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Abstract

We address rotation averaging (RA) and its application

to real-world 3D reconstruction. Local optimisation based

approaches are the de facto choice, though they only guar-

antee a local optimum. Global optimisers ensure global op-

timality in low noise conditions, but they are inefficient and

may easily deviate under the influence of outliers or ele-

vated noise levels. We push the envelope of rotation aver-

aging by leveraging the advantages of a global RA method

and a local RA method. Combined with a fast view graph

filtering as preprocessing, the proposed hybrid approach is

robust to outliers. We further apply the proposed hybrid

rotation averaging approach to incremental Structure from

Motion (SfM), the accuracy and robustness of SfM are both

improved by adding the resulting global rotations as reg-

ularisers to bundle adjustment. Overall, we demonstrate

high practicality of the proposed method as bad camera

poses are effectively corrected and drift is reduced.

1. Introduction

Rotation averaging is a problem that consists of estimat-

ing absolute camera orientations that agree as well as pos-

sible with a set of pairwise relative orientations. Errors ex-

pressing disagreements between estimated absolute orienta-

tions and the measured relative orientations are hereby dis-

tributed over each pairwise constraint. Rotation averaging

is essential in global or hierarchical Structure from Motion

(SfM) [29, 15, 36, 49, 50], as well as Simultaneous Local-

ization and Mapping (SLAM) [7] where it can accelerate

camera pose estimation and reduce drift accumulation.

In global SfM, we typically start by constructing a view

graph G that encodes all connections between pairs of views

i and j by an edge (i, j), each one including the relative

motion between image i and image j. Rotation averaging

then gives us the absolute orientation of each view, and it is

typically followed by a translation averaging step [25, 31,

21, 51] to also obtain absolute positions. Triangulation of

Figure 1. Reconstructions generated from the Trafalgar

dataset [45], where 7085 out of 15685 images have been

registered, and the rotation averaging step only took 4.2 s.

3D points and joint optimisation over all parameters (i.e.

bundle adjustment [39]) completes the reconstruction. In

SLAM, rotation averaging has been used in the back-end

pose graph optimisation [33, 7] to flexibly encounter large

drift accumulations or—more generally—replace the time-

consuming bundle adjustment step.

Rotation averaging was first proposed using the quater-

nion representation [22]. Later solutions can be categorised

into approaches based on either local and global optimisa-

tion. Local optimisation approaches such as the one pre-

sented by Chatterjee and Govindu [8] are well studied and

practical. However, these methods only return the near-

est local minimum. To overcome this limitation, the com-

munity has also proposed global optimisation approaches

[40, 33, 18, 17, 16]. Though the retrieval of global op-

tima can be guaranteed, they have large computational cost

and high sensitivity against outliers, and thus are impracti-

cal when applied to large-scale SfM problems.

In this paper, we focus on improving the efficiency and

robustness of the rotation averaging method, and on push-

ing its application to challenging scenes. We make a com-

bination of a global solver and a local solver to solve rota-

tion averaging, which guarantees global optimality and has

strong resilience against outliers. Rotation averaging based

on chordal distances can be reformulated as a semi-definite

program (SDP) with a low-rank constraint. Taking advan-

tage of the low-rank factorisation of the original SDP, we
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can apply globally optimal Riemannian-Staircase-based [3]

methods. In principle, any global solver [33, 37, 16] can be

used in our hybrid approach, and we adopt the block coor-

dinate minimisation method [37] to better leverage the view

graph sparsity. By preprocessing the graph with fast view

graph filtering, graph sparsity can be further exploited to

accelerate the optimisation.

Previous works mainly apply rotation averaging to

global SfM. Though global SfM is efficient, translation av-

eraging is often complicated by the unknown scale of rela-

tive translations and the difficulty of identifying outliers. In

this work, we embed the proposed approach into an incre-

mental SfM pipeline. The strategy is inspired by the work

of Cui et al. [13], who proposes a hybrid SfM scheme where

camera rotations are estimated globally, and camera centers

are estimated incrementally by a perspective-2-point (P2P)

method. Though the approach is efficient, some estimated

absolute rotations are not correct, thus it prevents camera

centers from proper registration and scene reconstructions

from completeness. Inspired by Cui’s approach [13], we

apply rotation averaging in a traditional incremental SfM

pipeline, however, use the perspective-3-point (P3P) to reg-

ister camera rotations and centers. We further propose a

novel cost function to optimise camera poses and landmarks

that alleviates drift accumulation, in which camera rotations

obtained from rotation averaging are used as regularisers.

The resulting SfM approach, named RA-SfM (Rotation-

Averaged Structure from Motion), shows high practicality

and surpasses state-of-the-art methods in accuracy, which is

demonstrated at the hand of extensive experiments on large-

scale real-world datasets. The reconstruction result of the

largest dataset is shown in Fig. 1.

In summary, the main contributions of our work are:

• We propose an outlier-resilient hybrid rotation averag-

ing approach, which combines a global optimiser with

fast view graph filtering and a local optimiser.

• We refine the traditional incremental bundle adjust-

ment cost function by adding the obtained global ro-

tations as a regularisation term, which significantly al-

leviates drift accumulation in incremental SfM.

The practicality and superiority of the proposed scheme

is demonstrated by extensive experiments on synthetic

datasets and challenged internet datasets.

