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Abstract

Detecting spliced images is one of the emerging chal-

lenges in computer vision. Unlike prior methods that focus

on detecting low-level artifacts generated during the ma-

nipulation process, we use an image retrieval approach to

tackle this problem. When given a spliced query image, our

goal is to retrieve the original image from a database of

authentic images. To achieve this goal, we propose rep-

resenting an image by its constituent objects based on the

intuition that the finest granularity of manipulations is of-

tentimes at the object-level. We introduce a framework, ob-

ject embeddings for spliced image retrieval (OE-SIR), that

utilizes modern object detectors to localize object regions.

Each region is then embedded and collectively used to rep-

resent the image. Further, we propose a student-teacher

training paradigm for learning discriminative embeddings

within object regions to avoid expensive multiple forward

passes. Detailed analysis of the efficacy of different feature

embedding models is also provided in this study. Extensive

experimental results show that the OE-SIR achieves state-

of-the-art performance in spliced image retrieval.

1. Introduction

With the proliferation of social media platforms and the

availability of user-friendly image editing software, adver-

saries can now easily share spliced images on the Inter-

net and reach millions of people with malicious intent to

spread misinformation, disrupt democratic processes, and

commit fraud. The ability to detect such spliced images

is thus an increasingly important research area. Most ex-

isting work learns a mapping function between a spliced

image and its corresponding label map, where each pixel

in the map denotes whether the pixel has been modified or

not [6, 28, 59, 76]. However, such training strategies re-

quire dense pixel-level annotations, which are expensive to

obtain and thus prevent their abilities to scale. In this pa-

*Work done during author was in Facebook AI.
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Figure 1. Three different types of image retrieval tasks. (a) The

traditional image retrieval algorithm tries to retrieve near-duplicate

images using low-level image statistics. (b) Instance retrieval tries

to retrieve the same instance (e.g. building) under different view-

point, illumination, and occlusion. (c) Spliced image retrieval

(SIR) tries to retrieve authentic images used to create the spliced

query image. Results from SIR contain images with large varia-

tion, so it is difficult to learn a single embedding that is suitable

for the SIR task.

per, we formulate splicing detection as an image retrieval

task: given a spliced query image and a large-scale image

database, our goal is to retrieve images in the database that

are authentic versions of the query image. We describe this

as Spliced Image Retrieval (SIR) problem. Once the orig-

inal images are retrieved, we can then localize the spliced

regions in these images by comparing the query and the re-

trieved images.

In contrast to traditional image retrieval which usually

focuses on retrieving near-duplicate images or images con-

taining specific instances, SIR focuses on retrieving au-

thentic images that were used to create the query. Fig-

ure 1 shows examples of near-duplicate retrieval, instance

retrieval, and SIR. As shown in the figure, SIR faces a

different set of challenges compared to near duplicate or

instance retrieval task. First, the query image may con-
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tain both manipulated as well as non-manipulated regions

(cf. Figure 1 (c-1)). When comparing with images in the

database, the query image should be region-specific rather

than using the entire image as in many current image re-

trieval systems [5, 21, 49, 22]. Secondly, retrieved images

may not overlap and query expansion [12], a common prac-

tice in this research area, does not apply. Using Figure 1

(c-1) as an example, if we were to use the first image to do

query expansion, we might retrieve more images of simi-

lar lions and horses but we will not be able the retrieve the

image of the cat running in the snow since two images do

not share any overlapping content. Third, the query image

and the authentic image might have extreme diverse back-

grounds (cf. Figure 1 (c-2)), which may cause traditional

image retrieval algorithms to fail.

To mitigate these issues, we take advantage of recent ad-

vances in object detection [14, 53, 23] and propose Object

Embeddings for Spliced Image Retrieval (OE-SIR). Instead

of using a single global representation, OE-SIR generates

object-level representations per object region that is then

collectively used to represent the image. By representing an

image at object-level granularity, and assuming that image

manipulations are frequently done by manipulating objects

(e.g., faces, logos, etc.), we can extract similar object em-

beddings from both spliced and authentic images, achieving

the purpose of SIR.

