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Abstract

Features that are equivariant to a larger group of sym-

metries have been shown to be more discriminative and

powerful in recent studies [4, 40, 5]. However, higher-order

equivariant features often come with an exponentially-

growing computational cost. Furthermore, it remains rel-

atively less explored how rotation-equivariant features can

be leveraged to tackle 3D shape alignment tasks. While

many past approaches have been based on either non-

equivariant or invariant descriptors to align 3D shapes, we

argue that such tasks may benefit greatly from an equiv-

ariant framework. In this paper, we propose an effective

and practical SE(3) (3D translation and rotation) equivari-

ant network for point cloud analysis that addresses both

problems. First, we present SE(3) separable point convo-

lution, a novel framework that breaks down the 6D con-

volution into two separable convolutional operators alter-

natively performed in the 3D Euclidean and SO(3) spaces

respectively. This significantly reduces the computational

cost without compromising the performance. Second, we in-

troduce an attention layer to effectively harness the expres-

siveness of the equivariant features. While jointly trained

with the network, the attention layer implicitly derives the

intrinsic local frame in the feature space and generates at-

tention vectors that can be integrated with different align-

ment tasks. We evaluate our approach through extensive

studies and visual interpretations. The empirical results

demonstrate that our proposed model outperforms strong

baselines in a variety of benchmarks. Code is available at

https://github.com/nintendops/EPN PointCloud.

1. Introduction

The success of 2D CNNs stems in large part from the

ability of exploiting the translational symmetries via weight

sharing and translation equivariance. Recent trends strive

Figure 1: The core of our network is a convolution opera-

tor on point clouds, termed SE(3) separable point convolu-

tion (SPConv), that consumes features defined in the SE(3)

space and outputs per-point features that are SE(3) equivari-

ant. When the output feature is spatially pooled over the Eu-

clidean space, it becomes SO(3) equivariant, as visualized

above by projecting onto the spherical domain. Our method

also supports a faithful conversion from the equivariant fea-

ture to its invariant counterpart by using a novel attentive

fusing mechanism. Thereby, we offer a general framework

that can generate equivariant or invariant point feature de-

pending on the nature of downstream applications.

to duplicate this success to 3D domain in order to shed new

light on the 3D learning tasks. With the 3D scanning tech-

nology being the mainstream manner of measuring the real

world, point cloud arises naturally as one of the most promi-

nent 3D representations. Yet, despite its simple and unified

structure, it remains a nuisance to extend the CNN archi-

tecture to analyzing point clouds. In addition, the group

of transformations in 3D data is more complex compared

to 2D images, as 3D entities are often transformed by ar-

bitrary 3D translations and 3D rotations when observed.

Although group-invariant operators could render identical
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features even under different group transforms, it fails to

distinguish distinct instances with internal symmetries (e.g.

the counterparts of “6” and “9” in 3D scenarios regarding

rotational symmetry). In contrast, equivariant features are

much more expressive thanks to their ability to retain in-

formation about the input group transform on the feature

maps throughout the neural layers. As a result, it could be

very beneficial for point cloud features to be equivariant to

the SE(3) group of transformations while being invariant to

point permutations.

Despite the importance of deriving SE(3)-equivariant

features for point clouds, progress in this regard remains

highly sparse. The main obstacles arise in two aspects.

First, the cost of computing convolutions between 6-

dimensional functions over the entire SE(3) spaces is pro-

hibitive especially in the presence of bulky 3D raw scans.

Second, it remains challenging to fully harness the expres-

siveness of equivariant features without losing important

structural information at a low computational cost. In par-

ticular, matching any two group-equivariant features is the

prerequisite of many applications like correspondence com-

putation, pose estimation, etc. One common practice is to

compute the best relative group transformation that maxi-

mizes the similarity of the input features when the trans-

formation is applied. This typically requires solving a PnP

optimization which is quite costly considering the high di-

mensionality of the features. Another option is to fuse the

equivariant features into invariant ones via pooling opera-

tion and directly compare the invariant features to obtain

similarity. However, we argue that the naive pooling opera-

tions will inevitably discard useful features and damage the

equivariant structure of the feature.

