
Learning a Non-blind Deblurring Network for Night Blurry Images

Liang Chen1∗†, Jiawei Zhang2‡†, Jinshan Pan3, Songnan Lin2, Faming Fang1, Jimmy S. Ren2,4

1 Shanghai Key Laboratory of Multidimensional Information Processing,

School of Computer Science and Technology, East China Normal University
2 SenseTime Research

3 Nanjing University of Science and Technology
4 Qing Yuan Research Institute, Shanghai Jiao Tong University, Shanghai, China

Abstract

Deblurring night blurry images is difficult, because the

common-used blur model based on the linear convolution

operation does not hold in this situation due to the influ-

ence of saturated pixels. In this paper, we propose a non-

blind deblurring network (NBDN) to restore night blurry

images. To mitigate the side effects brought by the pix-

els that violate the blur model, we develop a confidence

estimation unit (CEU) to estimate a map which ensures

smaller contributions of these pixels in the deconvolution

steps which are optimized by the conjugate gradient (CG)

method. Moreover, unlike the existing methods using man-

ually tuned hyper-parameters in their frameworks, we pro-

pose a hyper-parameter estimation unit (HPEU) to adap-

tively estimate hyper-parameters for better image restora-

tion. The experimental results demonstrate that the pro-

posed network performs favorably against state-of-the-art

algorithms both quantitatively and qualitatively.

1. Introduction

Non-blind deblurring aims to recover the latent image

from the given blurry image and blur kernel. Mathemati-

cally, the blurring process can be modeled as

B = I ⊗K + η, (1)

where B, I , K, and η denote the blurry image, latent im-

age, blur kernel, and additive noises, respectively. We use

⊗ to represent the convolution operator. Due to the irre-

versible loss of high-frequency information in the blurring

process and the interference of noises, restoring the latent

image is fundamentally ill-posed [26]. Thus, an efficient

∗This work was done when Liang Chen was an intern at SenseTime.
†equal contribution
‡Corresponding author

prior term R(I) must be imposed to regularize the solution

space, which gives,

minI ‖B − I ⊗K‖2 + µR(I). (2)

Then, the solution is the one that minimizes the summation

of the fidelity term and the prior term weighted by the pa-

rameter µ.

However, the non-blind deblurring task becomes more

challenging for night blurry images. The reason is that sat-

urated pixels are often presented under night condition, and

these pixels violate the blur model in Eq. (1). As the satu-

rated pixels are usually clipped to the maximum value due

to the limited sensor range in the exposure time, a clipping

function is adopted in Eq. (1):

B = C(I ⊗K) + η, (3)

where C(·) denotes the clipping function. When I ⊗ K
is within the dynamic range, C(I ⊗ K) = I ⊗ K; other-

wise, C(I⊗K) returns the maximum intensity of the sensor

range. Because of the influence of the non-linear function

C(·), the affected pixels can no longer be modeled by the

blur model in Eq. (1). Thus, the method based on this

model is less effective for the image with saturated pixels

(Figure 1 (g) and (h)).

Significant efforts have been made to solve this prob-

lem. Cho et al. [7] adopt an Expectation-Maximization-

based framework to locate pixels violating the blur model

and exclude them during the updating process. However,

this strategy requires a predefined density of the saturated

pixels and a heuristic estimation of the noise levels for all

the images, which may be less effective because the densi-

ties and noise levels vary across different situations. Whyte

et al. [25] extend the Richardson-Lucy algorithm with an

approximation function [3] to model the property of satu-

rated pixels. Moreover, [19, 6] develop specially-designed

fidelity terms to fit the degrading process in Eq. (3). How-

ever, these approaches require empirical parameter tuning
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(a) Input (b) Cho et al. [7] (c) Whyte et al. [25] (d) Hu et al. [13] (e) Pan et al. [19]

(f) Dong et al. [9] (g) IRCNN [29] (h) RGDN [10] (i) Our result (j) GT

Figure 1: Deblurring results of a night blurry image. Due to the influence of noise and saturated pixel, methods [7, 25, 13,

19, 9] based on the hand-crafted robust functions to model the data fidelity are ineffective while the method [29, 10] based on

a linear convolution model generates an image with artifacts in the saturated regions. The part enclosed in the boxes contains

artifacts (please zoom-in for a better view).

to fit the specific functions, and the optimization processes

are time-consuming. Moreover, the adopted sparse prior

[15] can result in visual artifacts for these methods when

noise and blur are both present (Figure 1 (b)-(e)). The night

blurry image often contains noises, saturation, and blur at

the same time, which makes it difficult for these methods to

restore a clear image.