2. Related Work

Motion averaging [22, 23] is widely used in global SfM

pipelines [29, 15, 36, 49, 50] as an answer to the drift prob-

lem occurring in incremental SfM [2, 46, 34, 14]. The

first solution to rotation averaging goes back to Govindu

[22], who uses the quaternion representation and solves the

problem by linear least-squares fitting. More reliable re-

sults were later on gained by optimising over a Lie alge-

bra [23]. In practice, the problem is complicated by the ex-

istence of outliers. To enhance the robustness of rotation av-

eraging, absolute rotations may first be initialised under the

L1-norm, and then refined by Iteratively Reweighted Least

Squares (IRLS) [8, 9]. Despite great progress, all afore-

mentioned approaches can only guarantee a locally optimal

solution. Another local approach was proposed by Crandall

et al. [11, 12], who couple the cost function with regular-

isation terms to enhance robustness. However, the method

is computationally demanding as it relies on discrete belief

propagation over a Markov random field.

Fredriksson and Olsson [20] exploit Lagrangian duality

to become the first to find a globally optimal solution to the

rotation averaging problem. In a similar approach, Eriksson

et al. [17] perform the optimisation directly on the rota-

tion matrix by minimising chordal distances. By removing

the determinant constraint on the rotation from the original

SDP, they elegantly prove that there is no duality gap be-

tween the primal problem and its dual when residual errors

are bounded below an angular residual threshold.

Rotation averaging can be converted into an SDP optimi-

sation problem [5]. Wang and Singer [41] solve it by the Al-

ternating Direction Method of Multipliers (ADMM) [4, 44].

Eriksson et al. [17] use a row-by-row block coordinate de-

scent method (BCM) [43]. However, due to the slow con-

vergence of ADMM and the repetitive fill-in procedures of

BCM, neither approach proves to be practical when applied

to large-scale datasets. A seminal work on the solution

of SDP problems is presented by Burer and Monteiro [6],

where the positive semi-definite variable is replaced by an

appropriate factorisation, and the minimal rank variable

is chosen to enhance computational speed. The Burer-

Monteiro factorisation later inspired Boumal [3], who pro-

poses a general optimisation technique named the Rieman-

nian staircase algorithm, where the rank variable is aug-

mented until the KKT condition is met, thus guaranteeing

global optimality. Rosen et al. [33] address the SDP prob-

lem of pose graph optimisation in the Special Euclidean

space (SE(n)). When translation variables are decoupled

from rotations, they first find the second-order critical point

by the second-order Riemannian trust-region method, and

then adopt the low-rank optimisation framework of [3]

to guarantee global optimality [33]. Inspired by Wang’s

work et al. [42], which solves the low-rank SDP problem

by block coordinate descent method, Tian et al. [37] extends

this work to Steifel manifold, and further applied a Rieman-

nian BCM method to pose graph optimisation in distributed

settings [38]. Building on SE-Sync [33], Dellaert et al. [16]

propose Shonan rotation averaging, a method in which the

rotation matrix is vectorized, thus permitting the use of ex-

isting gradient-based optimisation methods on the manifold
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of rotation matrices.

3. Notations and Preliminaries

Let G = {V,E} be an undirected graph, where V rep-

resents the collection of nodes and E the set of edges. Let

m = |E| be the number of edges and n = |V | be the num-

ber of nodes. Let tr(·) denote the trace of a square ma-

trix. Given two matrices A ∈ R
m×n and B ∈ R

m×n, let

〈A,B〉 =
∑

i

∑

j AijBij . We therefore have tr(ATB) =
〈A,B〉. Let blockdiag(A) represent the block diagonal ma-

trix of A, and symblockdiag(A) = 1
2 blockdiag(A+AT ).

The set of rotations in 3D forms the Special Orthogonal

Group SO(3), i.e.,

SO(3) = {R ∈ R
3×3|RTR = I, det(R) = 1}. (1)

Since SO(3) is a Lie group, there exists an exponential map-

ping between a rotation R and its Lie algebra so(3) repre-

sentation w [28]:

R = exp([w]×). (2)

The absolute rotations are grouped in R =
{R1, R2, · · · , Rn}, where Ri ∈ SO(3), i ∈ [n]. Rel-

ative rotations are represented by Rrel = {Rij}, where

Rij ∈ SO(3), i, j ∈ [n], i < j is the rotation from Ri to Rj .

The chordal distance between two rotations is measured

by [24]

dchord(R1, R2) = ‖R1 −R2‖F , (3)

where ‖·‖F represents the Frobenius norm of a matrix.

4. Hybrid Rotation Averaging

Globally optimal rotation averaging is sensitive to out-

liers, thus requiring an additional step to clean the view

graph. In this section, we first present an efficient pre-

processing step to filter outliers in the view graph. We then

apply a block coordinate descent (BCD) method [37] to op-

timise the low-rank formulation of rotation averaging. Its

global optimality can be guaranteed theoretically. Finally,

we apply a local optimisation step to further refine the re-

sult in the case of scenes that have many erroneous edges.

