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Abstract

3D morphable models are widely used for the shape rep-

resentation of an object class in computer vision and graph-

ics applications. In this work, we focus on deep 3D mor-

phable models that directly apply deep learning on 3D mesh

data with a hierarchical structure to capture information at

multiple scales. While great efforts have been made to de-

sign the convolution operator, how to best aggregate ver-

tex features across hierarchical levels deserves further at-

tention. In contrast to resorting to mesh decimation, we

propose an attention based module to learn mapping matri-

ces for better feature aggregation across hierarchical lev-

els. Specifically, the mapping matrices are generated by

a compatibility function of the keys and queries. The keys

and queries are trainable variables, learned by optimizing

the target objective, and shared by all data samples of the

same object class. Our proposed module can be used as a

train-only drop-in replacement for the feature aggregation

in existing architectures for both downsampling and upsam-

pling. Our experiments show that through the end-to-end

training of the mapping matrices, we achieve state-of-the-

art results on a variety of 3D shape datasets in comparison

to existing morphable models.

1. Introduction

The 3D morphable models play a core role in many 3D

applications, including identity recognition, shape retrieval,

shape completion, animation and 3D reconstruction from

2D images [46, 42, 26]. 3D morphable models encode raw

3D shapes into latent variables, from which the shapes can

be reconstructed to some approximation by interacting with

the 3D shape model. In this work, we are particularly in-

terested in 3D mesh shapes that share a common template

and are already aligned to the template. The commonly

employed encoding approaches are the linear encoding of

Principal Component Analysis [1, 26, 44, 53] or manually

defined blendshape [45, 24, 8] for human face, skinned ver-

tex based models like Skinned Multi-Person Linear Mod-

el [30] and hand model with articulated and non-rigid de-

formations [38] for body and hand and non-linear encod-

ings of autoencoder neural nets [43]. Compared to the clas-

sical linear models, the non-linear models, especially deep

learning based models, offer the possibility to capture de-

tailed deformations like wrinkles and surpass them in terms

of generalization, compactness and specificity [40].

Recently, there is an emerging interest in generalizing

CNNs to meshes with operations directly defined on mesh-

es [37, 9]. Both isotropic [37] and anisotropic [9] convolu-

tions have been introduced for meshes with a fixed topol-

ogy. Feature aggregation is defined for the downsampling

and upsampling of vertex features and combined with con-

volutions to construct mesh autoencoders [37]. Despite the

success of such models, the feature aggregation across hier-

archical levels is determined by a preprocessing stage that

maintains surface error approximations with quadric met-

rics [17] rather than by optimizing the learning objective.

Such procedure limits the representation power of the mor-

phable model to capture fine grained deformations.

In this work, we propose an attention based feature ag-

gregation strategy to construct hierarchical representations

for 3D meshes with a fixed topology (Fig. 1(a)). Instead

of using the precomputed matrices (Fig. 1(b)), we propose

to learn the mapping matrices along with the convolution-

s in the network (Fig. 1(c)). The attention based mapping

module introduces keys and queries as trainable variables

that are shared by all data samples in the dataset. With

keys and queries standing for the vertices at the preced-

ing and succeeding levels respectively, the mapping matri-

ces are derived by a compatibility function of the keys and

queries. This allows the receptive fields and aggregation

weights to be simultaneously learned. By varying the num-

ber of keys and queries, this module can be used for either

downsampling or upsampling. Since only mapping matri-

ces are needed for inference, we can detach the attention

based mapping module once training is finished to avoid

additional cost at inference stage. We evaluate our method

on the reconstruction task which serves as a fundamental

testbed for further applications. We quantitatively and qual-

itatively show the results on three 3D human shape datasets:

faces, bodies, and hands. As a drop-in replacement for ex-
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Figure 1. (a) Deep 3D morphable model with mesh encoder and decoder. The mesh encoder encodes a mesh as a compact latent represen-

tation, which the mesh decoder takes as input to recover the mesh with hierarchical upsampling and convolution operations. (b) A fixed

mapping matrix generated by surface simplification is used for feature aggregation across hierarchical levels in [37, 9]. (c) In this work, the

mapping matrix for feature aggregation is generated by an attention based module and jointly learned with other components of the model

isting feature aggregation method, our method boosts the

performance of existing models by a large margin, in com-

bination with either isotropic or anisotropic convolution op-

erators.