In this paper, we strive to address both of the problems by

introducing an effective and practical framework for learn-

ing SE(3)-equivariant features of point clouds. In particular,

inspired by the spirit of “going wider” in the Inception mod-

ule [35], we first propose SE(3) separable convolution, a

novel paradigm that breaks down the naive 6D convolution

into two separable convolutional operators alternatively per-

formed in the 3D Euclidean and SO(3) spaces. Due to the

non-commutative and non-compact nature of SE(3) group,

it is non-trivial to factorize SE(3) convolution into two sepa-

rable sub-operators. We achieve this goal by first lifting the

input points to the homogeneous space. We then take ad-

vantage of the finite rotation groups such as the icosahedral

and aggregate spatially-convoluted features as functions on

the rotation groups that are processed via group convolu-

tion. The proposed SE(3) separable convolution signifi-

cantly reduces the computational cost of a SE(3) convolu-

tion and leads to practical solutions that can be deployed in

the commodity hardware.

Second, we present an attention mechanism specially tai-

lored for fusing SE(3)-equivariant features. We observe that

while the commonly used pooling operations, such as max

or mean pooling, work well in translation equivariant net-

works like 2D CNNs, they are not best suited for fusing

equivariant features in SO(3) groups. This is mostly due to

the highly sparse and non-linear structure of SO(3) features

which poses additional challenges for max/mean pooling to

maintain its unique pattern without losing too much infor-

mation. We introduce group attentive pooling (GA pooling)

to adaptively fuse rotation-equivariant features into their in-

variant counterparts. Trained together with the network, the

GA pooling layer implicitly learns an intrinsic local frame

of the feature space and generates attention weights to guide

the pooling of rotation-equivariant features.

Third, compared to invariant features, equivariant fea-

tures preserves, rather than discards, spatial structure and

therefore can be seen as a more discriminative represen-

tation. It is for this reason that translational equivariance

has been the premise for convolutional approaches for de-

tection and instance segmentation [14]. Similarly, through

the attention mechanism, the equivariant framework can be

utilized for inferring 3D rotations. We demonstrate in the

experiments that this structure significantly outperforms a

non-equivariant framework in a shape alignment task.

We validate our proposed framework on a variety of

tasks. Experimental results show that our approach con-

sistently outperforms strong baselines. We also perform ab-

lation analysis and qualitative visualization to evaluate the

effectiveness of each algorithmic component.

2. Related Work

Learning-based Point Descriptor. The seminal work

on handling irregular structure of point cloud places the

main emphasis on permutation-invariant functions [31].

Later works proposes shift equivariant hierarchical archi-

tectures with localized filters to align with the regular grid

CNNs [33, 25, 28]. Explicit convolution kernels have also

received tremendous attention in recent years. In partic-

ular, various kernel forms have been proposed, including

voxel bins [18], polynomial functions [44] or linear func-

tions [16]. Other works consider different representations of

point clouds, noticeably image projection [10, 19, 27] and

voxels [30, 2, 32, 43]. We point interested readers to [17]

for a comprehensive survey on point cloud convolution.

Rotation invariant point descriptors have been an ac-

tive research area due to its importance to correspondence

matching. While the features extracted by most of the above

approaches are permutation-invariant, very few of them can

achieve rotation-invariance. The Perfect Match [15] incor-

porates a local reference frame (LRF) to extract rotation-

invariant features from the voxelized point cloud. Simi-

larly, [46] proposes a capsule network that consumes a point

cloud along with the estimated LRF to disentangle shape

and pose information. By only taking point pair as input,
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PPF-FoldNet [8] can learn rotation-invariant descriptors us-

ing folding-based encoding of point pair features. However,

invariant features may be limited in expressiveness as spa-

tial information is discarded a priori.

Learning Rotation-equivariant Features. Since CNNs

are sensitive to rotations, a rapidly growing body of work

focus on investigating rotation-equivariant variants. Start-

ing from the 2D domain, various approaches have been pro-

posed to achieve rotation equivariance by applying multiple

oriented filters [29], performing a log-polar transform of the

input [12], replacing filters with circular harmonics [42] or

rotating the filters [26, 40]. Cohen and Welling later extend

the domain of 2D CNNs from translation to finite groups [4]

and further to arbitrary compact groups [7].

When it comes to the domain of 3D rotation, previous ef-

forts can be divided into spectral and non-spectral methods.

In the spectral branch, generalized Fourier transform for S2

and SO(3) underlies designs for rotation equivariant CNN.