4.1. Fast View Graph Filtering

The view graph plays an important role in our SfM

pipeline. We clean the view graph for two main reasons:

(1) Solutions of global rotation averaging algorithms can be

biased by outliers. Also, global optimality is only guaran-

teed when the residuals for each edge are bounded below a

certain threshold [17]. (2) Some view pairs are redundant

and even harm the quality of SfM results. Zach et al. [47]

proposed a view graph filtering (VGF) technique to obtain

a high-quality initial view graph, where loop constraints of

rotation triplets are utilised to detect outliers. Specifically,

edge (i, j) is an outlier if its angular error below a given

threshold ǫ

d(RijRjkRki, I) > ǫ. (4)

Despite its effectiveness, [47] needs to validate all triplets,

which is impractical for large-scale datasets. However, [35]

suggests that it is not necessary to check all triplets to distin-

guish inliers from outliers, and that an increased number of

valid 2D-2D image correspondences usually suggests more

reliable two-view geometries. We propose an efficient view

graph filtering method that relies on this observation. In the

following, we denote a group of 3 nodes as a triplet, and

a triplet with two valid edges and one unverified edge as a

weak triplet.

Given an initial view graph G, we start by constructing

a maximum spanning tree (MST), where the weight of an

edge is the number of valid 2D-2D correspondences. The

relative rotations from this MST are all treated as valid. We

then check the triplets along with the MST. That is, all adja-

cent edges that share a common node in the MST are used to

build triplets. Next, we generate many weak triplets. Now

supposing that edges (i, j) and (j, k) are valid and edge

(i, k) exists, we use criterion (4) to verify the validity of

edge (i, k). An iteration is completed once all such weak

triplets have been verified. After the first iteration, new

weak triplets are generated based on which we can perform

another iteration. We empirically found that 3 iterations are

sufficient for successful rotation averaging.

4.2. Global Rotation Averaging

In this section, we first review a globally optimal guar-

anteed rotation averaging method [37], then the sparsity

pattern of the view graph is further exploited to accelerate

the algorithm.

Given a set of relative rotations {Rij}, where i, j ∈ [n],
the aim of rotation averaging is to obtain the absolute rota-

tions {Ri} that minimises the cost function below:

min
R1,··· ,Rn

∑

(i,j)∈E

dp(Rij , RjR
T
i ), (5)

where dp(·) represents a distance measure under a p-norm.

While there are a lot of local methods [22, 23, 8, 9] giving

a least-squares solution to problem (5), here we exploit a

global optimisation approach that can obtain the global op-

timum. Adopting the chordal distances, the primal problem

of rotation averaging is finally given by 1

min
R
− tr(RTGR) s.t. R ∈ SO(3)n, (6)

where R = [R1 R2 · · · Rn], and Gij = aijRij , with aij =
1 if the edge between views i and j exists, and 0 otherwise.

1See supplementary material for the complete derivation.
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Eriksson et al. [17] solve the dual problem with determinant

constraint relaxation to the primal problem (6)

min
X
− tr(GX)

s.t. Xii = I3, i = 1, · · · , n, X � 0,
(7)

where X can be written as a block matrix Xij , with i, j ∈
[n] and Xij ∈ R

3.

Problem (7) is an SDP problem [5]. Since every X � 0
can be factored as Y TY for some Y [6], and—in the case of

rotation averaging—the optimal value of X satisfies X⋆ =
R⋆TR⋆ [17], there is an implicit constraint on X such that

rank(X) = 3. Thus, X can be reformulated as

X = Y TY, (8)

where Y = [Y1 Y2 · · · Yn], Y
T
i Yi = I, ∀i ∈ [n]. By sub-

stituting (8) into problem (7), a new problem is obtained

min
Y
− tr(GY TY )

s.t. Y = [Y1 Y2 · · · Yn], Y T
i Yi = I, ∀i ∈ [n].

(9)

While Tian et al. [37] proposed a block coordinate min-

imisation (BCM) method to solve the low-rank SDP prob-

lem (9), we make a detailed derivation to the BCM solu-

tion, which is further accelerated by exploring graph spar-

sity. Note that

tr(GY TY ) = tr(Y GY T ) = 〈Y G, Y 〉 (10)

=

n
∑

j=1

〈

n
∑

i=1

YiGij , Yj〉 =

n
∑

j=1

〈Q̂j , Yj〉,

where Q̂j =
∑n

i=1 YiGij . Let f(Y k) =
∑n

j=1〈Q̂
k
j , Y

k
j 〉,

where superscript k represents the k-th iteration in BCM.

Since Gii = 0, using (10) we have

argmin
Y

f(Y k) = argmin
Y

n
∑

j=1

〈Q̂k
j , Y

k
j 〉

=argmin
Y

n
∑

j=1

〈

n
∑

i 6=j

Y k
i Gij , Y

k
j 〉 = argmin

Y

n
∑

j=1

〈Qk
j , Y

k
j 〉,

where Qj =
∑n

i 6=j YiGij . This leads us to the derivation

Y k+1
jk

= argmin
Yjk

f(Y k
1 , · · · , Y k

jk−1, Y
k
jk
, Y k

jk+1, · · · , Y
k
n )

= argmin
Yjk

n
∑

j=1

〈

n
∑

i 6=j

Y k
i Gij , Y

k
j 〉

=argmin
Yjk

〈Qk
j , Y

k
jk
〉+

n
∑

j 6=jk

n
∑

i 6=j

〈Y k
i Gij , Y

k
j 〉

=argmin
Yjk

2〈Qk
j , Y

k
jk
〉+

n
∑

j 6=jk

n
∑

i 6=j,jk

〈Y k
i Gij , Y

k
j 〉

=argmin
Yjk

2〈Qk
j , Y

k
jk
〉 = argmin

Yjk

1

2

∥

∥Y k
jk

+Qk
j

∥

∥

2

F
. (11)

By solving problem (11), the update of Yj in problem (9)

can be determined by [27, 37]

Y ∗
j = UjI3×3V

T
j = UjV

T
j , (12)

where UjΣVj is the singular value decomposition of −Qj .