As all above mentioned methods manually design so-

phisticated functions or complex optimizations to solve de-

blurring problems when saturated pixels are presented, sev-

eral methods [28, 29, 10, 22] develop deep convolutional

neural networks (CNNs) to solve non-blind image deblur-

ring. These algorithms either explicitly or implicitly use

deep CNNs as denoisers [28, 29, 10] or learn an end-to-

end network to directly estimate latent images [22]. Al-

though decent performance has been achieved, these algo-

rithms do not effectively model the imaging process in Eq.

(3). When handling blurred images with saturated pixels,

they usually lead to results with ringing artifacts as shown

in Figure 1 (g) and (h). As saturated pixels usually exist

in low-illumination environments which are likely to cause

blurry effect when capturing images in such conditions, it is

of great interest to develop an effective algorithm to solve

deblurring with saturated pixels.

In this work, we develop a non-blind deblurring network

(NBDN) to learn both the fidelity and prior terms to restore

saturated blurry images. For the fidelity term, we propose

a learning-based confidence estimation unit (CEU) to deter-

mine the influence of each pixel on the optimization pro-

cess. Specifically, pixels that violate Eq. (1) are with small

confidences so that they have few influences on the opti-

mization process. Unlike the approach in [7] that uses the

residual between the blurry image and the convolution out-

put (i.e. B−I⊗K) to locate these pixels, confidences from

CEU are only determined by the blurry image and restored

result from the previous iterations, which alleviates the er-

ror brought by the inaccurate kernel. For the prior term, we

use the prior information derived from a learned regulariza-

tion unit (LRU) to remove noises as well as artifacts [28].

With the help of these two learned terms, we can obtain re-

sults with fine edges while side-effects from saturated pixels

being removed.

Moreover, the noise level in image deblurring varies

from image to image, which requires exhaustive hyper-

parameters tuning in state-of-the-art deblurring methods.

To avoid manual hyper-parameter tuning for noise handling,

we propose a hyper-parameter estimation unit (HPEU) to

adaptively predict corresponding hyper-parameters for ev-

ery input. In practice, we integrate the information from

all previous updating steps and the latent images to help

the current hyper-parameter estimation. During each updat-

ing step, HPEU can generate different hyper-parameters for

images with different levels of noise. After all the variables

are obtained via corresponding modules, we propose a CG-

based deconvolution step to update the latent image. An

overview of NBDN is shown in Figure 2. The contributions
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Figure 2: Architecture of NBDN. Given a night blurry image B and the corresponding blur kernel K, we first estimate the

hyper-parameter λ0 with the blurry image and an initial hidden state tensor HS0 whose values are set to be zeros, and then

we conduct an initial CG-based deconvolution step to obtain the updated latent image I1. Note in this step, the values of the

prior U0 and confidence map M0 are set to be zeros and ones, respectively. In the following updates, we use the updated HS
and the current latent image I to estimate λ through HPEU. Meanwhile, LRU and CEU are used to generate prior information

U and confidence maps M . The outputs are further fed into the deconvolution step to obtain a clearer image. We iteratively

perform the above updates before the final deblurred image I∗ is obtained. Please refer to the manuscript for details.

of this work are summarized as follows.

• We develop an NBDN for deblurring with saturated

pixels. Different from other methods, we exclude side-

effects from pixels that violate the blur model via a

learned confidence map, where the confidences serve

to determine the influences of different pixels in the

data term.

• We propose an HPEU to adaptively estimate hyper-

parameters in the deblurring framework. The integra-

tion of previous updating information enables the unit

to determine optimal hyper-parameters for the current

optimization step.

• We qualitatively and quantitatively evaluate NBDN

with numerical and visual experiments against the

state-of-the-art methods. The results show that arti-

facts can be effectively reduced by NBDN especially

when the blurry image contains saturated pixels.

2. Proposed Method

As the saturated pixels usually affect the goodness-of-fit

to the blur model (1), how to model the saturated pixels is

critical for the image restoration. To solve this problem, we

develop an effective algorithm to reduce the influence of the

saturated pixels and propose a hyper-parameter estimation

method for better image restoration in a unified deep CNN

model. In the following, we will present the details of our

method.

2.1. NBDN for night image deblurring

An intuitive idea is to detect pixels that violate the blur

model in Eq. (1) and reduce their effect on the deblurring

process. To this end, we develop an effective algorithm

to estimate the underlying confidence map M for differ-

ent pixels. Specifically, pixels that violate the blur model

should have smaller confidence values to make sure they

have fewer influences on the estimation process, and nor-

mal pixels should have higher confidence values so that they

contribute more to the latent image restoration. Based on

this idea, we use the following objective function to restore

the latent image:

minI,M ‖M ◦ (B − I ⊗K)‖2 + µR(I) + θF (M), (4)

where ◦ represents the Hadamard product, F (·) represents
a regularization term enforced on M , and θ is the weight
parameter. We can solve Eq. (4) by iteratively minimizing
the following sub-problems:

{

M
t = argminM ‖M ◦ (B − I

t ⊗K)‖2 + θF (M), (5)

I
t+1 = argminI ‖M

t ◦ (B − I ⊗K)‖2 + µR(I), (6)

where t denotes the updating step.

