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Abstract

In this paper, we focus on category-level 6D pose and

size estimation from a monocular RGB-D image. Previ-

ous methods suffer from inefficient category-level pose fea-

ture extraction, which leads to low accuracy and inference

speed. To tackle this problem, we propose a fast shape-

based network (FS-Net) with efficient category-level fea-

ture extraction for 6D pose estimation. First, we design an

orientation aware autoencoder with 3D graph convolution

for latent feature extraction. Thanks to the shift and scale-

invariance properties of 3D graph convolution, the learned

latent feature is insensitive to point shift and object size.

Then, to efficiently decode category-level rotation informa-

tion from the latent feature, we propose a novel decoupled

rotation mechanism that employs two decoders to comple-

mentarily access the rotation information. For translation

and size, we estimate them by two residuals: the difference

between the mean of object points and ground truth trans-

lation, and the difference between the mean size of the cate-

gory and ground truth size, respectively. Finally, to increase

the generalization ability of the FS-Net, we propose an on-

line box-cage based 3D deformation mechanism to augment

the training data. Extensive experiments on two benchmark

datasets show that the proposed method achieves state-of-

the-art performance in both category- and instance-level

6D object pose estimation. Especially in category-level

pose estimation, without extra synthetic data, our method

outperforms existing methods by 6.3% on the NOCS-REAL

dataset 1.

1. Introduction

Estimating 6D object pose plays an essential role in

many computer vision tasks such as augmented reality

1The code is at https://github.com/DC1991/FS-Net

R
G
B

D
e
p
th

CNN

+

3
D
	s
e
g
m
e
n
ta
ti
o
n
	&

A
u
to
e
n
co
d
e
r

Rot
aixs2

RGB-based

Rot
aixs1

Shape-based

Translation

& size

La
te
n
t

fe
a
tu
re

Residual-based

3D	

mask

3
D
d
e
fo
rm

a
ti
o
n

Figure 1. FS-Net comprises different networks for different tasks.

The RGB-based network is used for 2D object detection, and the

shape-based network is used for 3D segmentation and rotation es-

timation. The residual-based network is used for translation and

size estimation with segmented points.

[19, 20], virtual reality [2], and smart robotic arm [46, 35].

For instance-level 6D pose estimation, in which training set

and test set contain the same objects, huge progress has

been made in recent years [41, 28, 21, 15, 10]. However,

category-level 6D pose estimation remains challenging as

the object shape and color are various in the same category.

Existing methods addressed this problem by mapping the

different objects in the same category into a uniform model

via RGB feature or RGB-D fusion feature. For example,

Wang et al. [40] trained a modified Mask R-CNN [9] to pre-

dict the normalized object coordinate space (NOCS) map of

different objects based on RGB feature, and then computed

the pose with observed depth and NOCS map by Umeyama

algorithm [36]. Chen et al. [4] proposed to learn a canonical

shape space (CASS) to tackle intra-class shape variations

with RGB-D fusion feature [39]. Tian et al. [34] trained a

network to predict the NOCS map of different objects, with

the uniform shape prior learned from a shape collection, and

RGB-D fusion feature [39].

Although these methods achieved state-of-the-art perfor-

mance, there are still two remaining issues. Firstly, the
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benefits of using RGB feature or RGB-D fusion feature for

category-level pose estimation are still questionable. Vlach

et al. [37] showed that people focus more on shape than

color when categorizing objects, as different objects in the

same category have very different colors but stable shapes

(shown in Figure 3). Thereby the use of RGB feature for

category-level pose estimation may lead to low performance

due to huge color variation in the test scene. For this issue,

to alleviate the color variation, we merely use the RGB fea-

ture for 2D detection while using the shape feature learned

with point cloud extracted from depth image for category-

level pose estimation.

Secondly, learning a representative uniform shape re-

quires a large amount of training data. Therefore, the per-

formance of these methods is not guaranteed with limited

training examples. To overcome this issue, we propose a 3D

graph convolution (3DGC) autoencoder [18] to effectively

learn the category-level pose feature via observed points re-

construction of different objects instead of uniform shape

mapping. We further propose an online box-cage based 3D

data augmentation mechanism to reduce the dependencies

of labeled data.