Once the optimal value Y ∗
j is obtained, we need to up-

date Qj at each inner iteration. The update rule is

Qk+1
j =

n
∑

i 6=j

Y k+1
i Gij = Y k+1

jk
Gjkj +

∑

i 6=j,jk

Y k+1
i Gij

=Y k+1
jk

Gjkj +
∑

i 6=j,jk

Y k
i Gij + Y k

jk
Gjkj − Y k

jk
Gjkj

=Y k+1
jk

Gjkj +
∑

i 6=j

Y k
i Gij − Y k

jk
Gjkj

=Qk
j + (Y k+1

jk
− Y k

jk
)Gjkj . (13)

In Algorithm 1, we outline the BCM with graph spar-

sity. In steps 6∼7 of Algorithm 1, the time complexity of

O(n) is only an upper bound occurring for general cases.

In practice, due to the commonly sparse structure of SfM

problems, time complexity can be further reduced to O(d),
where d is the degree of the nodes. This property is impor-

tant for accelerating the optimisation. Notice that, with our

fast view graph filtering, the graph can be more sparse and

we can gain more acceleration.

Algorithm 1 BCM for SDP [37] with Graph Sparsity

Input: relative rotationsRrel, maxIterNum, Y 0.

Output: First-order critical point Y ⋆

1: k ← 0; Q0
j ←

∑n

i 6=j YiGij , ∀j ∈ [n].
2: while k < maxIterNum AND not converge do

3: for i < n do

4: jk ← i

5: Update Y k+1
jk

by Eq. (12)

6: for ∀j 6= jk AND Gjkj 6= 0 do

7: Update Qk+1
j by Eq. (13)

8: k ← k + 1;

9: return Y

Discussion of Global Optimality: Problem (9) is non-

convex, and there is no guarantee that we can obtain the

global optimum. In [42], the global optimum is guaranteed

by selecting an appropriate step size and random initialisa-

tion (Theorem 3.4). However, the theorem only holds for

scalar variables. For the RA problem, global optimality is

not held since we optimise on the manifold. Boumal [3]

proposes a general framework named the Riemannian Stair-

case algorithm (RS), which can find the global optimum.

As previous work has applied a Riemannian based method

to ensure the global optimum [33, 38, 16], we recommend

interested readers to refer to them.
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4.3. Local Optimization Refinement

The global optimisation presented in Sec. 4.2 assumes

that the input relative rotations do not contain any outliers.

As a result, it is sensitive to outliers. To further improve

the robustness and accuracy of the low-rank BCM method,

we follow the suggest-and-improve framework of [32]. The

global optimisation approaches can obtain a good solution

close to the global optimum. Still, it could be further re-

fined by a gradient descent algorithm. We adopt this frame-

work and use the method of Chatterjee and Govindu [8]

as a local optimiser. This method performs an Iteratively

Reweighted Least Square (IRLS) under Lie algebra, which

leads to an efficient and robust optimiser. The rotation

Rij , Ri, Rj can be represented by the corresponding Lie al-

gebra ωij ,ωi,ωj , respectively. Using the Baker-Campbell-

Hausdorff (BCH) equation, a single constraint in Eq. (5) can

be converted to

ωij = ωj − ωi. (14)

By collecting the relative constraints, we obtain

Aωglobal = ωrel. (15)

Here A is a sparse matrix, in which all consecutive 3 × 3
blocks are zeros except two matrices I and −I . Encapsu-

lating Eq. (15) with a Huber loss ρ(x) = x2

x2+σ2 , we can

optimise a robust cost function under least square meaning

argmin
wglobal

∑

ρ(‖Aωglobal − ωrel‖). (16)

4.4. Hybrid of Global Rotation Averaging

We outline our hybrid rotation averaging algorithm in

Algorithm 2. An ablation study of robustness against out-

liers is shown in Fig. 2. The outlier ratio ranges from 0
to 50% and is incremented in steps of 5%. We display the

mean rotation error over 30 experiments. As can be ob-

served, both VGF and local refinement improve the robust-

ness of the global rotation averaging approach.

Algorithm 2 Hybrid Rotation Averaging Algorithm

Input: relative rotationsRrel

Output: global rotationsR = {R1, R2, · · · , Rn}
1: Perform fast VGF as described in Sec. 4.1.

2: Calculate global rotations using Algorithm 1 (or any

other global rotation averaging method).

3: Refine global rotations by solving problem (16).