Given detected objects, the next challenge lies in deriv-

ing robust feature representations for the task of spliced im-

age retrieval. It is appealing to directly use features from

detection networks as such embeddings are trained with ad-

ditional location information and it is computationally ef-

ficient with a single forward pass. However, while exten-

sive studies have been conducted on image retrieval, most

of them were focused only on embeddings provided by clas-

sification networks [5, 1, 64, 4, 21, 72]. In light of this, we

provide a detailed analysis of embeddings derived from dif-

ferent pre-trained object detectors, and compare them with

image classification models. Our analysis shows that even

though the object detection networks are trained with ad-

ditional annotations, the resulting embeddings are signifi-

cantly worse than those from classification models for im-

age retrieval. This suggests a computationally expensive

two-step process for SIR—detecting objects with object de-

tectors and then encode them with pretrained classification

models.

We propose a student-teacher training regime to explore

the best of both worlds for computational efficiency, i.e., re-

liable bounding boxes produced by detectors and discrimi-

native features computed with classification models. This is

achieved by training a lightweight student network on top of

the detection model that projects feature maps of the detec-

tion model into a more discriminative feature space guided

by the teacher model. The student network decouples fea-

ture learning from localization, preserving the discrimina-

tive power of the features for classification.

The contributions of this work include: (1) We introduce

the task of spliced image retrieval and propose OE-SIR that

derives object-level embeddings. (2) We provide a detailed

analysis of embeddings extracted from different pre-trained

models and show that embeddings extracted from object de-

tection models are less discriminative than those from im-

age classification models. (3) We show that OE-SIR can

outperform traditional image retrieval baseline and achieve

significantly better results with two SIR datasets. (4) OE-

SIR demonstrates state-of-the-art performance in detecting

spliced regions by utilizing the original image.

2. Background and Related Work

Image forensics. Finding manipulated images is an im-

portant topic in media forensics research. Traditional ap-

proaches [70, 40, 18] usually focus on finding low-level ar-

tifacts in the manipulated images. Recently, with the suc-

cess of deep learning in computer vision, many people also

turn to deep learning algorithms [76, 28, 6, 59, 69] to detect

manipulated images. Specifically, Zhou et al. [76] utilize

object detection framework [53] to detect manipulated re-

gion in images. In contrast to their approach, we use an

object detection framework for learning object embeddings

and use the embeddings to retrieve spliced images. Most

previous approaches try to detect manipulation from a sin-

gle image. There are a few recent studies focusing on prove-

nance analysis [43], constructing a graphical relationship of

all manipulated images. However, these approaches usually

treat detecting manipulated content as a segmentation task,

which requires dense annotations as supervision. In this pa-

per, we formulate the problem as a retrieval task without the

need to use pixel-level annotations.

Content-based image retrieval. Image retrieval aims to

identify relevant images from an image database given a

query image based on the image content. Early work [57]

used global color and texture statistics such as color his-

togram and Gabor wavelet transform to represent the image.

Later advances on instance retrieval using local features

[39] and indexing methods [62, 30, 31] achieved robust-

ness against illumination and geometric variations. With

the recent broad adoption of convolutional neural networks

(CNN), different techniques have been proposed for global

feature extraction [5, 4, 64, 1, 21, 49, 22], local feature ex-

traction [45, 42, 73], embedding learning [44, 68, 65, 19],

as well as geometric alignment [54, 55, 41] using deep net-

works. Zheng et al. [74] provide a comprehensive review of

recent approaches towards image retrieval. Different from

traditional image retrieval using either global features or lo-

cal features, our approach generates a few discriminative

object embeddings utilizing object detection models and it
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is aiming for SIR.

Representation learning from large-scale datasets. Pre-

vious works mainly studied the transferability of embed-

dings extracted from classification models that have been

trained on datasets such as ImageNet to other tasks [15, 60,

71, 27, 2, 33]. For instance, [60] reports comprehensive

results of applying embeddings from the ImageNet-trained

classification model to object detection, scene recognition,

and image retrieval. In contrast, the efficacy of embeddings

obtained from object detection models trained on large-

scale datasets such as COCO [37] and OpenImages [35] has

not been widely studied. In this work, we provide an anal-

ysis of embeddings extracted from different models pre-

trained on large-scale datasets for the retrieval task.