2. Related work

2.1. 3D Morphable Models

3D Morphable Models represent the shape of objects

as 3D meshes that can be deformed to match a particular

instance of that object class. These meshes are in dense

correspondence with a shared template of the object class.

Existing models take the statistical information of a set of

representative examples of the class as prior knowledge to

model shapes. The most well studied models are on hu-

man face [15, 26], body [30, 34] and hand [38]. Princi-

pal Component Analysis is the most commonly used ap-

proach for statistical modeling and has been used to model

faces [3, 35, 11, 5, 36]. SMPL [30, 34] and MANO [38] are

the most well know models for body and hand. These lin-

ear models filter out the high frequency signal of the shapes,

thereby losing details, and require class specific joint local-

isation for shape deformation.

Deep 3D morphable models apply 3D deep learning to

model the nonlinear shape variations and are not limited to

a specific class of shapes. Litany et al. [28] stack sever-

al graph convolutional layers and average the features of

all vertices to obtain the mesh representation. Ranjan et

al. [37] propose a mesh autoencoder called CoMA with

fast localised convolutional filters [12] and mesh downsam-

pling and upseampling layer to support multi-scale hierar-

chical structure. Bouritsas et al. [9] propose to replace the

isotropic convolutions with anisotropic spiral convolution-

s. Vertex-wise weighted convolutions are further proposed

in [16, 56] at the cost of increased number of parameter-

s. Tretschk et al. [47] add an embedded deformation lay-

er to the mesh autoencoder. Feature aggregation in most

of these works adopts direct selection for downsampling

and barycentric coordinates for upsampling. The aggrega-

tion functions are fixed and determined by quadric mesh

simplification rather than minimizing reconstruction error.

Although the aggregation weights are learned from data

in [56], the aggregation is still performed over fixed local

neigborhood. In contrast, we propose to learn both the ag-

gregation weights and receptive fields. Furthermore, rather

than directly setting the weights as trainable parameters, we

generate the weights by an attention based module to avoid

over-parameterization.

2.2. Geometric deep learning on meshes

Extending convolution operations to meshes and graph-

s has been studied in both spectral-based and spatial-based

fields. Spectral approaches build convolutional operations

on spectral representations of graphs with graph Lapla-

cian [10, 6, 22, 25]. Ranjan et al. [37] apply the truncat-

ed Chebyshev polynomials [12, 23] to meshs. On the oth-
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er hand, spatial-based approaches take as input per vertex’s

local spatial structure and features to construct convolution-

s [20, 49, 50, 33, 52, 39, 16, 56]. Geodesic polar coordinates

and anisotropic heat kernels are adopted to parameterize lo-

cal mesh surfaces for convolutions in [32, 7]. Bouritsas et

al. [9] and Gong et al. [19] propose to define local coordi-

nates by the spiral sequence [27]. Convolutions on edges

are defined by Hanocka et al. [21] and extended for mesh

subdivision [29]. While various convolution operators are

proposed in these works, the focus of this work lies in fea-

ture aggregation across hierarchical levels, which is in par-

allel to them.

To build hierarchical representations for meshes, Graclus

algorithm [13] and Quadric Error Metrics based mesh sim-

plification [17] are adopted to reduce the number of ver-

tices in [12, 50, 18, 37, 55, 51]. Hanocka et al. [21] learn

to sequentially collapse edges. These approaches aggre-

gate features with permutation invariant functions, such as

sum(·), max(·) and mean(·), for downsampling and interpo-

lation functions for upsampling. There are works propos-

ing to learn the aggregation weights via a dense mapping

matrix [54, 2] or a fully-connected layer [14]. As shown

by our experiments, they deliver poor performance for high

resolution meshes due to over-parameterization. Zhou et

al. [56] directly learn aggregation weights over predefined

local neighbors. Different from these works, we learn the

mapping matrices for feature aggregation through an atten-

tion based module, which is scalable due to linear complex-

ity and enables learning the receptive fields together with

the aggregation weights.