In this paper, the newly proposed FS-Net consists of

three parts: 2D detection, 3D segmentation & rotation es-

timation, and translation & size estimation. In 2D detection

part, we use the YOLOv3 [30] to detect the object bound-

ing box for coarse object points obtainment [6]. As to the

3D segmentation & rotation estimation part, we design a

3DGC autoencoder to perform segmentation and observed

points reconstruction jointly. The autoencoder encodes ori-

entation information in the latent feature. Then we propose

the decoupled rotation mechanism that uses two decoders to

decode the category-level rotation information. For transla-

tion and size estimation, since they are all point coordinates

related, we design a coordinate residual estimation network

based on PointNet [26] to estimate the translation residual

and size residuals. To further increase the generalization

ability of FS-Net, we use the proposed online 3D deforma-

tion for data augmentation. To summarize, the main contri-

butions of this paper are as follows:

• We propose a fast shape-based network to estimate

category-level 6D object size and pose. Due to the effi-

cient category-level pose feature extraction, the frame-

work runs at 20 FPS on a GTX 1080 Ti GPU.

• We propose a 3DGC autoencoder to reconstruct the

observed points for latent orientation feature learning.

Then we design a decoupled rotation mechanism to

fully decode the orientation information. This decou-

pled mechanism allows us to naturally handle the cir-

cle symmetry object (in Section 3.3).

• Based-on the shape similarity, we propose a novel box-

cage based 3D deformation mechanism to augment the

training data. With this mechanism, the pose accuracy

of FS-Net is improved by 7.7%.

2. Related Works

2.1. Instance­Level Pose Estimation

In instance-level pose estimation, a known 3D object

model is usually available for training and testing. Based

on the 3D model, instance-level pose estimation can be

roughly divided into three types: template matching based,

correspondences-based, and voting-based methods. Tem-

plate matching methods [11, 29, 21] aligned the template

to the observed image or depth map via hand-crafted or

deep learning feature descriptors. As they need the 3D

object model to generate the template pool, their appli-

cations in category-level 6D pose estimation are limited.

Correspondences-based methods trained their model to es-

tablish 2D-3D correspondences [28, 29, 23] or 3D-3D cor-

respondences [6, 5]. Then they solved perspective-n-point

and SVD problem with 2D-3D and 3D-3D correspondences

[13], respectively. Some methods [5, 1] also used these cor-

respondences to generate voting candidates, and then used

RANSAC [8] algorithm for selecting the best candidate.

However, the generation of canonical 3D keypoints is based

on the known 3D object model that is not available when

predicting the category-level pose.

2.2. Category­Level Pose Estimation

Compared to instance-level, the major challenge of

category-level pose estimation is the intra-class object vari-

ation, including shape and color variation. To handle the

object variation problem, [40] proposed to map the differ-

ent objects in the same category to a NOCS map. Then they

used semantic segmentation to access the observed points

cloud with known camera parameters. The 6D pose and

size are calculated by the Umeyama algorithm [36] with

the NOCS map and the observed points. Shape-Prior [34]

adopted similar method with [40], but both extra shape prior

knowledge and dense-fusion feature [39], instead of RGB

feature, are used. CASS [4] estimated the 6D pose via the

learning of a canonical shape space with dense-fusion fea-

ture [39]. Since the RGB feature is sensitive to color vari-

ation, the performance of their methods in category-level

pose estimation is limited. In contrast, our method is shape

feature-based which is robust for this task.

2.3. 3D Data Augmentation

In 3D object detection tasks [6, 25, 31, 5], online data

augmentation techniques such as translation, random flip-

ping, shifting, scaling, and rotation are applied to original

point clouds for training data augmentation. However, these

operations cannot change the shape property of the object.
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Figure 2. Architecture of FS-Net. The input of FS-Net is an RGB-D image. For RGB channels, we use a 2D detector to detect the object

2D location, category label ‘C’ (used as a one-hot feature for next tasks), and class probability map (cpm) (generate the 3D sphere center

via maximum probability location and camera parameters). With this information and depth channel, the points in a compact 3D sphere

are generated. Given the points in the 3D sphere, we first use the proposed 3D deformation mechanism for data augmentation. After

that, we use a shape-based 3DGC autoencoder to perform observed points reconstruction (OPR), as well as point cloud segmentation, for

orientation latent feature learning. Then, we decode the rotation information into two perpendicular vectors from the latent feature. Finally,

we use a residual estimation network to predict the translation and size residuals. ‘cate-sizes’ denotes the pre-calculated average sizes of

different categories, ‘k’ is the rotation vector dimension, and the hollow ‘+’ means feature concatenation.

Simply adopting these operations on point clouds is not able

to handle the shape variation problem in the 3D task. To

address this, [7] proposed part-aware augmentation which

operates on the semantic parts of the 3D object with five

manipulations: dropout, swap, mix, sparing, and noise in-

jection. However, how to decide the semantic parts are am-

biguous. In contrast, we propose a box-cage based 3D data

augmentation mechanism which can generate the various

shape variants (shown in Figure 5) and avoid semantic parts

decision procedure.