Sub-problem w.r.t. M . Eq. (5) suggests that M t can be

obtained based on current variables i.e. B, It and K. How-

ever, it is difficult to find a proper prior for the confidence

map, i.e. F (M). Instead of using heuristic strategies for

the obtaining process as in [7], we develop a learning-based

confidence estimation unit (i.e. CEU) to directly approxi-

mate the solution of Eq. (5).

Sub-problem w.r.t. I . The half-quadratic splitting method

is often adopted to solve Eq. (6). By introducing an auxil-

iary variable U → I , Eq. (6) can be reformulated into:

minI,U ‖M t ◦ (B−I ⊗K)‖2 + λ‖I − U‖2 + µR(U), (7)

where λ is a positive hyper-parameter, which is manually
tuned in existing literature [27, 18, 16, 5, 4]. We can solve
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Algorithm 1 Non-blind Deblurring Network for Night Blurry Images (NBDN)

Input: Blurry image B and blur kernel K
Input: Iteration numbers tmax and smax

Output: Restored sharp image I∗

1: I0 = B
2: HS0 = 0

3: λ0, HS1 = HPEU(I0, HS0)
4: I1 = CG(B, I0, 0, 1, K, λ0, smax)
5: for t = 1 to tmax do

6: M t = CEU(B, It, It ⊗K)
7: U t = LRU(It)
8: λt, HSt+1 = HPEU(It, HSt)
9: It+1 = CG(B, It,Ut,Mt,K, λt, smax)

10: end for

CG(B, I0, U, M, K, λ, smax):

Output: Ismax

1: b = λU + KT MT MB

2: A = KT MT MK + λ
3: P0 = b − AI0
4: r0 = P0

5: for s = 0 to smax do

6: αs = (rTs rs)/(P
T
s APs)

7: Is+1 = Is + αsPs

8: rs+1 = rs − αsAPs

9: βs = (rTs+1rs+1)/(r
T
s rs)

10: Ps+1 = rs+1 + βsPs

11: end for

B, I, U, M are B, I , U , M in their vectorized forms; K is the toeplitz matrix of K w.r.t. I; 0 and 1 denote the all-zero and

all-one matrices.

Eq. (7) by iteratively updating the following equations:






U t = argmin
U

λ‖It − U‖2 + µR(U), (8)

It+1 = argmin
I

‖Mt ◦ (B − I ⊗K)‖2 + λ‖I − U t‖2. (9)

Eq. (8) is a typical denoising problem, and the results

from [28, 29] show that CNN is a decent solver for this

problem. In this paper, we use a learned regularization unit

(i.e. LRU) to estimate the auxiliary variable U .

Note that though Eq. (9) is a quadratic problem, but it

cannot be solved by fast Fourier transform (FFT) due to in-

volving the Hadamard product operation. We thus use the

conjugate-gradient (CG) for the optimization as shown in

Algorithm 1. Meanwhile, the whole CG module is differ-

entiable and it can be treated as a layer in our framework.

More details are included in the supplementary material.

Meanwhile, as a vital component of Eq. (9), the hyper-

parameter λ serves to balance the importance of the fidelity

and the penalty terms, which is sensitive to different noise

levels and often demands exhaustive search in a large hyper-

parameter space. Further, the optimal setting of λ often dif-

fers image-by-image. Instead of using the ad-hoc strategy,

we propose to use a hyper-parameter estimation unit (i.e.

HPEU) to determine λ for every image during the updating

stages. To utilize the information from the previous updat-

ing steps, we first store it in the hidden state (i.e. HS) ten-

sor, and then we integrate HS with the information from the

updated latent image via a convGRU [1] to help the current

hyper-parameter estimation.

2.2. Network design

The proposed network design is based on Eq. (5), (8)

and (9). The inputs of our network include the blurry image

and the corresponding blur kernel. We first conduct an ini-

tial CG-based deconvolution step with the hyper-parameter

obtained from HPEU. In the following updating steps, we

perform the hyper-parameter, confidence map and prior es-

timations via the corresponding networks (i.e. HPEU, CEU

and LRU) given the current latent image. The updated la-

tent image can be obtained with the updated λ, M and U by

performing the deconvolution step. The detailed algorithm

is shown in Algorithm 1.