5. Rotation-Averaged Structure from Motion

In this section, we apply our rotation averaging method

to an incremental SfM pipeline, which is known to suffer

from the drift problem. Our hybrid SfM pipeline can be
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Figure 2. Ablation study of robustness. Outliers are generated by

perturbing ground truth by rotation between 60◦ − 90◦. global

represents the proposed low-rank BCM method, and hybrid repre-

sents the proposed hybrid method with VGF and local refinement.

summarised as follows: We first construct the view graph

and obtain global rotations from our proposed hybrid rota-

tion averaging approach. Next, we create a seed reconstruc-

tion by selecting two appropriate images. We then continue

by incrementally registering adjacent camera poses using

a RANSAC-based [19] P3P [26] algorithm, and triangu-

late landmarks. To reduce the accumulation of errors in

our incremental SfM pipeline, we perform local bundle ad-

justment after each successful registration of an image, and

global bundle adjustment whenever the number of recently

added views surpasses a certain threshold.

The drift problem is not solved, as each newly computed

camera pose is affected by a small error, and these errors

accumulate along the graph. Traditional incremental SfM

pipelines have no way to rectify these errors. To tackle

this problem, we introduce a novel cost function with av-

eraged rotations as regularisers for bundle adjustment. Let

Ii denote the measurements of image i. 3D landmarks ob-

served by image i are denoted as set Pi. Note that the sets

{Pi|i ∈ I} might have repetitive elements, which—in a

slight abuse of notation—is ignored for the sake of simplic-

ity. Let uil ∈ Ii furthermore denote the image keypoint

measurement of landmark l in frame i. the pre-computed

known rotation with respect to image i is denoted as R̂i.

The proposed cost function is given by

∑

i∈I

∑

l∈Ii

ρv

(

‖rIil
‖
2
)

+
∑

(i,j)∈E

wij

(

∥

∥rRij

∥

∥

2
)

, (17)

where ρv(·) is a robust loss function, and wij is an individ-

ual weighting function for each known rotation term. In this

paper, we fix wij as a constant. The objective divides into

two terms which are explained as follows.

Visual Term: We adopt the traditional re-projection er-
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ror in bundle adjustment as our visual term

rIil
= uil −Π(Ri, Ci,Pi, l), (18)

where Ri and Ci are respectively the estimated camera ro-

tation and center, and Π(·) is the back-projection function

that projects landmarks into the image plane. Note that

the latter also depends on camera intrinsics, which—for the

sake of a simplified and general notation—are not specified.

Known Rotation Term: The added known rotation term

is

rRij
= log(R̂T

j R̂iR
T
i Rj), (19)

where log is the logarithm map SO(3) → so(3). This

known rotation term is used as a regulariser in the complete

cost function.

To better demonstrate the effectiveness of (17), we fur-

ther make an explanation for our cost function, and draw it

as a toy example in Fig.3. In Eq. (17), the first term cor-

responds to the reprojection error, the second term is used

to penalize the large RPE that is caused by pose drift. Note

that the reprojection error may remain small even if camera

poses are drifting. This can be seen from Fig.3 (a): Sup-

pose C0 is correctly registered at first, and C1, C2, C3 are

registered sequentially. When C1 is wrongly registered, the

error will be passed to C2, then C3. But traditional BA can

not optimise camera poses to the correct place, because the

triangulated 3D points are geometrically coherent with the

camera poses, and reprojection errors are small (measured

by the red and green dots in Fig.3). However, in this situa-

tion, the known rotation term can measure the discrepancy

between the averaged rotations and incrementally recovered

rotations (See from Fig.3 (b)). And our optimiser tries to

minimise this discrepancy and thereby alleviate pose drift.

6. Experimental Results

Our experiments aim at demonstrating the accuracy, effi-

ciency, and robustness of the proposed methods. We imple-

ment Levenberg-Marquardt (LM) [30], row-by-row block

coordinate descent (RBR-BCD) [17], and our hybrid rota-

tion averaging in C++. Besides, the implementations of SE-

Sync [33] and Shonan [16] are provided by the authors and

publicly available. For HSfM [13] and LUD [31], we use

[9] as the rotation averaging solver, and the Ceres solver [1]

for bundle adjustment. All approaches are tested on a laptop

with a 2.7 GHz CPU and 8GB RAM.

6.1. Evaluation of Hybrid Rotation Averaging on
Synthetic Datasets

We designed 7 synthetic datasets to evaluate the perfor-

mance of our rotation averaging approach, The view and

relative rotation numbers are shown in Table 1, and denoted

by n and #edges respectively. The ground truth absolute

rotations are initialised randomly. The relative rotations are

GIL Deep Image Analogies 2021-3-18 17

�� �� �� �� �� ���� ���� ����

��� ���

(a) Incremental camera registerisation.

GIL Deep Image Analogies 2021-3-18 17

�� �� �� �� �� ���� ���� ����

��� ���

(b) Incremental camera registration with averaged rotations.

Figure 3. A toy example to explain our RA-SfM. Camera rotations

are drawn by three arrows with colors in red, green, and blue. In

(a), landmarks are denoted by ⋆, green dots in the image plane

represent keypoints, and red dots are reprojected coordinates. In

(b), we show the correctly registered camera poses for C1, C2, C3.

R12 and R23 denote the relative rotations, which are obtained from

(a). R
′

12 and R
′

23 denote the relative rotations obtained from aver-

aged rotations.

constructed by a spanning tree expanded by random edges

until the given number of relative poses is reached. All rel-

ative rotations are derived from ground truth, and perturbed

by random angular rotations about randomly selected axes.