Object detection aims to detect different objects in an in-

put image. Girshick et al. [20] proposed one of the first deep

learning based object detection models, R-CNN, which im-

proved the accuracy significantly compared to traditional

methods [13, 17, 14]. Since then many enhancements

[53, 52, 36, 61] have been made to improve the accuracy

as well as the training/inference time. Teichmann et al.

[63] utilized a specialized landmark detection model to ag-

gregate deep local features [45] for landmark retrieval. A

comprehensive survey of recent deep learning based object

detection methods can be found in [38]. By taking advan-

tage of recent success in object detection, our model can

learn discriminative object-level embeddings for image re-

trieval. Joint detection and feature extraction has recently

been used for person search tasks [9, 16]. However, these

approaches requires annotations of bounding boxes as well

as fine-grained person identities in the boxes. Therefore,

these approaches can not directly apply to our task.

Knowledge distillation [7, 3, 26, 56, 10] compress a com-

plex model into a simpler one while maintaining the ac-

curacy of the model. Bucilua et al. [7] first proposed to

train a single model to mimic the outputs of an ensemble

of models. Ba et al. [3] adopted a similar idea to compress

deep neural networks. Hinton et al. [26] further generalized

the idea with temperature cross-entropy loss. Our student-

teacher approach is related to knowledge distillation, which

learns a simple student model to mimic the output of a com-

plex one. What is different is that we leverage a detec-

tion network to provide additional guidance during training,

which we show is effective for training the student network.

3. Method

Given an image, our goal is to learn a feature embed-

ding which models the image at the object-level such that it

can be used to detect whether an object is spliced. Figure 2

shows the overview of our proposed OE-SIR framework.

First, an object index is built with all available authentic

images using the object embedding network described in

OE-NET (3.1) OE Index

Object NN 

Search

Image Splicing 

Localization (3.2)
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Figure 2. Overview of the proposed OE-SIR framework. A set of

authentic images go through the proposed object embedding net-

work (OE-NET) to build an object index offline. When a query

image comes in, it first goes through the same network to ex-

tract object embeddings, and these embeddings are used to retrieve

the authentic image with the object-level nearest neighbor search.

Once the original image is retrieved, we can compare it with the

query images to localize the spliced region.

Section 3.1. When a query image arrives, an object embed-

ding is computed with the same network, and then used to

perform an object-level nearest neighbor search to retrieve

authentic images. Finally, by comparing the query image

with retrieved authentic images, we can localize the spliced

region as described in Section 3.2.

3.1. Object Embedding Network (OE­NET)

Object Detection and Feature Extraction Model. The

first step of OE-SIR is to train an object detection model Mo

and a feature extraction model Mf :

B,S = Mo(I), C = Mf (I), (1)

where B ∈ Rn×4 denotes the bounding box coordinates

for n predicted objects in an image I , S ∈ Nn is the ob-

ject index, and C ∈ Rw×h×d is a convolution feature map.

In addition, w, h, d is the width, height and the number of

channels of the feature map. We adopt the Faster-RCNN

[53] object detection framework by minimizing the follow-

ing multi-task loss during training for Mo:

L({pi}, {ti}) =
1

Ncls

∑

i

Lcls(pi, p
∗

i )+ (2)

λ
1

Nreg

∑

i

p∗iLreg(ti, t
∗

i ), (3)

where Lreg is the bounding box regression loss and Lcls

is the classification loss, pi, p
∗

i are the predict class label

and ground truth label; ti, t
∗

i are the predict box label and

ground truth. The loss is minimized with SGD on standard

detection datasets.
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Figure 3. Configuration of the proposed object embedding net-

work. The image first goes through object detector (Mo) to extract

object bounding boxes, and a separate feature network (Mf ) to ex-

tract discriminative feature map. We then use the detected bound-

ing boxes to extract object embeddings from the feature map with

ROIAlign layer.

For Mf , since we do not have additional training

data available, we utilize a pre-trained image classification

model (i.e., ResNet [24]) as our feature extraction network.