3. Proposed Method

In this section, we describe the detailed architecture of

FS-Net shown in Figure 2. Firstly, we use the YOLOv3

to detect the object location with RGB input. Secondly, we

use 3DGC autoencoder to perform 3D segmentation and ob-

served points reconstruction; the latent feature can learn ori-

entation information through the process. Then we propose

a novel decoupled rotation mechanism for decoding orien-

tation information. Thirdly, we use PointNet [26] to esti-

mate the translation and object size. Finally, to increase the

generalization ability of FS-Net, we propose the box-cage

based 3D deformation mechanism.

Figure 3. Stable shape and various color. Top row: three bowl in-

stances randomly chosen from the NOCS-REAL dataset. Bottom

row: three bowl instances randomly cropped from the internet im-

age search results (using the keyword ‘bowl’). The color is varied,

while the shape is relatively stable.

3.1. Object Detection

Following [6], we train a YOLOv3 [30] to fast detect

the object bounding box in RGB images, and output class

(category) labels. Then we adopt the 3D sphere to locate

the point cloud of the target object quickly. With these

techniques, the 2D detection part provides a compact 3D

learning space for the following tasks. Different from other

category-level 6D object pose estimation methods that need
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semantic segmentation masks, we only need object bound-

ing boxes. Since object detection is faster than semantic

segmentation [30, 9], the detection speed of our method is

faster than previous methods.

3.2. Shape­Based Network

The output points of object detection contain both object

and background points. To access the points that belong to

the target object and calculate the rotation of the object, we

need a network that performs two tasks: 3D segmentation

and rotation estimation.

Although there are many network architectures that di-

rectly process point cloud [26, 27, 45], most of the archi-

tectures calculate on point coordinates, which means their

networks are sensitive to point clouds shift and size varia-

tion [18]. This decreases the pose estimation accuracy.

To tackle the point clouds shift, Frustum-P [25] and

G2L-Net [6] employed the estimated translation to align the

segmented point clouds to local coordinate space. However,

their methods cannot handle the intra-class size variation.

To solve the point clouds shift and size variation prob-

lem, we propose a 3DGC autoencoder to extract the point

cloud shape feature for segmentation and rotation estima-

tion. 3DGC is designed for point cloud classification and

object part segmentation; our work shows that 3DGC can

also be used for category-level 6D pose estimation task.

3.2.1 3D Graph Convolution

3DGC kernel consists of m unit vectors. The m kernel vec-

tors are applied to the n vectors generated by the center

point with its n-nearest neighbors. Then, the convolution

value is the sum of cosine similarity between kernel vectors

and the n-nearest vectors. In a 2D convolution network,

the trained network learned a weighted kernel, which has

a higher response with a matched RGB value, while the

3DGC network learned the orientations of the m vectors

in the kernel. The weighted 3DGC kernel has a higher re-

sponse with a matched 3D pattern which is defined by the

center point with its n-nearest neighbors. Please refer to

[18] for more details.

3.2.2 Rotation-Aware Autoencoder

Based on the 3DGC, we design an autoencoder for the es-

timation of category-level object rotation. To extract the

latent rotation feature, we train the autoencoder to recon-

struct the observed points transformed from the observed

depth map of the object. There are several advantages to

this strategy: 1) the reconstruction of observed points is

view-based and symmetry invariant [32, 33], 2) the recon-

struction of observed points is easier than that of a complete

object model (shown in Table 2), and 3) more representative

orientation feature can be learned (shown in Table 1).

In [32, 33], the authors also reconstructed the input im-

ages to observed views. However, the input and output of

their models are 2D images that are different from our 3D

point cloud input and output. Furthermore, our network ar-

chitecture is also different from theirs.

We utilize Chamfer Distance to train the autoencoder, the

reconstruction loss function Lrec is defined as

Lrec =
∑

xi∈Mc

min
x̂i∈M̂c

‖xi− x̂i‖
2

2
+

∑

x̂i∈M̂c

min
xi∈Mc

‖xi− x̂i‖
2

2
,

(1)

where Mc and M̂c denote the ground truth point cloud and

reconstructed point cloud, respectively. xi and x̂i are the

points in Mc and M̂c. With the help of 3D segmentation

mask, we only use the features extracted from the observed

object points for reconstruction.

After the network convergence, the encoder learned the

rotation-aware latent feature. Since the 3DGC is scale and

shift-invariant, the observed points reconstruction enforces

the autoencoder to learn the scale and shift-invariant ori-

entation feature under corresponding rotation. In the next

subsection, we will describe how we decode rotation infor-

mation from this latent feature.