The perturbation angles are normally distributed with 0
mean and variance of either σ = 0.2 rad or σ = 0.5 rad.

Initial absolute rotations are chosen randomly.

The evaluation results are shown in Table 1, where we

compare our method against LM [30], RBR-BCD [17],

Shonan [16] and SE-Sync [33]. In terms of efficiency, RBR-

BCD is the slowest and almost 1000 times slower than oth-

ers when n = 1000. SE-Sync is faster than LM but stays

within the same order of magnitude. While SE-Sync is

slightly faster than ours when the camera’s number is be-

low 500, the hybrid rotation averaging approach is 1 ∼ 2
orders of magnitude faster than SE-Sync when the num-

ber of views grows beyond 1000. While Shonan is also

a low-rank method, as well as SE-Sync and ours, it is al-

most 4 times slower than SE-Sync, and 2 ∼ 3 orders of

magnitude slower than ours, when the number of the cam-

eras goes above 5000. In terms of the scale of the solved

problems, RBR-BCD failed when the camera number in-

creased to 5000, 10000, or 50000. This is primarily due to

insufficient memory for optimisation, and we marked the
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Table 1. Comparison of runtime on synthetic datasets. n is the number of rotations, and R̄ represents the average rotation error (unit:

degree).

n #edges σ
LM [30] RBR-BCD [17] Shonan [16] SE-Sync [33] hybrid RA

R̄ time(s) R̄ time(s) R̄ time(s) R̄ time(s) R̄ time(s)

20 30
0.2 5.201e-05 0.001 1.219e-05 0.039 9.803e-06 0.032 8.975e-06 < 1e-06 7.307e-06 < 1e-06

0.5 1.492e-01 0.002 7.200e-02 0.028 1.955e-01 0.038 2.033e-01 0.003 1.550e-01 0.002

100 300
0.2 9.490e-06 0.095 6.351e-06 0.651 5.374e-06 0.144 5.383e-06 0.005 5.938e-06 0.006

0.5 8.771e-01 0.089 1.160e-01 0.813 1.108e-01 0.078 1.336e-01 0.079 9.400e-02 0.189

500 1000
0.2 5.413e-06 0.845 5.381e-06 208.372 5.433e-06 0.886 5.209e-06 0.403 5.184e-06 0.159

0.5 7.351e-01 0.781 1.130e-01 245.818 1.255e-01 0.533 9.417e-02 0.255 1.080e-01 0.270

1000 4000
0.2 1.800e-01 1.213 6.754e-06 2,274 9.835e-06 1.883 8.739e-06 0.821 1.021e-05 0.127

0.5 8.956e-01 1.372 1.120e-01 2,153 8.974e-02 1.141 1.310e-01 0.985 8.200e-02 0.949

5000 20000
0.2 1.260e-01 4.414 - - 8.341e-06 14.870 6.371e-06 9.083 7.159e-06 0.331

0.5 2.787e-01 5.183 - - 1.516e-01 12.338 1.408e-01 3.699 8.200e-02 0.809

10000 40000
0.2 1.410e-01 23.714 - - 1.838e-05 45.680 9.037e-06 10.335 7.884e-06 0.362

0.5 3.240e-01 27.265 - - 1.209e-01 42.627 1.386e-01 11.128 9.100e-02 1.704

50000 200000
0.2 - - - - 6.013e-06 956.821 - - 6.310e-06 0.515

0.5 - - - - 1.933e-01 905.294 - - 7.500e-02 7.124

corresponding cells in the table by “–”. LM and SE-Sync

failed when the camera number reaches 50000, as there is

insufficient memory to perform the CHOLMOD [10] fac-

torisation. As our approach only needs to compute the SVD

of a small block matrix and evaluate d matrix operations of

3× 3 matrices in each iteration, we can solve all the evalu-

ated large-scale datasets.

In terms of accuracy, LM achieves the global optimum

with certain probability (30% − 70% as reported in [17]),

and Table 1 only shows the best results. While all the evalu-

ated globally optimal methods have the same accuracy and

can both obtain the global optimum for successful cases.

6.2. Evaluation of RA­SfM on Real­World Datasets

We evaluate the performance of our RA-SfM on large

scale real-world datasets and compare it against state-of-

the-art incremental [34], global [31] and hybrid [13] SfM

approaches. Since the quasi-convex SfM approach [48] is

sensitive to outlies and extremely slow in such datasets, we

did not evaluate it in our experiment.

Figure 4 shows the reconstruction results of COLMAP

and our RA-SfM on the Campus [15] dataset. This dataset,

which has a loop, mainly contains plants that can produce

lots of wrong matching results. COLMAP [34] fails to re-

construct this dataset, as the camera poses drift and the loop

is not closed. Our approach closes the loop successfully, as

the known rotation optimisation can further constrain cam-

era poses after the initial registration.

We also evaluated our approach on the online datasets

from [45], which are collections of challenging unordered

images. The datasets contain many wrong epipolar geome-

tries due to the extreme viewpoint, scale, and illumination

changes. The runtime and accuracy results are shown in

Figure 4. Reconstruction results for the Campus dataset [15]. Left:

COLMAP [34], Right: Our RA-SfM.