We would like to highlight two seminal works [5], [11] that

define convolution operators respectively by spherical (S2)

correlation, and SO(3) correlation with circularly symmet-

ric kernels. The works most relevant to our setting are ex-

tensions of the two spectral paradigms to the 3D spatial do-

main. A number of works extend spherical CNNs to 3D

voxels grids [41, 39, 11, 20]. Yet, the research work on ex-

ploring the potential on point clouds remains sparse, with

the exception of a concurrent work Tensor field network

(TFN) [37], which achieves SE(3) equivariance on irregu-

lar point clouds. While [37] shares with us in the use of

tensor-field representation, their proposed filters are prod-

ucts of radial function and spherical harmonics. We instead

focus on a non-spectral, computationally efficient separable

framework.

Our work finds inspiration from the non-spectral group

equivariant approaches that have seen recent progress, ex-

tending from mathematical framework derived in [4, 6].

Specifically, [6] provides a general framework for the prac-

tical implementation of convolution on discretized rotation

group, with icosahedral convolution as an examplar. Dis-

crete group convolution characterizes many recent works

on images [13, 23], spherical signal [34], voxel grid [41]

and point cloud [24]. Most of these works focus only on

rotational equivariance. We are the first in this branch to

provide a unified, hierarchical framework for point cloud

convolution that is equivariant to the space of SE(3).

3. Method

Overview. In this section, we first start with the prelimi-

naries of SE(3) convolutions. We will then provide the de-

tailed mathematical formulation of our approach: (1) the

SE(3) separable convolution; and (2) attention mechanism

for the equivariant features. The Lie group SE(3) is the

group of rigid body transformations in three-dimensions:

SE(3) = {A|A =

[

R t
0 1

]

, R ∈ SO(3), t ∈ R
3}.

SE(3) is homeomorphic to R
3 × SO(3). Therefore, a func-

tion that is equivariant to SE(3) must be equivariant to both

3D translation t ∈ R
3 and 3D rotation g ∈ SO(3). Given

a spatial point x and a rotation g, let us first define the

continuous feature representation in SE(3) as a function

F(xi, gj) : R
3 × SO(3) → R

D. Equivariance to SE(3)

is expressed as satisfying ∀A ∈ SE(3), A(F ∗ h)(x, g) =
(AF ∗h)(x, g). The SE(3) equivariant continuous convolu-

tional operator can be defined as

(F ∗ h)(x, g)

=

∫

xi∈R3

∫

gj∈SO(3)

F(xi, gj)h(g
−1(x− xi), g

−1

j g), (1)

where h is a kernel h(x, g) : R3 × SO(3) → R
D. The con-

volution is computed by translating and rotating the kernel

and then computing a dot product with the input function

F . We prove that this convolution is equivariant to SE(3) in

the supplementals.

Discretization. To discretize Eq. 1, we starts with dis-

cretizing the SE(3) space into a composition of a finite set

of 3D spatial point P : {x|x ∈ R
3} and a finite rotation

group G ⊂ SO(3). This leads to a discrete SE(3) feature

mapping function F(xi, gj) : P × G → R
D. The discrete

convolutional operator in SE(3) is therefore:

(F ∗h)(x, g) =
∑

xi∈P

∑

gj∈G

F(xi, gj)h(g
−1(x−xi), g

−1

j g).

(2)

We note that such discretization serves as a good approx-

imation of the continuous formulation in Eq. 1, where the

approximation error can be further mitigated by the rotation

augmentation [1]. If we interpret P as a set of 3D displace-

ments, this leads to an equivalent definition:

(F ∗ h)(x, g) =
∑

xi∈P

∑

gj∈G

F(g−1(x− xi), g
−1

j g)h(xi, gj)

=
∑

x′

i
∈Pg

∑

gj∈G

F(x− x′
i, g

−1

j g)h(gx′
i, gj).

(3)

Without loss of generality, we assume the coordinate is

expressed in the local frame of x and therefore g−1x = x.

In the second row of Eq. 3, the summation over the set P be-

comes a summation over a rotated set Pg : {g−1x|x ∈ P}.