We provide a detailed analysis of how we select our feature

extraction model in Section 4.1. After both detection and

feature extraction model are trained, we can extract object-

level embeddings using the ROIAlign layer [23] with B as

hard attention over the feature map C:

X = ROIAlign(C,B), (4)

where X ∈ R(n×d) are object embeddings of the image,

which contain n predicted objects.

While it is possible to use a shared model for both ob-

ject detection and feature extraction, we find that training

two separate models provides many benefits. First, as we

show in Section 4.1, jointly learning classification and lo-

calization reduces the discriminative power of the embed-

dings. Therefore, separate models ensure that we have bet-

ter embeddings for retrieval. Second, since the detection

model and the feature extraction model are independent, we

can change the feature extraction model for a different task

without retraining the object detection model. However, de-

spite these advantages, such a two-step process is compu-

tationally expensive, requiring two forward passes for the

same image. This limits the deployment of such models in

resource-constrained environments such as mobile devices,

robots, etc.

Efficient Object Embeddings Extraction. We now in-

troduce how to use a single model which explores the best

of both worlds—robust bounding box detection with ob-

ject detectors and discriminative feature computation with

a classification model—such that given an image, object-

embeddings can be efficiently computed with a single for-

ward pass. Towards this goal, we use knowledge distillation

[26] to save computation. One straightforward way is to

train a student network completely from scratch to mimic

the outputs of the classification model. However, this de-

Bottleneck

Bottleneck

Bottleneck

Teacher

(Mf)

Detector

(Mo)

MSE Loss

Student

Input Image (I)

Figure 4. Knowledge distillation with the student network.

Lightweight student network (f ) utilize the information from de-

tector backbone to learn discriminative feature map from the

teacher network with mean square loss. Once the student model

is trained, we can use single forward pass to extract discriminative

object embeddings.

feats the purpose of using a single model and neglects use-

ful information from the backbone of the detector. Instead,

we introduce a guided framework by using features from

the detection backbone to train a student model.

More specifically, we consider the classification model

as a teacher and we attach a lightweight branch to the de-

tector as a student model to approximate outputs from the

teacher model. The reasons for using a parallel branch as

the student network are two-fold: (1) we wish to reuse infor-

mation from detector backbones to guide the training of the

student model; (2) the student network can produce discrim-

inative features for retrieval task while preserving the ability

of the main detector branch to generate accurate bounding

boxes.

Formally, given an image I , the student network

f(F I
2 , F

I
3 , F

I
4 ; θs) is a lightweight model parameterized by

the weight θs. It takes as inputs feature maps after the sec-

ond residual stage of the detector model F I
i to approximate

the outputs of the classification model Mf (I) with three

bottleneck convolutional layers. We denote the outputs of

the i-th (i ∈ {1, 2, 3}) bottleneck-layer as yi. To effectively

leverage information from the multi-scale feature maps of

the detector model, before feeding yi to the next layer, we

modify it in an addition manner:

yi = yi + F I
i+2, if 1 ≤ i ≤ 2, (5)

where F I
i+2 denotes the outputs of the feature maps of the

3-rd (i = 1) and 4-th (i = 2) residual stage of the detector.

Here, we assume the guidance has the same dimension as

the layer output of the student model. For different dimen-

sions, a linear transformation is applied to map them into

the same space. Finally, the outputs of the student network

are used to approximate the classification model by mini-
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mizing the following mean-squared loss:

min
θs

∑

I

||f(F I
2 , F

I
3 , F

I
4 ; θs)−Mf (I)||2. (6)

Since the student model is optimized with multi-scale

guidance from the detector, it can utilize both high-level

and low-level features to learn discriminative features ef-

ficiently.

3.2. Spliced Image Retrieval and Localization

Given a query image represented by n object embed-

dings Iq = {xq
1, x

q
2, ..., x

q
n}, and a database image Id =

{xd
1, x

d
2, ..., x

d
m}, the distance between the image pair is cal-

culated as the minimum distance between pairwise object

embeddings:

D(Iq, Id) = min
i,j

||xq
i − xd

j ||
2
2. (7)

Note that while we are using multiple embeddings per im-

age, m and n are usually really small and we can use quan-

tization and indexing [58] to speed up the retrieval process.