Table 2. As is observed, COLMAP [34] recovers the most

camera poses in most online datasets. However, our method

has the lowest mean reprojection error (MRE) in most of the

online datasets, which indicates RA-SfM is more robust and

accurate than COLMAP. For our RA-SfM, the time for ro-

tation averaging is separately given in the penultimate col-

umn (denoted as TR). While LUD [31] is the most effi-

cient one among the evaluated methods, it has large MRE,

and the number of recovered camera poses is less than ours

and COLMAP. HSfM [13] is faster than COLMAP and RA-

SfM because it only samples 2 correspondences to compute

the camera centers in each RANSAC iteration. Besides,

HSfM [13] recovers the fewest camera poses and fails to

recover the correct camera centers.

Some visual results for online datasets are shown in

Fig. 5. For each subfigure, the top and bottom images are

the results obtained by COLMAP [34] and our RA-SfM, re-

spectively. For the Ellis Island dataset, we showed two dif-

ferent parts in the first two columns of Fig. 5, where the red

rectangle area shows the comparison result. For the Gen-

darmenmarkt dataset, the reconstruction result of COLMAP

is bad on the left part, which indicates the wrong camera

poses. For the Vienna Cathedral dataset, though COLMAP

recovers more camera poses than ours, our approach recon-

structed more scene details than COLMAP, as is indicated
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Table 2. Comparison of runtime and accuracy on online datasets [45]. Ni and Nc denotes the number of images and registered cameras

respectively, Np denotes the reconstructed 3D landmarks, MRE means mean reprojection error in pixel. T and TR denotes the total

reconstruction time and hybrid rotation averaging time respectively (in seconds). The best MREs are marked in bold font.

Dataset Ni

COLMAP [34] LUD [31] HSfM [13] RA-SfM

Nc Np MRE T (s) Nc Np MRE T (s) Nc Np MRE T (s) Nc Np MRE TR(s) T (s)

Alamo 2,915 906 138K 0.69 3,180 578 146K 1.28 260 522 149K 1.62 1,079 895 141K 0.65 0.340 2,771

Ellis Island 2,587 801 154K 0.73 4,307 234 16K 1.54 24 208 34K 2.53 169 727 146K 0.72 2.290 3,920

Gendarmenmarkt 1,463 1,040 209K 0.71 3,737 705 87K 1.51 104 542 74K 1.94 377 1,023 202K 0.70 1.997 3,931

Madrid Metropolis 1,344 460 60K 0.62 1,320 350 51K 1.08 36 292 51K 1.48 221 438 66K 0.59 0.420 1,417

Montreal N.D. 2,298 554 107K 0.67 1,902 462 166K 1.64 194 418 155K 1.95 1041 528 105K 0.68 0.115 1,423

Notre Dame 1,431 1,408 349K 0.76 22,788 550 262K 2.06 259 526 281K 2.30 2,375 1,409 353K 0.75 0.131 19,943

NYC Library 2,550 556 101K 0.72 1,698 336 70K 1.52 75 282 74K 1.99 356 519 100K 0.65 0.515 1,715

Piazza del Popolo 2,251 1,011 122K 0.68 2,676 329 38K 1.65 62 286 35K 1.92 212 966 122K 0.66 0.360 3,258

Piccadilly 7,351 3,129 362K 0.73 16,590 2,301 202K 1.83 262 1,665 185K 2.09 2,169 3,041 363K 0.80 1.422 15,109

Roman Forum 2,364 1,594 284K 0.71 5,388 1,045 256K 1.71 182 1,071 262K 1.93 2,237 1,460 267K 0.77 1.938 5,408

Tower of London 1,576 707 140K 0.61 2,767 485 140K 1.65 95 398 149K 1.91 816 672 139K 0.58 0.800 1,979

Trafalgar 15,685 6,980 581K 0.81 14,790 5,044 378K 1.56 713 3,446 318K 1.95 5,761 7,085 597K 0.72 4.213 14,831

Union Square 5,961 937 69K 0.66 2,604 803 41K 1.65 107 769 38K 1.88 1,763 809 57K 0.52 1.304 1,962

Vienna Cathedral 6,288 1,185 290K 0.74 9,714 849 203K 1.91 173 662 252K 2.36 2,307 1,173 303K 0.71 1.959 16,111

Yorkminster 3,368 1,022 259K 0.71 10,806 421 132K 1.75 135 417 129K 1.93 1,487 614 183K 0.64 3.183 9,299

Ellis Island 1 Ellis Island 2 Gendarmenmarkt Vienna Cathedral

Figure 5. Visual reconstruction results for some of the online datasets [45]. For each subfigure, the top and bottom images are respectively

the results obtained from COLMAP [34] and our RA-SfM. (The first two columns are results of two parts of the Ellis Island dataset.)

by the red rectangle. From Table 2 and Fig. 5, we demon-

strate our RA-SfM can effectively correct the wrongly reg-

istered camera poses in the incremental SfM pipeline, and

also achieves the state-of-the-art robustness and accuracy.

7. Conclusion

This paper presents a hybrid rotation averaging method

that is robust to outliers. We combine fast view graph fil-

tering to increase graph sparsity with state-of-the-art imple-

mentations of both global and local optimization methods.