When written this way, we can see that the kernel is param-

eterized by a set of translation offsets and rotation offsets

under the reference frame given by g. We call the discrete

set P × G the domain of the kernel with a kernel size of

|P| × |G|.
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(a)  Naïve SE(3) convolution (b)  SE(3) point convolution (c)  SE(3) group convolution

gj

g

x

xi

SE(3) point conv

BN-ReLU

SE(3) group conv

BN-ReLU

(d) SPConv block
O(KpKgCN) O(KpCN) O(KgCN)

Figure 2: Illustration of SPConv. Each arrow represents an element in the group and each edge represents a correlation needed

to compute in the convolution operator. We propose to use two separable convolutions (b)(c) to achieve SE(3) equivariance.

The computational cost is much lower than the naive 6D convolution (a). (d) shows the structure of a basic SPConv block.

SE(3) Separable Convolution. A key issue with Eq. 3

is that the convolution is computed over a 6-dimensional

space – a naive implementation would be computational

prohibitive. Inspired by the core idea of separable convo-

lution [3], we observe that the kernel h with a kernel size

|P| × |G| can be separated into two smaller kernels, denot-

ing h1 with a kernel size of |P| × 1 and h2 with a kernel

size of 1 × |G|. This divides the domain of the kernel to

two smaller domains: P × {I} for h1, and {0} ×G for h2,

where I is the identity matrix, and 0 is a zero displacement

vector. From here, we are ready to separate Eq. 3 into two

convolutions:

(F ∗ h1)(x, g) =
∑

x′

i
∈Pg

F(x− x′
i, g)h1(gx

′
i, I) (4)

(F ∗ h2)(x, g) =
∑

gj∈G

F(x, g−1

j g)h2(0, gj) (5)

We can see that h1 is a kernel only varied by translation

in the reference frame of g, and h2 is a kernel only var-

ied by the rotation gj . In the following text, we simplify

them to h1(gx
′
i) and h2(gj). The division here matches

with the observation that the space SE(3) can be factorized

into two spaces R
3 and SO(3). Sequentially applying the

two convolutions in Eq. (4-5) approximates the 6D convo-

lution in Eq. 3 (Fig. 2(d)) while maintaining equivariance

to SE(3) (proofs provided in the supplementary materials).

The working principle here is similar to that of the Inception

module [35] and its follow-up works [3], which have shown

the promising property of separable convolutions in improv-

ing the network performance with reduced cost. We name

the two consecutive convolutions as SE(3) point convolu-

tion and SE(3) group convolution, respectively, as shown in

Fig. 2. We refer the combined convolutions as SE(3) sep-

arable point convolution (SPConv). Formally, the original

6D convolution is approximated by: F ∗h ≈ (F ∗h1) ∗h2.

A SE(3) equivariant convolutional network can be real-

ized by consecutive blocks of SPConv. The network con-

sumes the input P and produces a SE(3) equivariant feature

for the point set. Since SPConv only takes functions defined

on SE(3) as input, for each point in the input point set, we

set F(x, g) = 1 for each g ∈ G. In the following sections,

we discuss in details the form of kernel and how it can be

localized for each convolution module.

3.1. SE(3) point convolution

Our SE(3) point convolution layer aims at aggregating

point spatial correlations locally under a rotation group ele-

ment g. Let Nx = {xi ∈ P
∣

∣ ‖x − xi‖ 6 r} be the set of

neighbor points for point x, with a radius r, the SE(3) point

convolution with localized kernel is:

(F ∗ h1)(x, g) =
∑

x′

i
∈Ngx

F(x− x′
i, g)h1(gx

′
i), (6)

where Ngx = {g−1(x − xi)|xi ∈ Nx} is the set of dis-

placements to the neighbor points under a rotation g. h1 is

a kernel defined in a canonical neighbor space B3

r . Given

that the convolution is computed as a spatial correlation un-

der a rotation g, the form of the kernel can be naturally ex-

tended from any spatial kernel function. While our frame-

work is general to support various spatial kernel definitions,

we introduce two kernel formulations that are used in our

implementation.

Explicit kernels. Given kernel size K, we can define a

set of kernel points {ỹk}K evenly distributed in B3

r . Each

kernel point is associated with a kernel weight matrix Wk ∈
R

Din×Dout , where Din and Dout are the input and output

channel, respectively. Let κ(·, ·) be the correlation function

between two points, we have

h1(xi) =

K
∑

k

κ(xi, ỹk)Wk. (7)

The correlation function κ(y, ỹ) can be either linear or

Gaussian. For example, in the linear case described in [37],

κ(y, ỹ) = max(0, 1 − ‖y−ỹ‖
σ

), where σ adjusts the band-

width.