3. Learning feature aggregation for 3DMMs

3.1. Deep 3D Morphable Models

The deep 3D morphable model, as illustrated in Fig. 1,

consists of an encoder and a decoder. The encoder has a

mirrored structure of the decoder. The encoder takes as in-

put a 3D mesh to generate a compact representation, which

captures both global and local shape information by a fine-

to-coarse hierarchical network structure. Given the com-

pact representation, the decoder learns to generate a mesh

to recover detailed shape descriptions in a coarse-to-fine

fashion. At each level of the hierarchical structure, convo-

lution and upsampling operations are applied sequentially

in the decoder, whereas convolution and downsampling op-

erations are used for the encoder. While the convolution

can be implemented by existing isotropic [37] or anisotrop-

ic [9] convolutions, the feature aggregation, including up-

sampling and downsampling, is usually performed by mul-

tiplying input features by a mapping matrix.

Formally, we consider a 3D mesh O as a set of vertices

and edges, O = (V,A), where V = {1, . . . , n} denotes

the set of n vertices and A ∈ {0, 1}
n×n

indicates the s-

parse edge connections between vertices. Assume there

are L hierarchical levels in both the encoder and decoder

of the morphable model. In the following, we only take

the decoder as the example to illustrate our method. How-

ever, similar analysis can be applied for the encoder. Let

X(l) ∈ R
nl×dl denote the output features of the decoder

at level l ∈ {1, 2, . . . , L}, where nl and dl are the number

of vertices and the feature dimension. X(l−1) serves as the

input features at level l.

In existing models [37, 9], feature aggregation can be

generally formulated as

x
(l)
i =

nl−1
∑

j=1

m
(l−1→l)
ij x

(l−1)
j , (1)

with different aggregation weights m
(l−1→l)
ij ∈ M (l−1→l)

assigned for downsampling and upsampling. While these

models demonstrate promising performance, the mapping

matrices M (l−1→l) are calculated by mesh simplification

on a template mesh and are fixed during the training of the

model. In contrast, we are interested in learning these map-

ping matrices along with the convolution operations for the

training shapes. A straightforward solution would be di-

rectly parameterizing the mapping matrices as in [54, 14]

and training them along with the other components of the

model. However, this suffers from over-parameterization

for high resolution meshes and deteriorates the model per-

formance as we show in the experiments. On the contrary,

we propose to learn the mapping matrices for feature aggre-

gation through an attention based module.

3.2. Learning feature aggregation via attention

We propose to model the feature aggregation from

X(l−1) to X(l) by the attention mechanism [41, 48, 49].

The attention mechanism can be regarded as generating an

output with a corresponding query vector and the stored

key-value pairs. In the context of feature aggregation, x
(l)
i

is the output and x
(l−1)
j , j = 1, . . . , nl−1 are the stored val-

ues. Then, we propose to compute the aggregation weight

m
(l−1→l)
ij by a compatibility function d(·) of a query vector

q
(l)
i ∈ R

c and the key vector k
(l−1)
j ∈ R

c that corresponds

to the stored value x
(l−1)
j . The formulation is as

m
(l−1→l)
ij = d

(

q
(l)
i ,k

(l−1)
j

)

. (2)

By this means, we can break down the construction of map-

ping matrices into the establishment of the key and query

vectors and the design of the compatibility function, as

shown in Fig. 2.
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Figure 2. The attention based feature aggregation module

3.2.1 The key and query vectors

Since the key and query vectors are paired with the ver-

tex features, their values are expected to be either associat-

ed with the vertex indices or related to the vertex features.

Given the fact that feature irrelevant mapping matrices are

feasible in the existing models [37, 9], we model the key

and query vectors as a function of the vertex indices rather

than the vertex features. In other words, we aim to learn

object aware mapping matrices instead of instance aware

ones. Recall that the meshes considered in this work are

already registered, i.e., each vertex has its corresponding

semantic meaning. The key and query vectors can, then,

be parameterized as trainable variables without taking any

data as input. One benefit of such parameterization is that

only the learned mapping matrices rather than the attention

module are required at inference stage. Furthermore, this

also avoids the chicken-and-egg situation between q
(l)
i and

x
(l)
i when associating queries with vertex features. While

the numbers of key and query vectors are determined by the

numbers of vertices, the feature dimension of each vector c

is a hyperparameter to be set.