3.3. Decoupled Rotation Estimation

Given the latent feature which contains rotation informa-

tion, our task is to decode the category-level rotation fea-

ture. To achieve this, we utilize two decoders to extract the

rotation information in a decoupled fashion. The two de-

coders decode the rotation information into two perpendic-

ular vectors under corresponding rotation. These two vec-

tors can represent rotation information completely (shown

in Figure 4).

Since the two vectors are mutually perpendicular, the de-

coded rotation information related to them is independent;

we can use one of them to recover part rotation information

of the object. For example, in Figure 8, we use the green

vector axis to recover the pose. We can see that the green

boxes and blue boxes are aligned well in the recovered axis.

Each decoder only needs to extract the orientation infor-

mation along corresponding vector which is easier than the

estimation of the complete rotation. The loss function is

based on cosine similarity and defined as

Lrot =
〈v̂1, v1〉

‖v̂1‖‖v1‖
+ λr

〈v̂2, v2〉

‖v̂2‖‖v2‖
, (2)

where v̂1 and v̂2 are the predicted vectors. v1 and v2 are the

ground truth, and λr is the balance parameter.

The balance parameter λr makes our network easy to

handle circular symmetry object such as bottle, and for such

circular symmetry object, the red vector is not necessary

(shown in Figure 4). Without loss of generality, we assume

that the green vector is along the symmetry axis; then, we
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set λr as zero to handle the circular symmetry objects. For

other types of symmetric objects, we can employ the rota-

tion mapping function used in [24, 34] to map the relevant

rotation matrices to a unique one.

Please note that our decoupled rotation is different to the

rotation representation proposed in [44]. They took the first

two columns from a rotation matrix as the new represen-

tation, which has no geometric meaning. In contrast, our

representation is defined based on the shape of the target

object, and our representation can avoid the discontinuity

issue mentioned in [44, 24].

Y

z

Figure 4. Rotation represented by vectors. Left: The object rota-

tion can be represented by two perpendicular vectors (green vector

and red vector); Right: For circular symmetry object like the bot-

tle, only the green vector matters.

3.4. Residual Prediction Network

As both translation and object size are related to points

coordinates, inspired by [25, 6], we train a tiny PointNet

[26] that takes segmented point cloud as input. More con-

cretely, the PointNet performs two related tasks: 1) estimat-

ing the residual between the translation ground truth and the

mean value of the segmented point cloud; 2) estimating the

residual between object size and the mean category size.

For size residual, we pre-calculate the mean size

[x, y, z]T of each category by





x

y

z



 =
1

N

N
∑

i=1

[xi, yi, zi]
T , (3)

where N is the amount of the object in that category. Then

for object o in that category the ground truth [δox, δ
o
y, δ

o
z ]

T of

the size residual estimation is calculated as: [xo, yo, zo]
T −

[x, y, z]T .

We use mean square error (MSE) loss to predict both the

translation and size residual. The total loss function Lres is

defined as: Lres = Ltra +Lsize, where Ltra and Lsize are

losses for translation and size residual, respectively.

3.5. 3D Deformation Mechanism

One major problem in category-level 6D pose estima-

tion is the intra-class shape variation. The existing meth-

ods employed two large synthetic datasets, i.e. CAMERA

Figure 5. 3D deformed examples. The new training examples

can be generated by enlarging, shrinking, or changing the area

of some surfaces of the box-cages. The left one is the original

point could with original 3D box-cage, i.e. 3D bounding box. The

right three ones are the deformed point clouds with deformed box-

cages (shown in yellow color). The green boxes are the original

3D bounding boxes before deformation.

[40] and 3D model dataset [3] to learn this variation. How-

ever, this strategy not only needs extra hardware resources

to store these big synthetic datasets but also increases the

(pre-)training time.

To alleviate the shape variation issue, based on the fact

that the shapes of most objects in the same category are sim-

ilar [37] (shown in Figure 3), we propose an online box-

cage based 3D deformation mechanism for training data

augmentation. We pre-define a box-cage for each rigid ob-

ject (shown in Figure 5). Each point is assigned to its near-

est surface of the cage; when we deform the surface, the

corresponding points move as well.

Though box-cage can be designed more refined, in ex-

periments, we find that with a simple box cage, i.e. 3D

bounding box of the object, the generalization ability of

FS-Net is considerably improved (Table 1). Different from

[42], we do not require an extra training process to obtain

the box-cage of the object, and we do not need the target

shape to learn the deformation operation either. Our mech-

anism is entirely online, which saves training time and stor-

age space.

