduct more experiments to analyze the

impacts of the designed comparison module, squeeze mod-

ule, calibration module, multi-head relations, multi-modal

class representations. All experiments are conducted on the

miniImageNet for the 5-way 1-shot classification task.

Impact of the comparison module. In the comparison

module, we exploit L message passing layers to update the

sample representations. In this part, we perform experi-

ments to show the impact of the layer numbers. As shown

in Figure 5 (b), with the increase of the layer number, the

classification accuracy increases at first and then keeps sta-

ble. Therefore, we set the number of the layers to 6 (i.e.,

L = 6) in this paper. Furthermore, we visualize the similar-

ities of support and query samples in the first, third and last

layers of the comparison module in Figure 4. As shown, the

proposed ECKPN can characterize the support-query simi-

larities better with more message passing layers used in the

comparison module, which qualitatively illustrates the ef-
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CUB-200-2011

Method Backbone 5way-1shot 5way-5shot

ProtoNet [39] Conv-4 51.31 ±0.91 70.77 ±0.69

RelationNet [41] Conv-4 62.45 ±0.98 76.11 ±0.69

MatchingNet [43] Conv-4 61.16 ±0.89 72.86 ±0.70

MAML [3] Conv-4 55.92 ±0.95 72.09 ±0.76

DN4 [24] Conv-4 53.15 ±0.84 81.90 ±0.60

CloserLook [15] Conv-4 60.53 ±0.83 79.34 ±0.61

DPGN [47] Conv-4 76.05 ±0.51 89.08 ±0.38

ECKPN Conv-4 77.20 ±0.36 89.72 ±0.31

DeepEMD [52] ResNet-12 75.65 ±0.83 88.69 ±0.50

TADAM ResNet-12 72.00 ±0.70 84.20 ±0.50

FEAT [48] ResNet-12 68.87 ±0.22 82.90 ±0.15

DPGN [47] ResNet-12 75.71 ±0.47 91.48 ±0.33

ECKPN ResNet-12 77.43±0.54 92.21 ±0.41

CIFAR-FS

Method Backbone 5way-1shot 5way-5shot

ProtoNet [39] Conv-4 55.5 ±0.7 72.0 ±0.6

RelationNet [41] Conv-4 55.0 ±1.0 69.3 ±0.8

MAML [3] Conv-4 58.9 ±1.9 71.5 ±1.0

R2D2 [1] Conv-4 65.3 ±0.2 79.4 ±0.1

DPGN [47] Conv-4 76.4 ±0.5 88.4 ±0.4

ECKPN Conv-4 77.5±0.4 89.1 ±0.5

DeepEMD [52] ResNet-12 46.47 ±0.8 63.22 ±0.7

MetaOpNet [19] ResNet-12 72.0 ±0.7 84.2 ±0.5

Shot-Free [34] ResNet-12 69.2 ±0.4 84.7 ±0.4

DPGN [47] ResNet-12 77.9 ±0.5 90.2 ±0.4

ECKPN ResNet-12 79.2±0.4 91.0 ±0.5

Table 4. Few-shot classification accuracies (%) on CUB-200-2011

and CIFAR-FS.

fectiveness of the designed comparison module.

Impact of the squeeze and calibration modules. In

this paper, we design the squeeze and calibration modules

to explicitly learn the class-level knowledge to guide the in-

ference of the query samples. Therefore, it is necessary for

us to quantitatively evaluate the effectiveness of these two

modules in improving the classification accuracy. We list

the classification results of None-Calibrate and None-Class

in Table 5, where the None-Calibrate denotes the variant

of our model without the calibration module, i.e., directly

using the class-level knowledge generated in the squeeze

module to guide the inference, and the None-Class denotes

the variant of our model without the squeeze and calibra-

tion modules, i.e., directly using the pairwise relations in

the comparison module for inference. Compared with the

proposed ECKPN, the classification accuracy of the None-

Calibrate decreases by 0.65% and 0.72% when using the

backbone of Conv-4 and ResNet-12, respectively. Simi-

larly, the classification accuracy of the None-class decreases

by 1.57% and 1.36% when using the backbone of Conv-4

and ResNet-12, respectively. These results show the effec-

tiveness of the designed squeeze and calibration modules.

Impact of the multi-head relations. To study the ef-

fects of multi-head relations, we show the classification re-

sults of the proposed ECKPN with different head numbers

Method Conv-4 ResNet-12

None-Calibrate 68.24 69.76

Non-Class 67.32 69.12

Non-Z 68.53 69.97

Non-V 68.16 69.61

ECKPN 68.89 70.48

Table 5. The impacts of the squeeze module, the calibration mod-

ule and the multi-modal class-knowledge in the proposed ECKPN.
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Figure 5. The classification results under different head and layer

numbers in 5-way 1-shot on miniImageNet.

(i.e., K denotes the number of chunks used to separate the

visual features.) in Figure 5 (a). As shown, the head number

influences the classification results obviously. To trade-off

between the accuracy and complexity, we build the 8-head

relations for message passing in the comparison module.

Impact of the multi-modal class knowledge. To study

the effect of the multi-modal class knowledge, we design

two variants of our model, None-Z and None-V. The former

denotes the model without using the semantic knowledge

Z (i.e., V
′

c in (6) is equal to Vc ) and the latter denotes the

model without using the visual knowledge Vc (i.e., V
′

c is

equal to Z ). As shown in Table 5, the proposed ECKPN

achieves performance gains of 0.3%-0.5% and 0.7-0.9%

compared with the None-Z and None-V, which demon-

strates the importance of the constructed multi-modal class-

level knowledge.

5. Conclusion
In this work, we propose a novel Explicit Class Knowl-

edge Propagation Network (ECKPN) for the transductive

few-shot classification task. Our ECKPN stacks three elab-

orately designed modules of comparison, squeeze and cal-

ibration to explicitly explore the class-level knowledge.

We leverage the generated class-level knowledge represen-

tations to guide the inference of the query samples and

achieve the state-of-the-art classification performances on

four benchmarks, which illustrates the effectiveness of the

proposed ECKPN. In the future, we would like to extend

our model for incremental few-shot learning.
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