3.2.2 The compatibility function

Given the key and query vectors, the compatibility func-

tion measures how well two vertices at neighboring levels

align. In general, arbitrary distance metric can be employed

to compute the compatibility score. We propose to compute

the compatibility score with the cosine distance between

q
(l)
i ∈ R

c and k
(l−1)
j ∈ R

c as

s
(l−1→l)
w,ij = cos

(

q
(l)
i ,k

(l−1)
j

)

. (3)

Directly applying this score as the aggregation weight

would result in a dense mapping matrix. In other words,

any vertex feature in a given level is influenced by all vertex

features in the preceding level. However, such aggregation

is less desirable in the context of hierarchical learning.

In order to capture both the global and local informa-

tion, the receptive fields of different x
(l)
i are expected to

be distinctive to each other. Each vertex in the succeeding

level x
(l)
i is expected to be related to an unique subset of

the vertices in the preceding level. We integrate such prior

knowledge into an optional mask operation by setting the

cardinality of the subset to a fixed value of k with top-k se-

lection. And the elements of each subset are automatically

learned from the training shapes. To be specific, we define

a binary mask for the weight score s
(l−1→l)
w,ij as

b
(l−1→l)
ij =

{

1, s
(l−1→l)
w,ij is among the top k of s

(l−1→l)
w,i:

0, otherwise.

(4)

The masked weight score is then computed by multiplying

the weight score by the binary mask as

s
(l−1→l)
m,ij = b

(l−1→l)
ij s

(l−1→l)
w,ij . (5)

We then normalize the weight score as

m
(l−1→l)
a,ij =

s
(l−1→l)
m,ij

∑nl−1

j=1 s
(l−1→l)
m,ij

. (6)

3.2.3 The mapping matrix

While it is feasible to take Eqn. 6 as the replacement of the

precomputed weights in existing models, we further pro-

pose to fuse both information to leverage the success of ex-

isting methods. The fusion can be thought as a multi-head

attention with a fixed head and a learnable head. Specifical-

ly, we adopt a weighted combination for fusion as

m
(l−1→l)
ij = wam

(l−1→l)
a,ij + (1− wa)m

(l−1→l)
p,ij , (7)

where wa is a trainable weight and m
(l−1→l)
p,ij stands for

the precomputed downsampling or upsampling coefficient

in existing models [9, 37]. When wa is a fixed value of 0, E-

qn. 7 is exactly the same as the precomputed ones in existing

models. With the aggregation weight computed according

to Eqn. 7, we can obtain the mapping matrices M (l−1→l)

for both upsampling and downsampling in the model.

4. Experiments

In this section, we demonstrate the effectiveness

of our proposed attention based feature aggregation

for 3D reconstruction on human face, human body,

and hand shape datasets in comparison to existing

3DMMs [37, 9]. The code is available at http-

s://github.com/zxchen110/Deep3DMM.

4.1. Datasets

COMA [37]. The face expression dataset presented by

Ranjan et al. [37] consists of 20K+ well registered 3D face
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Figure 3. Reconstruction errors of different methods on COMA (left), DFAUST (middle), and SYNHAND (right) datasets

shapes with 5,023 vertices for each shape. The dataset pro-

vides twelve extreme expression sequences, such as high

smile and bareteeth, from twelve unique identities. We fol-

low the interpolation setting in [37] to split the dataset.

DFAUST [4]. This dataset contains 40K+ dynamic hu-

man body shapes with all shapes aligned to a common refer-

ence topology with 6,890 vertices [4]. The shapes are cap-

tured from ten identities in over one hundred moving se-

quences, covering actions like punching and shaking shoul-

ders and hips. We follow the data split setting in [9].

SYNHAND [31]. A total of 5 million synthetic hand

meshes with varying hand shapes and poses are presented

in [31]. We follow [47] to randomly sample 100K meshes

for the experiments with hands, where 90K meshes are used

for training and validation and the remaining 10K meshes

are used to evaluate the trained model.