For application with 100 million images and 32 bytes per

embeddings with average eight embeddings per image, the

total storage requirement is only around 24G, which can be

easily stored in the memory of a single server.

Localization. We use Eq. 7 to retrieve the top-1 database

image, I∗d , which gives us a matching object pair:

(i, j) = argmin
i,j

||xq
i − xd

j ||
2
2. (8)

We can then use the bounding box (bi, bj) information to

estimate the geometric transformation T between the image

pair [47]. The final localization map Q can then be gener-

ated by comparing convolutional feature map:

Q = ||Mf (T (Iq))−Mf (I
∗

d )||
2
2. (9)

After comparison, we apply a threshold to Q to generate a

binary mask for localization.

4. Experimental Results

4.1. Feature Extraction Model

Harvesting data and annotations for splicing detection is

expensive, and thus OE-SIR is built upon pre-trained mod-

els that are widely available. Unlike specific tasks such as

landmark retrieval [48], where there are usually additional

sets of landmark images to train a good model, it is im-

perative that we select a good feature extraction model that

provides discriminative embeddings. Here, we first pro-

vide a detailed analysis of embeddings extracted from dif-

ferent pre-trained models trained on image classification,

Model
Train Set

ROxf RPar CUB200 Cars196
(# of Img. / Cls.)

Faster-RCNN [53] 18.7 28.3 4.1 2.4

Faster-RCNN-FPN [36] COCO 20.4 31.0 3.3 3.1

Mask-RCNN [23] (330K / 80) 20.7 33.0 3.0 2.4

Mask-RCNN-FPN [36] 34.2 48.1 2.9 3.6

ResNet50 [24]
ImageNet

40.1 57.3 21.2 11.1
(1.2M / 1K)

Faster-RCNN [53] OpenImagesV4 19.5 32.3 4.7 2.2

ResNet50 [24] (1.7M / 601) 41.2 61.2 19.3 11.0

Table 1. Image retrieval performance (mAP) with embeddings ex-

tracted from different pre-trained models for four different re-

trieval benchmarks. Even though all detection and instance seg-

mentation models are initialized with weights trained on ImageNet

classification dataset, the embeddings learned from these mod-

els perform significantly worse than embeddings learned from the

classification model.

object detection, and instance segmentation models using

four common image retrieval benchmarks.

Retrieval benchmark. We consider four datasets

for benchmarking, including USCB bird dataset [66]

(CUB200), Stanford car dataset [34] (Cars196), and two

landmark datasets, ROxford5K [48] (ROxf) and RPairs6K

[48] (RPar). For CUB200 and Cars196, we follow the

same protocol in [46] and use leave-one-out partitions to

evaluate every image in the test set. For ROxford5K and

RParis6K, we follow the medium protocol described in

[48], using 70 and 55 images as queries, 4,993 and 6,322

images as database. We use mean average precision (mAP)

to measure the performance of different embeddings.

Pre-trained models. We consider seven different pre-

trained models including (1) Faster-RCNN [53] and (2)

Faster-RCNN with feature pyramid networks [36] (Faster-

RCNN-FPN) trained on COCO [37], (3) Mask-RCNN

[23] and (4) Mask-RCNN with feature pyramid networks

(Mask-RCNN-FPN) trained on COCO with bounding box

and mask annotations, and (5) ResNet50 [24] trained on

ImageNet. To control the effect of different training data,

we also compare with (6) Faster-RCNN and (7) ResNet50

trained with the same dataset (OpenImagesV4 [35]). We

adopt open source implementation1 of Faster-RCNN and

Mask-RCNN with ResNet50 as a backbone feature extrac-

tor for all our detection and segmentation models. For all

Faster-RCNN and Mask-RCNN models, we use weights

from the ImageNet classification model to initialize the

backbone network and use the default 3× learning rate

schedule to train the models. We use images from OpenIm-

agesV4 to learn a PCA whitening matrix for post processing

[29].