To make the deformation operation easier, we first trans-

fer the points to the canonical coordinate system and then

perform 3D deformation. Finally we transform them to

global scene:

{P1,P2, · · · ,Pn} = R(F3D(RT (P − T ))) + T, (4)

where P is the points generated after the 2D detection step.

R, T are the pose ground truth. {P1,P2, · · · ,Pn} are the

new generated training examples. F3D is 3D deformation

which includes cage enlarging, shrinking, changing the area

of some surfaces.

4. Experiments

4.1. Datasets

NOCS [40] is benchmark dataset for category-level 6D ob-

ject pose estimation. It consists of real-world dataset (8K

RGB-D images: 4300 for training, 950 for validation and
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Table 1. Ablation studies on NOCS-REAL dataset. We use two

different metrics to measure performance. ‘3DGC’ means the 3D

graph convolution. ‘OPR’ means observed points reconstruction.

‘DR’ represents the decoupled rotation mechanism. ‘DEF’ de-

notes the online 3D deformation. In the last row, the values in the

bracket are the performance for the reconstruction of the complete

object model transformed by the corresponding pose. Please note

that we provide the ground truth 2D bounding box for different

methods for the sake of the ablation study.

Method 3DGC DEF OPR DR IoU50 10◦10 cm

G2L [6] × X × × 94.65% 31.0%

G2L+DR × X × X 96.21% 47.81%

Med1 X X × × 97.98% 46.4%

Med2 X X X × 95.61% 46.8%

Med3 X X × X 97.34% 61.1%

Med4 X × X X 97.30% 58.2%

Med5 X X X X 98.04% (94.44%) 65.9% (58.0%)

2750 for testing) and synthetic dataset (300K composited

images: 25K are set for validation).

LINEMOD [12] is a widely used instance-level 6D object

pose estimation dataset which consists of 13 different ob-

jects with significant shape variation.

We use the automatic point-wise labeling techniques

proposed in [5] to access the label of each point in both

training sets.

4.2. Implementation Details

We use Pytorch [22] to implement our pipeline. All ex-

periments are deployed on a PC with i7-4930K 3.4GHz

CPU and GTX 1080Ti GPU.

First, to locate the object in RGB images, we fine-tune

the YOLOv3 pre-trained on COCO dataset [17] with the

training dataset. Then we jointly train the 3DGC autoen-

coder and residual estimation network. The total loss func-

tion is defined as

LShape = λsegLseg+λrecLrec+λrotLrot+λresLres, (5)

where λs are the balance parameters. We empirically set

them as 0.001, 1, 0.001, and 1 to keep different loss val-

ues at the same magnitude. We use cross entropy for 3D

segmentation loss function Lseg .

We adopt Adam [14] to optimize the FS-Net. The initial

learning rate is 0.001, and we halve it every 10 epochs. The

maximum epoch is 50.

4.3. Evaluation Metrics

For category-level pose estimation, we adopt the same

metrics, 3D IoU25,50,75 and n◦m cm used in [40, 4, 34].

For instance-level pose estimation, we compare the perfor-

mance of FS-Net with other state-of-the-art instance-level

methods using the ADD-(S) metric [12].

4.4. Ablation Studies

We use the G2L-Net [6] as the baseline method, which

extracted the latent feature for rotation estimation via point-

wise orientated vector regression, and the ground truth of

rotation is the eight corners of the 3D bounding box with

corresponding rotation. The loss function for rotation es-

timation is the mean square error between predicted 3D

coordinates and ground truth. Compared to baseline, our

proposed work has three novelties: a) view-based 3DGC

autoencoder for observed point cloud reconstruction; b)

rotation decoupled mechanism; c) online 3D deformation

mechanism.

In Table 1, we report the experimental results of three

novelties on the NOCS-REAL dataset. Comparing Med3

and Med5, we find that reconstruction of the observed point

cloud can learn better pose feature. The performance of

Med2(Med1, G2L) and Med5(Med3, G2L+DR) shows that

the proposed decoupled rotation mechanism can effectively

extract the rotation information. The results of Med4 and

Med5 demonstrate the effectiveness of the 3D deformation

mechanism, which increases the pose accuracy by 7.7% in

terms of 10◦10 cm metric. We also compare the different re-

construction choices: the reconstruction of observed points

and the complete object model with corresponding rotation.

From the last row of Table 1, we can see that the observed

points reconstruction can learn better rotation feature. Over-

all, Table 1 shows that the proposed novelties can improve

the accuracy significantly.