The exposition is rounded off by a soft embedding into an

incremental SfM pipeline leading to accurate, reliable, and

highly efficient results. However, our method solves the ro-

tation averaging problem all in once, thus it can also meet

memory limitation in larger scenes. In our future work, we

are interested in extending this work in larger scenes with a

more efficient manner.
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[31] Onur Özyesil and Amit Singer. Robust camera location

estimation by convex programming. In IEEE Conference

on Computer Vision and Pattern Recognition, pages 2674–

2683, 2015. 1, 6, 7, 8

[32] Jaehyun Park and Stephen Boyd. General heuristics for non-

convex quadratically constrained quadratic programming.

arXiv:1703.07870, 2017. 5

[33] David M Rosen, Luca Carlone, Afonso S Bandeira, and

John J Leonard. SE-Sync: A certifiably correct algorithm for

synchronization over the special Euclidean group. Interna-

tional Journal of Robotics Research, 38(2-3):95–125, 2019.

1, 2, 4, 6, 7

[34] Johannes L. Schönberger and Jan-Michael Frahm. Structure-

from-motion revisited. In 2016 IEEE Conference on Com-

puter Vision and Pattern Recognition, pages 4104–4113,

2016. 2, 7, 8

[35] Tianwei Shen, Siyu Zhu, Tian Fang, Runze Zhang, and Long

Quan. Graph-based consistent matching for structure-from-

motion. In European Conference on Computer Vision, vol-

ume 9907, pages 139–155, 2016. 3

[36] Chris Sweeney, Torsten Sattler, Tobias Höllerer, Matthew

Turk, and Marc Pollefeys. Optimizing the viewing graph for

structure-from-motion. In IEEE International Conference on

Computer Vision, pages 801–809, 2015. 1, 2

[37] Yulun Tian, Kasra Khosoussi, and Jonathan P. How. Block-

coordinate minimization for large SDPs with block-diagonal

constraints. arXiv: 1903.00597, 2019. 2, 3, 4

[38] Yulun Tian, Kasra Khosoussi, David M. Rosen, and

Jonathan P. How. Distributed certifiably correct pose-graph

optimization. arXiv: 1911.03721, 2019. 2, 4

[39] Bill Triggs, Philip F. McLauchlan, Richard I. Hartley, and

Andrew W. Fitzgibbon. Bundle adjustment - A modern syn-

thesis. In Vision Algorithms: Theory and Practice, Interna-

tional Workshop on Vision Algorithms, pages 298–372, 1999.

1

[40] Roberto Tron, Xiaowei Zhou, and Kostas Daniilidis. A sur-

vey on rotation optimization in structure from motion. In

IEEE Conference on Computer Vision and Pattern Recogni-

tion Workshops, pages 1032–1040, 2016. 1

[41] Lanhui Wang and Amit Singer. Exact and stable recovery of

rotations for robust synchronization. Information and Infer-

ence, 2(2):145–194, 2013. 2

[42] Po-Wei Wang, Wei-Cheng Chang, and J. Zico Kolter. The

mixing method: coordinate descent for low-rank semidefi-

nite programming. arXiv: 1706.00476, 2017. 2, 4

[43] Zaiwen Wen, Donald Goldfarb, Shiqian Ma, and Katya

Scheinberg. Row by row methods for semidefinite program-

ming. Technical report, 2009. 2

[44] Zaiwen Wen, Donald Goldfarb, and Wotao Yin. Alternat-

ing direction augmented lagrangian methods for semidefinite

programming. Math. Program. Comput., 2(3-4):203–230,

2010. 2

[45] Kyle Wilson and Noah Snavely. Robust global translations

with 1dsfm. In Computer Vision European Conference,

pages 61–75, 2014. 1, 7, 8

[46] Changchang Wu. Towards linear-time incremental structure

from motion. In 2013 International Conference on 3D Vi-

sion, pages 127–134, 2013. 2

[47] Christopher Zach, Manfred Klopschitz, and Marc Pollefeys.

Disambiguating visual relations using loop constraints. In

IEEE Conference on Computer Vision and Pattern Recogni-

tion, pages 1426–1433, 2010. 3

[48] Qianggong Zhang, Tat-Jun Chin, and Huu Minh Le. A fast

resection-intersection method for the known rotation prob-

lem. In 2018 IEEE Conference on Computer Vision and Pat-

tern Recognition, pages 3012–3021, 2018. 7

[49] Siyu Zhu, Tianwei Shen, Lei Zhou, Runze Zhang, Jinglu

Wang, Tian Fang, and Long Quan. Parallel structure from

motion from local increment to global averaging. arXiv:

1702.08601, 2017. 1, 2

[50] Siyu Zhu, Runze Zhang, Lei Zhou, Tianwei Shen, Tian

Fang, Ping Tan, and Long Quan. Very large-scale global

SfM by distributed motion averaging. In IEEE Conference

on Computer Vision and Pattern Recognition, pages 4568–

4577, 2018. 1, 2

[51] Bingbing Zhuang, Loong-Fah Cheong, and Gim Hee Lee.

Baseline desensitizing in translation averaging. In IEEE

Conference on Computer Vision and Pattern Recognition,

pages 4539–4547, 2018. 1

10367