During test time, we first resized the image to a maxi-

mum size of 1024 × 1024, followed by extracting features

from conv5 3 layer [24] and using max-pooling to produce

image embeddings from different pre-trained models. We

1https://github.com/facebookresearch/detectron2
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FLOPs # Params. ROxf RPar

Faster-RCNN - - 25.4 34.4

S1 1.49× 109 8.02 ×106 32.1 55.2

S2 1.13× 109 7.93 ×106 43.3 56.3

S3 1.13× 109 7.93 ×106 50.2 65.2

Teacher (ResNet50) 3.33× 109 8.54 ×106 53.4 69.7

Table 2. FLOPs, number of parameters and mAP for different stu-

dent models. The performance of the proposed S3 achieves bet-

ter performance while using fewer FLOPs and model parameters

comparing to two other baseline student model.

then use cosine similarity between embeddings for retrieval

ranking. We do not apply any post-processing tricks such

as multi-scale ensemble and query expansion except PCA

whitening.

Embeddings comparison. Table 1 shows the mean average

precision of different models when used as feature extrac-

tors on the four retrieval benchmarks. Comparing Faster-

RCNN (COCO) and Mask-RCNN (COCO), we note that

additional mask annotations decrease the performance of

the embeddings on some of the dataset, suggesting that lo-

calization constraints could hurt the retrieval performance

further. Also, by increasing the size of the training set

from COCO to OpenImagesV4, the Faster-RCNN perfor-

mance improves on some datasets but degrades on other

datasets. Most importantly, although all the models are

initialized with weights trained on ImageNet classification,

embeddings extracted from detection and segmentation

models perform significantly worse than the embeddings

from the ImageNet classification model. Even when com-

paring Faster-RCNN (OpenImages) with ResNet50 (Open-

Images) which are trained with the same training data,

but with Faster-RCNN utilizing more human annotations

(i.e., bounding boxes), embeddings learned from the clas-

sification model still significantly outperform embeddings

learned from the detection model. This suggests that enforc-

ing both classification and localization during training com-

promises the discriminative ability of the embedding. Con-

sequently, decoupling localization and classification might

be crucial for learning embeddings that are effective for im-

age retrieval as we mentioned in Section 3.1. Based on the

analysis, we select the ResNet50 classification model as our

feature extraction model for SIR.

Note that different spatial pooling techniques [48] and

post-processing steps such as dimensionality reduction [29]

have been shown to greatly affect retrieval performance.

Furthermore, embeddings from different layers of the net-

work also perform differently. We provide detailed analysis

in the supplementary material for selecting these parame-

ters.

4.2. Student Networks

We compare the student network proposed in Section 3.1

with two baseline versions: (1) S1: Lightweight network

with five bottleneck layers without any guidance informa-

tion from the detector backbone. (2) S2: Lightweight net-

work with three bottleneck layers with taken F I
2 from the

detector backbone as an input feature map. (3) S3: pro-

posed network with multi-scale inputs from the detector

backbone. See supplementary material for an illustration

of these networks. We use images from the OpenImageV4

dataset to train different student models. Note that the train-

ing of the student model is unsupervised and does not re-

quire any manual annotations. We use Adam [32] opti-

mizer with a learning rate of 1e-3 and batch size of 64 to

train all the student models for 20,000 iterations. During

inference, we use the minimum distance between pairwise

object embedding derived from the student networks to re-

trieve database images. Table 2 shows the performance of

different student models in terms of mAP as well as the

computational cost and model parameters evaluating on the

landmark dataset ROxf and RPar. S1 achieves the worst

performance and it struggles to learn discriminative embed-

dings. S2 achieves slightly better performance than S1 by

reusing the low-level feature maps from the detector. Utiliz-

ing the guidance from multi-scale feature maps of the detec-

tion model, our best student model is S3, which achieves up

to 93.5% of the original performance, but only requires one-

third of the FLOPs used by the teacher networks. Note that

mAP of the teacher model is higher than the image-level

retrieval results in Section 4.1 which demonstrates the im-

portance of utilizing object embeddings. Additional results

on landmark retrieval can be found in the supplementary

material.