4.5. Generalization Performance

NOCS-REAL dataset provides 4.3k real images that cov-

ers various poses of different objects in different categories

for training. That means the category-level pose informa-

tion is rich in the training set. Thanks to the effectively pose

feature extraction, FS-Net achieves state-of-the-art perfor-

mance even with part of the real-world training data. We

randomly choose different percentages of the training set

to train FS-Net and test it on the whole testing set. Figure

6 shows that: 1) FS-Net is robust to the size of the train-

ing dataset and has good category-level feature extraction

ability. Even with 20% of the training dataset, the FS-Net

can still achieve state-of-the-art performance; 2) the 3D de-

formation mechanism significantly improves the robustness

and performance of FS-Net.

4.6. Evaluation of Reconstruction

Point cloud reconstruction has a close relationship with

pose estimation performance. We computed the Chamfer

Distance of the reconstructed point cloud with the ground

truth point cloud and compared it with other reconstruction

types used by other methods. From Table 2, we can see

that the average reconstruction error of our method is 0.86,

which is 72.9% and 18.9% lower than that of Shape-Prior

[34] and CASS [4], respectively. It shows that our method

achieves better pose estimation results via a simpler recon-

struction task.
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Figure 6. Generalization performance. With the given 2D

bounding box and a randomly chosen 3D sphere center, we show

how the training set size affects the pose estimation performance.

‘w/o DEF’ means no 3D deformation mechanism is adopted dur-

ing training.

4.7. Comparison with State­of­the­Arts

4.7.1 Category-Level Pose Estimation

We compare FS-Net with NOCS [40], CASS [4], Shape-

Prior [34], and 6D-PACK [38] on NOCS-REAL dataset

in Table 4. It demonstrates our proposed method outper-

forms the other state-of-the-art methods on both accuracy

and speed. Specifically, on 3D detection metric IOU50, our

FS-Net outperforms the previous best method, NOCS, by

11.7%, and the running speed is 4 times faster. In terms

of 6D pose metric 5◦5cm and 10◦10 cm, FS-Net outper-

forms the CASS by the margins of 4.7% and 6.3%, respec-

tively. FS-Net even outperforms 6D-PACK under 3D de-

tection metric IOU50, which is a 6D tracker and needs an

initial 6D pose and object size to start. See Figure 7 for

more quantitative details. The qualitative results are shown

in Figure 8. Please note that we only use real-world data

(NOCS-REAL) to train our pose estimation part. Other

methods use both synthetic dataset (CAMERA) [40] and

real-world data for training. The number of training exam-

ples in CAMERA is 275K, which is more than 60 times

that of NOCS-REAL (4.3K). It shows that FS-Net can ef-

ficiently extract the category-level pose feature with fewer

data.

4.7.2 Instance-Level Pose Estimation

We compare the instance-level pose estimation results of

FS-Net on the LINEMOD dataset with other state-of-the-

arts instance-level methods. From Table 3, we can see that

FS-Net achieves comparable results on both accuracy and

speed. It shows that our method can effectively extract both

category-level and instance-level pose features.

Table 2. Reconstruction type comparison. The comparison is on

NOCS-REAL dataset with the Chamfer Distance metric (×10
−3).

‘Complete’ means the reconstruction of the complete 3D model.

‘Observed’ denotes the reconstruction of the observed points.

Methods CASS [4] Shape-Prior [34] Ours

Complete Complete Observed

Bottle 0.75 3.44 1.2

Bowl 0.38 1.21 0.39

Camera 0.77 8.89 0.44

Can 0.42 1.56 0.62

Laptop 3.73 2.91 2.23

Mug 0.32 1.02 0.29

Average 1.06 3.17 0.86

Table 3. Instance-level comparison on LINEMOD dataset. Our

method achieves a comparable performance with the state-of-the-

art in both speed and accuracy.

Method Input ADD-(S) Speed(FPS)

PVNet [23] RGB 86.3% 25

CDPN [16] RGB 89.9% 33

DPOD [43] RGB 95.2% 33

G2L-Net [6] RGBD 98.7% 23

Densefusion[39] RGBD 94.3% 16

PVN3D [10] RGBD 99.4% 5

Ours RGBD 97.6% 20

4.8. Running Time

Given a 640× 480 RGB-D image, our method runs at 20

FPS with Intel i7-4930K CPU and 1080Ti GPU, which is 2

times faster than the previous fastest method 6-PACK [38].

Specifically, the 2D detection takes about 10ms to proceed.

The pose and size estimation takes about 40ms.

5. Conclusion

In this paper, we propose a fast category-level pose esti-

mation method that runs at 20 FPS which is fast enough for

real-time applications. The proposed method first extracts

the latent feature by the observed points reconstruction with

a shape-based 3DGC autoencoder. Then the category-level

orientation feature is decoded by the effective decoupled ro-

tation mechanism. Finally, for translation and object size

estimation, we use the residual network to estimate them

based on residuals estimation. In addition, to increase

the generalization ability of FS-Net and save the hardware

source, we design an online 3D deformation mechanism

for training set augmentation. Extensive experimental re-

sults demonstrate that FS-Net is robust to dataset size and

can achieve state-of-the-art performance on category- and

instance-level pose estimation in both accuracy and speed.