4.2. Implementation details

We choose to evaluate the proposed feature aggrega-

tion method on two state-of-the-art 3D morphable models

with isotropic spectral convolution [37] and anisotropic spi-

ral convolution [9], denoted as Deep3DMM(spectral) and

Deep3DMM(spiral), respectively. We follow the settings

in [37] to configure the network architecture as an encoder-

decoder with four downsampling and upsampling layers.

The mapping matrices are generated by our method while

the remaining components of the model are consistent with

existing models. The whole network is trained with the rec-

ommended settings in the original works [37, 9].

For our attention based feature aggregation module, we

empirically set c to 21 and k to 2 and 32 for downsampling

and upsampling, respectively. The trainable weight wa is

initialized as 0.2. Different from the standard initialization

of the remaining components in the network, we use the re-

sults of mesh simplification to initialize the key and query

vectors. In particular, we initialize the first three dimensions

of the key and query vectors by the spatial position of ver-

tices at the corresponding level. The remaining dimensions

are randomly initialized by an uniform distribution.

4.3. Results of attention based feature aggregation

4.3.1 Quantitative results of reconstruction

We follow previous works [37, 9] to evaluate the perfor-

mance of shape representation in terms of Euclidean dis-

tance based reconstruction error on the test set. In Fig. 3, we

show the quantitative results of the averaged reconstruction

error on three datasets with the dimension of latent repre-

sentation varying from 8 to 64.

As shown in the figure, morphable models equipped with

our attention based feature aggregation module consistent-

ly outperform the corresponding baseline models under all

evaluated settings. For the spectral convolution based mod-

els, our feature aggregation reduces the reconstruction er-

rors by a large margin for all tested latent dimensions on all

three datasets (60% lower on COMA dataset). That should

be attributed to the mechanism of learning both the recep-

tive fields and the aggregation weights. This mechanism

allows each vertex to be affiliated with a selected portion of

vertices at the preceding level with different weights, which

compensates the isotropy of spectral convolutions. For the

spiral convolution based models, our feature aggregation al-

so enhances the model capacity in every tested case. A pos-

sible reason of the improvement is the adaptive learning of

the receptive field for each vertex.

We also observe that the gap between spectral convolu-

tion based model and spiral convolution based model is nar-

rowed after applying our feature aggregation. We attribute

this to the fact that our feature aggregation also introduces

certain anisotropic operations which partly overlap with the

spiral convolutions. Moreover, we observe that the reduced

error introduced by our feature aggregation, especially in

combination with spiral convolutions, is more significant

for shorter latent representations, which may benefit down-

stream tasks to capture semantically meaningful and dis-

criminative representations with a lightweight model.

4.3.2 Qualitative results of reconstruction

In Fig. 4, we visualize the per vertex Euclidean error of d-

ifferent morphable models on several shapes from the three
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Figure 4. Qualitative comparison of spectral convolution based

models on COMA (left), DFAUST (middle), and SYNHAND

(right) datasets. The first row is the ground truth shapes. The

second and third rows show the reconstructed shapes, while the

fourth and fifth rows show the corresponding reconstruction errors

datasets for qualitative comparison. The latent dimension

is set as 8. We can observe that our feature aggregation re-

duces the reconstruction error not only on the vertices with

large errors but also on other vertices. While existing mor-

phable models may have wrong predictions in some parts of

the shape, such as the forehead of face, the hands and legs

of human, and the fingers of hand, our proposed feature ag-

gregation can alleviate this problem by providing rough cor-

rect predictions. Meanwhile, our feature aggregation leads

to more realistic reconstructions by recovering more details.

4.3.3 Visualization of mapping matrices

To understand the learning of mapping matrices for fea-

ture aggregation, we provide the visualization of mapping

matrices in Figs. 5 and 6 with the spectral convolution on

COMA dataset. In Fig. 5, we show the mapping matrices

of both downsampling and upsampling on the correspond-

ing shapes for both quadric error minimization (QEM) in

existing morphable models [37, 9] and our proposed fea-

ture aggregation (FA). We map the column/row vectors of

the mapping matrices of down-/up-sampling by t-SNE to

a 1-dimension manifold for visualization. We can observe

that the learned mapping matrices are notably different from

those computed by mesh decimation. The learned aggrega-

tion weights are more likely to be similar for vertices that

are close to each other, such as the region around eyes in the

rightmost shape.