Implicit kernels. The implicit formulation gives a func-

tion on point set that does not utilize parameterized kernels
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and is generally not considered a convolutional operation.

Rather, spatial correlation is computed implicitly by con-

catenating the local frame coordinates of points to their cor-

responding features. In the SE(3) equivariant extension, the

local coordinates are also composed by a corresponding ro-

tation g. The implicit filter for the input signal F is:

h1(F(x, g)) =
∑

xi∈Nx

h1(F(xi, g), g
−1xi)

=
∑

xi∈Nx

[

F(xi, g)
g−1xi

]

W.
(8)

We believe that other choices of kernel functions can be

naturally extended from these two examples. In our imple-

mentation of the network, we use the explicit kernel formu-

lation in all convolutional layers. The last layer before the

output block of our network filters point features globally

and therefore utilizes the implicit formulation, as it scales

better to process a larger set of point features.

3.2. SE(3) group convolution

Given a discrete rotation group G, the SE(3) group con-

volution computes SO(3) correlation between the input sig-

nal and a kernel defined on the group domain.

We define a set of kernel rotation and their associate ker-

nel weight matrices as Ng = {gj ∈ G}K and {Wj ∈
R

Din×Dout}K , with the kernel size K = |Ng|. Thus the

kernel is simply h2(gj) = Wj . Our SE(3) group convolu-

tion layer aggregates information from neighboring rotation

signals within the group, which is given by

(F ∗ h2)(x, g) =
∑

gj∈Ng

F(x, g−1

j g)h2(gj). (9)

In our implementation, the icosahedron group can be

used as the discrete rotation group. The K neighbor ro-

tations are a subset of the group that is smallest in the cor-

responding angle. The computation can be accelerated by

pre-computing the permutation index and only performing

constant-time query with an index layer at run time.

Complexity analysis. As illustrated in Fig. 2, by combin-

ing the two equivariance-preserving convolutions, we can

achieve a similar effect with Eq. 2 at a significantly lower

computational cost. In particular, suppose we divide the

original number of kernels K into Kp and Kg , the number

of kernels in the point and group convolution; C = CiCo

where Ci and Co are the number of input and output chan-

nels, N = NpNa is the product of the number of points

and the number of SO(3) element in a rotation group. The

naive 6D convolution requires a computational complex-

ity of O(KpKgCN). In contrast, the complexity of our

approach is reduced to O((Kp + Kg)CN), which could

achieve orders-lower complexity compared to the naive so-

lution especially with large Kp and Kg .

3.3. Shape Matching with Attention mechanism

In this section, we demonstrate how attention mecha-

nism can be utilized to harness the power of equivariant

feature. Given spatially pooled features that are equivari-

ant to SO(3): F(g) : G → R
D, we define a rotation-based

attention A : G → R, A(g) = {ag|
∑

g∈G ag = 1}.

SO(3) Detection. Suppose a task requires the network to

predict the pose R ∈ SO(3) of an input shape. When the at-

tention weight is used as a probability score, the equivariant

network turns the pose estimation task into a SO(3) detec-

tion task, which is analogous to bounding box detection.

Intuitively, each element from the discrete rotation group

can be interpreted as an anchor. A two-branch network is

used to classify whether the anchor is the ”dominant rota-

tion”. Every anchor regresses a small rotational offset from

its corresponding rotation. The multi-task loss for rotational

regression is then given by:

L(a, u,R,Ru) = Lcls(a, u) + λ[u = 1]L2(R
uRT ) (10)

where a = {ag|g ∈ G} are the predicted probabilities and

R are the predicted relative rotations. u = {ug|g ∈ G}
is the ground-truth label with ug = 1 if g is the nearest

rotation to the target ground truth rotation RGT . Ru =
{Ru

g |∀g ∈ G,Ru
gg = RGT } is the ground truth relative

rotation.

Group Attentive Pooling. Global pooling layers are in-

tegrated as part of the network for spatial reduction of the

representation. As many common tasks, such as classifica-

tion, benefit from rotation invariance of the learned feature,

global pooling is utilized by most rotation-equivariant ar-

chitectures to aggregate information into an invariant rep-

resentation. To integrate attention mechanism with global

pooling, we propose group attentive pooling (GA pooling),

which is given by

Finv =

∑

g exp(ag/T )FG(g)
∑

g exp(ag/T )
, (11)

where FG(g) and ag are the input rotation-equivariant fea-

ture and attention weight on rotation g. T is a tempera-

ture score to control the sharpness of the function response.