As our 3D deformation mechanism and decoupled rotation

scheme are model-free, they can be directly applied to other
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Table 4. Category-level performance on NOCS-REAL dataset with different metrics. We summarize the pose estimation results

reported in the origin papers on the NOCS-REAL dataset. ‘-’ means no results are reported under this metric. The values in the bracket are

the performance for synthetic NOCS dataset.

Method IoU25 IoU50 IoU75 5◦5cm 10◦5 cm 10◦10 cm Speed(FPS)

NOCS [40] 84.9% 80.5% 30.1%(69.5%) 9.5 %(40.9%) 26.7% 26.7% 5

CASS [4] 84.2% 77.7% - 23.5 % 58.0% 58.3% -

Shape-Prior [34] 83.4% 77.3% 53.2%(83.1%) 21.4%(59.0%) 54.1% - 4

6D-PACK [38] 94.2% - - 33.3 % - - 10

Ours 95.1% 92.2% 63.5%(85.17%) 28.2 %(62.01%) 60.8% 64.6% 20

Figure 7. Result on NOCS-REAL. The average precision of different thresholds tested on NOCS-REAL dataset with 3D IoU, rotation,

and translation error.

Figure 8. Qualitative results on NOCS-REAL dataset. The first row is the pose and size estimation results. White 3D bounding boxes

denote ground truth. Blue boxes are the poses recovered from two estimated rotation vectors. The green boxes are the poses recovered from

one estimated rotation vector. Our results match ground truth well in both pose and size. The second row is the reconstructed observed

points under corresponding poses, although the reconstructed points are not perfectly in line with the target points, the basic orientation

information is kept. The third row is the ground truth of the observed points transformed from the observed depth map.

pose estimation methods to boost the performance.

Although FS-Net achieves state-of-the-art performance,

it relies on a robust 2D detector to detect the region of in-

terest. In future work, we plan to adopt 3D object detection

techniques to directly detect the objects from point clouds.
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[24] Giorgia Pitteri, Michaël Ramamonjisoa, Slobodan Ilic, and

Vincent Lepetit. On Object Symmetries and 6D Pose Esti-

mation from Images. In Proceedings of International Con-

ference on 3D Vision (3DV), pages 614–622. IEEE, 2019. 5

[25] Charles R. Qi, Wei Liu, Chenxia Wu, Hao Su, and

Leonidas J. Guibas. Frustum PointNets for 3D Object Detec-

tion From RGB-D Data. In Proceedings of The IEEE Confer-

ence on Computer Vision and Pattern Recognition (CVPR),

June 2018. 2, 4, 5

[26] Charles R. Qi, Hao Su, Kaichun Mo, and Leonidas J. Guibas.

PointNet: Deep Learning on Point Sets for 3D Classification

1589



and Segmentation. In Proceedings of The IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), July

2017. 2, 3, 4, 5

[27] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J

Guibas. PointNet++: Deep Hierarchical Feature Learning

on Point Sets in a Metric Space. In Proceedings of Advances

in Neural Information Processing Systems (NeurIPS), pages

5099–5108, 2017. 4

[28] Mahdi Rad and Vincent Lepetit. BB8: A Scalable, Accurate,

Robust to Partial Occlusion Method for Predicting the 3D

Poses of Challenging Objects without Using Depth. In Pro-

ceedings of The IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), pages 3828–3836, 2017. 1, 2

[29] Mahdi Rad, Markus Oberweger, and Vincent Lepetit. Fea-

ture Mapping for Learning Fast and Accurate 3D Pose Infer-

ence from Synthetic Images. In Proceedings of The IEEE

Conference on Computer Vision and Pattern Recognition

(CVPR), pages 4663–4672, 2018. 2

[30] Joseph Redmon and Ali Farhadi. YOLOv3: An Incremental

Improvement. arXiv preprint arXiv:1804.02767, 2018. 2, 3,

4

[31] Shaoshuai Shi, Chaoxu Guo, Li Jiang, Zhe Wang, Jianping

Shi, Xiaogang Wang, and Hongsheng Li. PV-RCNN: Point-

Voxel Feature Set Abstraction for 3D Object Detection. In

Proceedings of the IEEE/CVF Conference on Computer Vi-

sion and Pattern Recognition, pages 10529–10538, 2020. 2

[32] Martin Sundermeyer, Maximilian Durner, En Yen Puang,

Zoltan-Csaba Marton, Narunas Vaskevicius, Kai O Ar-

ras, and Rudolph Triebel. Multi-path Learning for Ob-

ject Pose Estimation Across Domains. In Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern

Recognition, pages 13916–13925, 2020. 4

[33] Martin Sundermeyer, Zoltan-Csaba Marton, Maximilian

Durner, Manuel Brucker, and Rudolph Triebel. Implicit 3D

Orientation Learning for 6D Object Detection from RGB Im-

ages. In Proceedings of the European Conference on Com-

puter Vision (ECCV), pages 699–715, 2018. 4

[34] Meng Tian, Marcelo H Ang Jr, and Gim Hee Lee. Shape

Prior Deformation for Categorical 6D Object Pose and Size

Estimation. arXiv preprint arXiv:2007.08454, 2020. 1, 2, 5,

6, 7, 8

[35] Jonathan Tremblay, Thang To, Balakumar Sundaralingam,

Yu Xiang, Dieter Fox, and Stan Birchfield. Deep Object

Pose Estimation for Semantic Robotic Grasping of House-

hold Objects. arXiv preprint arXiv:1809.10790, 2018. 1

[36] Shinji Umeyama. Least-Squares Estimation of Transforma-

tion Parameters between Two Point Patterns. IEEE Transac-

tions on Pattern Analysis & Machine Intelligence (TPAMI),

(4):376–380, 1991. 1, 2

[37] Haley A Vlach. How We Categorize Objects is Related to

How We Remember Them: the Shape Bias as A Memory

Bias. Journal of experimental child psychology, 152:12–30,

2016. 2, 5

[38] Chen Wang, Roberto Martı́n-Martı́n, Danfei Xu, Jun Lv,

Cewu Lu, Li Fei-Fei, Silvio Savarese, and Yuke Zhu. 6-

Pack: Category-Level 6D Pose Tracker with Anchor-Based

Keypoints. In Proceedings of IEEE International Conference

on Robotics and Automation (ICRA), pages 10059–10066,

2020. 7, 8

[39] Chen Wang, Danfei Xu, Yuke Zhu, Roberto Martin-Martin,

Cewu Lu, Li Fei-Fei, and Silvio Savarese. DenseFusion: 6D

Object Pose Estimation by Iterative Dense Fusion. In Pro-

ceedings of the IEEE/CVF Conference on Computer Vision

and Pattern Recognition (CVPR), June 2019. 1, 2, 7

[40] He Wang, Srinath Sridhar, Jingwei Huang, Julien Valentin,

Shuran Song, and Leonidas J Guibas. Normalized Object

Coordinate Space for Category-Level 6D Object Pose and

Size Estimation. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), pages

2642–2651, 2019. 1, 2, 5, 6, 7, 8

[41] Yu Xiang, Tanner Schmidt, Venkatraman Narayanan, and

Dieter Fox. PoseCNN: A Convolutional Neural Network

for 6D Object Pose Estimation in Cluttered Scenes. arXiv

preprint arXiv:1711.00199, 2017. 1

[42] Wang Yifan, Noam Aigerman, Vladimir G Kim, Siddhartha

Chaudhuri, and Olga Sorkine-Hornung. Neural Cages for

Detail-Preserving 3D Deformations. In Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern

Recognition (CVPR), pages 75–83, 2020. 5

[43] Sergey Zakharov, Ivan Shugurov, and Slobodan Ilic. DPOD:

6D Pose Object Detector and Refiner. In Proceedings of The

IEEE International Conference on Computer Vision (ICCV),

pages 1941–1950, 2019. 7

[44] Yi Zhou, Connelly Barnes, Jingwan Lu, Jimei Yang, and Hao

Li. On the Continuity of Rotation Representations in Neu-

ral Networks. In Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition (CVPR), pages

5745–5753, 2019. 5

[45] Yin Zhou and Oncel Tuzel. VoxelNet: End-to-End Learning

for Point Cloud Based 3D Object Detection. In Proceed-

ings of The IEEE Conference on Computer Vision and Pat-

tern Recognition (CVPR), pages 4490–4499, 2018. 4

[46] Menglong Zhu, Konstantinos G Derpanis, Yinfei Yang,

Samarth Brahmbhatt, Mabel Zhang, Cody Phillips, Matthieu

Lecce, and Kostas Daniilidis. Single Image 3D Object De-

tection and Pose Estimation for Grasping. In Proceedings of

IEEE International Conference on Robotics and Automation

(ICRA), pages 3936–3943, 2014. 1

1590