In Fig. 6, we visualize the receptive fields of some ex-

emplar vertices for the last level of upsampling. Since the

traced downsampling and barycentric coordinates are used

Q
E
M

F
A

downsampling upsampling

Figure 5. Visualization of mapping matrices of down-sampling

and up-sampling on COMA dataset with t-SNE. The first and sec-

ond rows are the results of quadric error minimization in [37, 9]

and our proposed feature aggregation, respectively

for upsampling in QEM, we can find that the receptive fields

are small local regions around the traced vertices, as shown

in Fig. 6(b). In contrast, we can observe that the receptive

fields are randomly distributed on the face with random ini-

tialization of the keys and queries in our attention based fea-

ture aggregation, as shown in the leftmost of Fig. 6(c). By

training the feature aggregation together with the convolu-

tions, most of the receptive fields also converge to the lo-

cal regions around the traced vertices, but with larger sizes

than that of QEM. Besides the geodesic neighboring ver-

tices, there are some non-local receptive fields, such as ver-

tices at the back of head as shown in the bottom row. Note

that the training of mapping matrices is based on the vertex

features, rather than the spatial information of each vertex.

It is possible that non-local vertices contain the identity and

expression information that is helpful for recovering shape

details. Along with the training of receptive fields, the ag-

gregation weights are simultaneously trained for the recep-

tive fields. This is shown in the figure by the variation of

saturation and brightness, for example on the chin and neck.

4.4. Comparison with other aggregation methods

In order to show the effectiveness of simultaneously

learning receptive fields and aggregation weights by the at-

tention mechanism, we also conduct experiments with dif-

ferent aggregation methods. In Table 1, we show the results

with latent dimension of 8 on COMA dataset with spec-

tral convolutions. Full mapping method directly parameter-

izes the mapping matrices as trainable parameters to learn

both the aggregation weights and receptive fields. Howev-

er, this method delivers poor performance since it suffer-

s from over-parameterization. We migrate DiffPool [56]

for mesh autoencoders by learning the mapping matrices

with additional network layers as suggested by the authors.

This method also does not perform well due to learning the

matrics directly. Average aggregation uses the same recep-

tive fields as QEM, but the assigned aggregation weights are

identical for vertices in the receptive field. QEM in [37, 9]

adopts mesh decimation for downsampling and barycentric
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(b)(a) (c)

Figure 6. Illustrations of receptive fields of selected vertices at the finest level of upsampling on COMA dataset (best viewed in color). The

first column (a) shows the selected vertices with colors. The second column (b) shows the receptive fields of the existing QEM method at

the neighboring coarser level. The remaining columns (c) show the receptive fields of our proposed attention based feature aggregation at

epochs of 1, 50, 100, 150, 200, 250, and 300 (from left to right) with convolutions in [37]

Table 1. Comparison of different aggregation methods. ∗ denotes

our implementation of the method for the mesh autoencoder in this

paper

Aggregation method Error (mm)

Full mapping 4.319

DiffPool [54]∗ 3.964

Average 0.975

QEM [37] 0.931

Variant weight [56]∗ 0.928

Ours 0.519

coordinates for upsampling. Variant weight [56] automat-

ically learns the aggregation weights by setting them as

trainable parameters. Since the local region defined in [56]

relies on extra connection matrices between hierarchical

levels which are unavailable in existing models [37, 9], we

set 1-ring neighbors as the local region. The main draw-

back of these methods is the inability to learn the receptive

fields. We do not compare with MeshCNN [21] since it is

unclear how to incorporate the edge based operations to ex-

isting models [37, 9] defined on vertices. It is also compu-

tation inefficient and worse than Neural3DMM [9] as show

in [56]. Our proposed feature aggregation balances well be-

tween the number of parameters and the flexibility to learn

receptive fields and aggregation weights via the attention

mechanism.