As visualized in Fig. 1, the output feature is invariant given

a rotated input point cloud. The confidence weight a can

be learned by minimizing the loss L = Ltask + λLsa,
where Ltask is a task-specific loss (e.g. cross-entropy loss

for classification and triplet loss for correspondence match-

ing); Lsa is a optional cross-entropy loss that encourages

the network to learn the canonical axis from the candidate

orientations when ground truth canonical pose is available

for supervision.
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3.4. Implementation Details

The core element of our network is the SPConv block

as shown in Fig. 2(d). It consists of one SE(3) point con-

volution and one SE(3) group convolution operator, with a

batch normalization and a leaky ReLU activation inserted in

between and after. We employ a 5-layer hierarchical convo-

lutional network. Each layer contains two SPConv blocks,

with the first one being strided by a factor of 2. The network

outputs spatially pooled features that are equivariant to the

rotation group G. It can be then pooled into an invariant

feature through a GA pooling layer. For the classification

network, the feature is fed into a fully connected layer and

a softmax layer. For the task of metric learning, the feature

is processed with an L2 normalization. We provide detailed

network parameters and downsampling strategy in the sup-

plemental materials.

4. Experiments

We hypothesize that our approach is most suitable for

tasks where the objects of interest are rotated arbitrarily.

To this end, we evaluate our approach on two rotation-

related datasets: the rotated Modelnet40 dataset [43] and

the 3DMatch dataset [45]. To ensure a fair comparison to

previous works, in all experiments, we use the implementa-

tion provided by the authors or the reported statistics if no

source code is available. We provide the training details of

the experiments in the supplemental materials.

4.1. Experiments on Rotated ModelNet40

Dataset. The official aligned Modelnet40 dataset pro-

vides a setting where canonical poses are known, and there-

fore it allows us to evaluate the effectiveness of pose super-

vision. We create the rotated ModelNet40 dataset based on

the train/test split of the aligned ModelNet40 dataset [43].

We mainly focus on a more challenging “rotated” setting

where each object is randomly rotated. For each object, we

randomly subsample 1,024 points from the surface of the

3D object and perform random rotation augmentation be-

fore feeding it into the network.

Pose Estimation. The pose estimation task predicts the

rotation R ∈ SO(3) that aligns a rotated input shape to its

canonical pose. To avoid ambiguities indued by rotation-

ally symmetric objects, we only use the airplane category

from the dataset. We train the network with N=1252 air-

plane point clouds and test it with N=101 held-out point

cloud, each augmented with random rotations. The evalua-

tion compares equivariant models with KPConv [36], a net-

work that has similar kernel function to our implementation

of point convolution, while not equivariant to 3D rotation.

The equivariant models (Ours-N) are varied by the size of

rotation group (N), similar to the setting in [13], and use the

0% 20% 40% 60% 80% 100%

Error percentile

10 3

10 1

101

A
ng

ul
ar

 e
rro

r (
°)

KPConv
Ours-20
Ours-60

Figure 3: Percentile of errors comparing KPConv [36] and

two equivariant models (Ours-N) varied in number of SO(3)

elements.

Mean (◦) Median (◦) Max(◦)

KPConv [36] 11.46 8.06 82.32

Ours-20 1.36 1.16 8.30

Ours-60 1.25 1.11 6.63

Table 1: Angular errors in point cloud pose estimation.

Representation Methods Acc (%)
Retrieval

(mAP)

3D Surface
RotationNet [21] 80.0 74.2

Sph. CNN [11] 86.9 -

Point cloud

QENet [46] 74.4 -

PointNet [31] 83.6 -

PointNet++ [33] 85.0 70.3

DGCNN [31] 81.1 -

PointCNN [33] 84.5 -

KPConv [36] 86.7 77.5

Ours 88.3 79.7

Table 2: Results on shape classification and retrieval on ran-

domly rotated objects of ModelNet40.

multitask detection loss described in Sec. 3.3. KPConv di-

rectly regresses the output rotation. Each model is trained

for 80k iterations. The regressors in all models produce a

rotation in the quaternion representation. We evaluate the

performance by measuring angular errors between the pre-

dicted rotations and the ground-truth rotations. Tab. 1 shows

the mean, median and max angular errors in each setting,

and Fig. 3 plots the error percentile curves. As shown in

the results, the equivariant networks significantly outper-

form the baseline network, with Ours-60 having the lowest

errors. The equivariant networks also perform significantly

more stable (max angular errors are kept within 9 degrees),

while KPConv could produce unstable results for a certain

inputs. This experiment showcases that a hierarchical rota-

tion model can be much more effective in task that requires

direct prediction of 3D rotation.