4.3. Spliced Image Retrieval

To demonstrate the effectiveness of our approach for

SIR, we conduct experiments on two different benchmarks.

(1) COCO-Fake. COCO-Fake consists of 58 query images

with spliced objects generated by the method described in

[8], and 10,000 authentic images from the COCO dataset,

including images that are used to create the queries. (2)

Photoshop Image Retrieval dataset (PIR). The images are

collected from the publicly available PS-Battles Dataset

[25]. We use 70,389 spliced images as queries and 10,592

authentic images as the database. Since we mostly care

about whether we can retrieve the correct match in the top

rank, we use recall at K (R@K) as our evaluation metric,

which shows the percentage of queries that have the correct

match in the top K rank. Note that since only one image

is expected to be retrieved per query, recall at K metric is

identical to accuracy at K.

Table 3 shows retrieval results compared to different

image retrieval methods using the same ImageNet feature
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Method
COCO-Fake PIR

R@1 R@10 R@1 R@10

SPoC [4] 29.3 34.3 43.2 46.6

MAC [51] 29.3 34.8 52.6 59.9

R-MAC [64] 37.9 42.5 51.6 58.5

GeM [50] 37.9 43.7 48.2 54.2

OE-HoG [13] 43.1 48.3 49.8 53.6

OE-FasterRCNN [53] 39.7 55.1 48.7 54.8

OE-SIR (Ours) 70.7 84.5 58.6 67.7

Table 3. Performance on COCO-Fake and PIR dataset. Our ap-

proach outperforms other baseline approaches for retrieving au-

thentic images with spliced objects.

extraction model including (1) SPoC descriptors [4], (2)

maximum activations of convolutions (MAC) [51], (3) re-

gional maximum activation of convolutions (R-MAC), and

(4) generalized mean pooling (GeM) [50]. On COCO-Fake,

our model performs significantly better because all query

images are with small spliced objects and the traditional

image retrieval approach fails in this case. On PIR, where

it contains in-the-wild spliced images, our approach still

achieves better performance. Figure 5 shows some exam-

ples of the retrieval result. Figure 5 (a) are the query im-

ages; Figure 5 (b) show rank-1 retrieved results by MAC.

MAC retrieves images with similar scenes but fails to re-

trieve original images that contain the spliced objects from

the query image. Figure 5 (c) shows the rank-1 results re-

trieved by OE-SIR. More qualitative results including some

failure cases can be found in the supplementary material.

Note that while most of the examples in the dataset are

spliced for entertainment purposes, spliced images can eas-

ily be used for malicious intent to spread misinformation.

Object-level retrieval. We also compare with two addi-

tional baseline methods that utilize the same object-level

retrieval framework as the proposed method: (1) OE-HoG:

After object detection, we extract histogram of oriented

gradients [13] from each object to build object index and

use object-level HoG for retrieval. (2) OE-FasterRNN:

Directly using object features from the Faster-RCNN net-

work for object-level retrieval. By utilizing the object-level

search, simple handcraft features with object embeddings

(OE-HoG) can achieve competitive performance compare

to deep learning based image retrieval approach, which

demonstrate the importance of the object-level search. On

the other hand, OE-FasterRCNN performs worse than the

proposed method, which also confirms the finding in Sec-

tion 4.1 that jointly learning classification and localization

degrades the discriminative power of the embeddings.

Number of object embeddings. Table 4 shows the perfor-

mance of OE-SIR when using different numbers of object

embeddings. We select up to k objects in each image based

# of objects
PIR

R@1 R@10 R@100

1 54.7 62.7 69.5

2 56.1 64.6 71.1

4 57.6 66.3 72.9

8 58.6 67.7 74.1

16 58.4 67.8 74.7

Table 4. Performance of OE-SIR with different numbers of ob-

ject embeddings by varying the detection threshold. The model

with more embeddings achieves higher performance while requir-

ing more memory storage.