4.5. Results with different settings of filters

We also conduct experiments on two settings of the num-

ber of convolution filters to explore the effectiveness of our

proposed feature aggregation mechanism with different net-

works. The simple setting represents the configuration as

in [37], where the number of filters are (3,16,16,16,32) and

(32,32,16,16,16,3) for the encoder and decoder, respective-

ly. The wider setting represents the network with larg-

er numbers of filters, where they are (3,16,32,64,128) and

Table 2. Reconstruction errors with different settings of filters

simple wider

Method error # of par. error # of par.

CoMA [37] 0.939 30,056 0.682 179,656

Ours 0.519 30,056 0.441 179,656

Table 3. Ablation study of the feature aggregation

encoder/decoder

Method QEM/QEM FA/QEM QEM/FA FA/FA

Error (mm) 0.939 0.886 0.525 0.519

(128,64,32,32,16,3) for the encoder and decoder, respec-

tively. Table 2 shows the reconstruction errors on CO-

MA dataset with the latent dimension of 8, together with

the number of parameters at the inference stage. We can

see that our feature aggregation mechanism consistently re-

duces the error under both settings with the same number of

parameters at the inference stage.

4.6. Ablation study of the feature aggregation

In Table 3, we show the reconstruction errors by apply-

ing the proposed feature aggregation (FA) on either the en-

coder or the decoder. The results show that the performance

can be enhanced by learning the feature aggregation on ei-

ther the encoder or the decoder, especially on the decoder.

4.7. Latent space arithmetic

We also evaluate the representational power of the

learned latent space by performing arithmetic operations on

latent representations.

Interpolation. Given the latent representations z1 and z2
of two sufficient different shapes O1 and O2, we linearly

interpolate between them to obtain a new latent representa-

tion z0 = αz1 + (1 − α)z2 with α ∈ (0, 1). As shown
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Deep3DMM(spectral)

CoMA[37]

Deep3DMM(spectral)

CoMA[37]

p p )

Figure 7. Interpolations between different shapes. The left-most

and right-most shapes are input shapes

in Fig. 7, by decoding z0 with the mesh decoder, we can

obtain the in-between shapes for different α. The results of

our model are better.

Extrapolation. Similar to the linear combination for in-

terpolation, we obtain an extrapolated latent representation

by performing z0 = αz1 + (1 − α)z2 but with α ∈
(−∞, 0) ∪ (1,∞). As shown in Fig. 8, we choose z1 to

be the neutral shape of the same identity as z2 and show

the overdrawn shape deformation of a given identity. The

results of our model are more natural.

Deformation transfer. It is also possible to transfer shape

deformation between different identities. Let S0, T0 be the

shapes of two different identities with the neutral expres-

sion/pose, S1 be the shape of the same identity as S0 but

with a specific expression/pose. We compute the shape de-

formation by d = S1 − S0 and apply this deformation to

T0 by T1 = T0 + d to get the deformed shape. Examples

of face and human body are shown in Fig. 9. Our model

can successfully transfer the deformation while the baseline

model fails.

5. Conclusion

In this paper, we propose to learn feature aggregation for

deep 3D morphable models. Specifically, we introduce keys

and queries as trainable parameters and adopt the attention

mechanism to compute the mapping matrices for vertex fea-

ture upsampling and downsampling. Our attention based

feature aggregation allows the receptive fields and aggrega-

tion weights to be simultaneously learned. Our experiments

on three benchmarks show that the proposed feature aggre-

gation can enhance the capacity of 3D morphable models

CoMA[37]

Deep3DMM(spectral)

Deep3DMM(spectral)

CoMA[37]

Figure 8. Extrapolation. The left-most shapes are the neutral

shapes

CoMA[37]Deep3DMM
(spectral)

Figure 9. Deformation transfer with arithmetic operations on latent

representations

with either isotropic or anisotropic convolutions.

There are several possible future directions for our work.

While the attention mechanism is introduced for feature ag-

gregation in this work, it would be interesting to apply the

attention mechanism for the other components of the mor-

phable models. In addition, while current models require

the input shapes to be registered to a template mesh, we are

also interested in extending our method to arbitrary meshes.
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