Classification and Retrieval. The classification and re-

trieval tasks on Modelnet40 follow evaluation metric

from [43]. In addition, our network is trained with GA

pooling and pose supervision introduced in Sec. 3.3. In

Tab. 2, we show the results comparing with the state-of-the-

art methods in the setting where models are both trained and

tested with rotation augmentation. We categorize the base-
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Figure 4: Classification accuracy based on the attention confidence for each object category. The attention layer is trained on

rotated dataset to learn a canonical orientation for the given object.

conv global pool Loss Acc (%)

Separable Conv Attentive Lcls + Lsa 88.3

Separable Conv Attentive Lcls 87.7

Separable Conv Max Lcls 87.7

Separable Conv Mean Lcls 87.4

Point Conv Attentive Lcls + Lsa 86.1

Table 3: Results of ablation studies on ModelNet40 dataset.

The conv column denotes the configuration of convolution

layers. The global pool column denotes the type of global

pooling method. Loss configuration follows notation from

Sec. 3.3.

line approaches based on the input 3D representations: 3D

surface and point cloud.

In the classification and retrieval task, our models also

achieve the best performance, as shown in Tab. 2. This

indicates that our proposed framework can learn more ef-

fective and discriminative features even in the challenging

cases that all the objects are randomly rotated.

Ablation Analysis. We further conduct an ablation study

to validate the effectiveness of each algorithmic component.

In particular, we experiment with five variants of our model

by altering key designs in our network under the same archi-

tecture as shown in Tab. 3. By using the supervised attentive

pooling, we can improve the classification accuracy with the

same number of parameters compared to the max and mean

pooling. However, the unsupervised attentive pooling does

not outperform max pooling. This may be partly due to

the difficulty of learning canonical pose in an unsupervised

manner. In addition, only using point convolution will lead

to a decline in performance, indicating the effectiveness of

group convolution.

How well does the attention layer learn? It is possi-

ble that the performance of GA pooling in distinguishing

canonical poses could be compromised by the rotational

symmetry of the object. If a shape is circularly symmet-

ric, and the canonical poses prescribed by the rotational la-

bel is aligned with an axis of symmetry, the attention layer

would naturally fail to provide a deterministic prediction.

We summarize the classification accuracy based on the at-

tention confidence for each category of ModelNet objects,

as shown in Fig. 4. The results indeed support our intu-

ition: the attention layer is ambiguous on objects with cir-

cular symmetry (e.g. cone and flower pot) and very con-

fident on categories that have distinctive canonical orienta-

tion. On one hand, this shows that when the object of in-

terest is asymmetric in rotation, the GA pooling does help

improve classification performance by establishing a local

reference frame. On the other hand, the GA pooling only

fails at symmetric object that benefits relatively less from a

equivariant representation. In the extreme case, the atten-

tion layer could be reduced to an average pooling.

4.2. Shape Alignment on 3DMatch

Dataset. The 3DMatch dataset is a real-scan dataset con-

sisting of 433 overlapping fragments from 8 indoor scenes

for evaluation, and RGB-D data set from 62 indoor scenes

for training. The pose of each fragment is determined by

the camera angle during capturing, and two fragments at

most overlap partially. Evaluating our model on this dataset

is meaningful as shape registration in such setting would

benefit from descriptors that are invariant to rigid camera

motion. Each test fragment is a densely sampled point

cloud with 150,000 to 600,000 points. To be consistent

with our baselines, we use an evaluation metric based on

the average recall of keypoints correspondence without per-

forming RANSAC, following [9]. We also follow previous

works [8, 9, 15] to set the matching threshold τ1 = 0.1m
and the inlier ratio τ2 = 0.05.