Method MCC F1

NOI [40] 0.172 0.269

CFA [18] 0.050 0.190

RGB-N [76] 0.334 0.379

Self-Consistency [28] 0.102 0.276

GSR-Net [75] 0.439 0.489

OE-SIR (Ours) 0.721 0.732

Table 5. Image splicing localization performance. The proposed

method significantly outperforms other state-of-the-art methods

because our model can utilize the retrieved original image to lo-

calize the spliced regions. Note that our goal is to show the ability

of image splicing localization using the retrieval approach, and our

number is not directly comparable to previous methods since we

utilize the original image.

on the confidence score of the detection model. Using more

embeddings results in a higher recall, however, it also re-

quires more memory. We found that using up to 8 object

embeddings per image is a good trade-off since it requires

a reasonable amount of memory and increasing the number

of embeddings provides little performance gain.

4.4. Image Splicing Localization

Dataset. We show the performance of image splicing local-

ization in a widely used image forensics dataset, COVER-

AGE [67] dataset. COVERAGE contains 100 spliced im-

ages with its original version generate by copy-move ma-

nipulation. The spliced objects are used to superimpose

similar objects in the original authentic images and thus are

challenging for humans to recognize visually without close

inspection. Figure 6 (a) shows some example of images in

the COVERAGE dataset.

Evaluation metrics. We use the pixel-level F1 score and

MCC as the evaluation metrics when comparing to other ap-

proaches and we follow the same measurement as [75], by

varying the prediction threshold to get a binary prediction

mask and report the optimal score over the whole dataset.

Comparisons to state-of-the-art methods. We compare

several state-of-the-art image manipulation detection al-
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(a) Query (b) MAC (c) OE-MIR (a) Query (c) OE-MIR(b) MAC OE-SIROE-SIR

Figure 5. Example images and rank one results in the PIR dataset. (a) spliced query images. (b) Rank-1 result from MAC (c) Rank-1 result

from OE-SIR. The red border indicates incorrect matches and the yellow bounding box shows the matching objects. OE-SIR can retrieve

the original images while global image embeddings fail to retrieve the correct match due to background clutter.

(a) Input (b) Localization (c) Ground-Truth

Figure 6. Qualitative results of image splicing localization on the

COVERAGE dataset. The proposed method is able to correctly

localize the spliced region by comparing the spliced image with

the retrieved original image.

gorithms including (1) NoI [40]: A noise inconsistency

method which predicts regions as manipulated where the

local noise is inconsistent with authentic regions. (2) CFA

[18]: A CFA based method that estimates the internal CFA

pattern of the camera for every patch in the image and seg-

ments out the regions with anomalous CFA features as ma-

nipulated regions. (3) RBG-N [76]: A two-stream Faster

R-CNN based approach which combines features from the

RGB and noise channel to make the final prediction. (4)

Self-Consistency [28]: A self-consistency approach that

utilizes metadata to learn features useful for manipulation

localization. The prediction is made patch by patch and

post-processing like mean-shift [11] is used to obtain the

pixel-level manipulation prediction. (5) GSR-NET [75]: a

segmentation-based approach with the generative adversar-

ial network. (6) OE-SIR: Our spliced image retrieval ap-

proach. We first retrieve from the database (cf. Eq. 7) the

top-1 database image. Following Eq. 8 and 9, we then ob-

tain the binary localization map corresponding to the top-1

image, after which we compute the MCC and F1 score. Ta-

ble 5 shows the performance of different methods. Our ap-

proach outperforms other state-of-the-art methods by a sig-

nificant margin because we can effectively utilize a database

of original images. As we can see in Figure 6 (a) many of

these spliced images are quite challenging even for a hu-

man. However, it becomes easier if we can compare it with

the original images. Figure 6 (b) shows some qualitative

results of the proposed method.

5. Conclusion

We describe an alternative approach to spliced image de-

tection by casting it as an image retrieval task. Extensive ex-

periments show the effectiveness of the proposed approach

compares to the baseline algorithm. In addition, this pa-

per provides a comprehensive analysis of features from pre-

train models, allowing for a better selection of embedding

models, which could be useful even for other tasks. Future

research direction includes analysis of the effect of different

object detectors as well as utilizing unsupervised or self-

supervised methods to learn better features for the OE-SIR

framework.
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