Comparison with baselines. We designed a Siamese net-

work for this task and trained our model with the batch-

hard triplet loss proposed in [15]. The input to the network

is 1024-point patches extracted locally from keypoints in a

fragment. The output is 64-dim invariant descriptors. Since

a canonical ground truth pose is not known in this setting,

the attentive pooling module in our model is trained in an

unsupervised manner. Our results are shown in Tab. 4. To

provide a comprehensive comparison, we select the state-
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SHOT[38] 3DMatch[45] CGF[22] PPFNet[9] PPFF[8] 3DSNet[15] Li[27] Li[27]♭ Ours

Kitchen 74.3 58.3 60.3 89.7 78.7 97.5 92.1 99.4 99.0

Home 1 80.1 72.4 71.1 55.8 76.3 96.2 91.0 98.7 99.4

Home 2 70.7 61.5 56.7 59.1 61.5 93.2 85.6 94.7 96.2

Hotel 1 77.4 54.9 57.1 58.0 68.1 97.4 95.1 99.6 99.6

Hotel 2 72.1 48.1 53.8 57.7 71.2 92.8 91.3 100.0 97.1

Hotel 3 85.2 61.1 83.3 61.1 94.4 98.2 96.3 100.0 100.0

Study 64.0 51.7 37.7 53.4 62.0 95.0 91.8 95.5 96.2

MIT Lab 62.3 50.7 45.5 63.6 62.3 94.1 84.4 92.2 93.5

Average 73.3 57.3 58.2 62.3 71.8 95.6 91.0 97.5 97.6

Table 4: Comparisons of average recall of keypoint correspondences on 3DMatch. Li [27]♭ denotes results tested with point

normal information provided by the authors. All other results are tested on the official 3DMatch evaluation set without point

normals.

of-the-art baselines using a variety of approaches: 1) convo-

lutional network without rotational invariance, e.g. [45, 9]

2) handcrafted invariant features w/ and w/o deep learning,

e.g. [22, 38, 8], 3) features learned from LRF aligned in-

put [15], and 4) multi-view network [27]. We report the

64-dim results of [15] to match the feature dimension of

our model. Since the official 3DMatch test dataset does

not contain point normal information, we report two results

of [27]: a result of their model trained and tested with-

out normal information (Li [27] in Tab. 4) and one that is

trained and tested with the authors’ provided point normals

(Li [27]♭ in Tab. 4). We evaluate our model with the interest

points provided by the authors of the dataset, which is con-

sistent with the reported results of our baselines. Overall,

our model outperforms all of the baselines in average recall,

without the need to precompute an invariant representation

or a local reference frame. Compare to some baselines (e.g.

[8, 27]) that requires dense point input, our model can learn

discriminative features from very sparsely sampled sets of

1024 point. Our result is also better than the state-of-the-art

method [27], even without needing normal information as

input. In the official setting where point normal informa-

tion is not available, the performance of our model marks a

great leap forward.

Figure 5: T-SNE visualization of features learned by our

network. Each column contains a pair of fragments from the

same scene. Regions in correspondence are automatically

labeled with similar features.

Qualitative analysis. We provide a T-SNE visualization

of the features learned by our network in Fig. 5. As differ-

ent features are labeled with distinct colors, we can observe

that the features learned by our network can robustly gener-

ate correct geometry correspondences even when the point

cloud is incomplete, partially aligned, or significantly ro-

tated. For instance, in the third column, the bottom scene is

only partially aligned with the top one and is viewed at an

entirely different angle, our network can still reliably label

the corresponded points with similar features.

5. Conclusions and Discussions

We have presented a novel framework that efficiently

computes and leverages SE(3)-equivariant features for point

cloud analysis. First, we introduce a novel formulation

named SE(3) separable convolution that factorizes the naive

SE(3) convolution into two concatenated operators per-

formed in two subspaces. Second, we propose the incorpo-

ration of attention mechanism that can appreciate and main-

tain the expressiveness of SE(3)-equivariant features, which

provides a novel way for 3D alignment tasks and can be

used as a pooling layer that fuses the equivariant features

into their more ready-to-use invariant counterparts. Such

paradigm has led to leaps of performance in a variety of

challenging tasks. Our approach is one of the earliest at-

tempts of investigating SE(3)-equivariant features for point

cloud analysis. We believe there are still ample opportuni-

ties for more efficient methods and extension of the equiv-

ariant features to a broader range of applications.
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