CEU. Our confidence map estimation module is designed

to obtain the confidence map M in Eq. (5). We note that

the obtaining process defined in [7] relies heavily on heuris-

tic settings, such as predefined saturated densities and noise

levels, which is less effective given images with different

situations. We thus propose to use CEU to estimate M .

This module uses the blurry image B, the current estimate

It, and the convolution result It ⊗K as inputs, and outputs

a map M t ranging from 0 to 1. The network is constructed

with three res-block [12], and each of the block contains

two convolution layers to generate 16 features. We add a

rectified linear unit (ReLU) after every convolution layer

except for the last one for each block, and a sigmoid layer

is attached in the end to estimate the final result.

LRU. The auxiliary variable U t from Eq. (8) can be ob-

tained based on the current estimate It. Because there

are still artifacts and noises present in It, in order to ob-

tain a clearer U t, we use LRU to remove the artifacts and

noises. LRU takes It as input and outputs U t that with

fewer ringings and noises, which is implemented by a 3-

scale lightweight U-net [23] model. Specifically, each scale

in the U-net model is applied with two convolutions, and

each convolution layer is attached with a ReLU layer. The

features from the first to the last scale are 8, 16 and 32, re-

spectively.

HPEU. Considering the high discrepancy of noise condi-

tions in different images and the cumbersome work of man-
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(a) Input (b) Dong et al. [9] (c) Pan et al. [19] (d) Cho et al. [7] (e) SRN [24]

(f) FCNN [28] (g) IRCNN [29] (h) RGDN [10] (i) Our result (j) GT

Figure 3: Deblurring results of a night blurry image. Some details are erased in the results from the optimization-based

methods [7, 19, 9] and the end-to-end learning model SRN [24] (shown in the green and yellow boxes). The proposed method

generates a result with finer details and fewer ringing artifacts compared to existing learning-based non-blind deblurring

methods FCNN [28] and IRCNN [29] which are ineffective in dealing with saturated regions (shown in red boxes). Please

zoom-in for a better view.

ual parameter tuning, we adopt an HPEU to adaptively es-

timate the hyper-parameter λ in Eq. (9). The information

from previous updatings is stored via a 32× 128× 128 hid-

den state (i.e. HS) tensor. During the processing phase,

HPEU takes the current image It and HS as inputs and es-

timates the updated HS and the hyper-parameter λ. Specif-

ically, HPEU first convolves It to generate information

which is further integrated with the information from HS
by a convGRU [1]. The updated HS can be obtained dur-

ing the integration process, and it is further used to acquire

the hyper-parameter. In practice, we use 8 convolution lay-

ers and an adaptive pooling layer to generate features, and

we use a fully connected layer to obtain the final estimation.

Please refer to the supplementary material for detailed

network configurations.

2.3. Training loss

Inspired by the settings in [28], we progressively train

the weights of CEU and LRU for multiple iterations, and

then we train HPEU by fixing CEU and LRU. The proce-

dure is achieved by minimizing the loss function L:

L =
1

N

N
∑

i

(

tmax
∑

t=0

(‖U t
i −I

gt

i ‖1+‖It+1

i −I
gt

i ‖1)+‖I∗i −I
gt

i ‖1),

(10)

where N is the number of training samples in every batch;

U t and It+1 are the output of LRU and the updated latent

image in the t-th iteration; I∗ and Igt are the final output

of NBDN and the ground truth image, respectively. Specif-

ically, for each updating step t, we firstly train LRU using

the first term of L with M fixed as 1. Then, CEU is trained

using the second term of L while the weights of LRU are

fixed. Note in these steps, the hyper-parameters λ are fixed

as their initial settings using the same strategy from [28]

(keeping λt+1 larger than λt). After LRU and CEU are both

converged, HPEU is trained with both the weights of LRU

and CEU fixed, and the training procedure is fulfilled by

minimizing the last term of L. All these networks are fine-

tuned in the end using the last term of L to obtain the final

optimal results.

3. Experimental Results

3.1. Training details

Our implementation is based on PyTorch [21]. The patch

size is set to be 256× 256 in the proposed network. We use

ADAM optimizer [14] by setting β1 = 0.9, β2 = 0.999,

and ǫ = 10−8 with the learning rate 0.0001. We use the

weight initialization method in [11] as the proposed net-

work initialization.

The number of iterations for NBDN (i.e. tmax in Algo-

rithm 1) is empirically set to be 4 as a trade-off between ac-

curacy and efficiency, and the maximum iteration numbers

for the CG loops (i.e. smax in Algorithm 1) are empirically

set to be 15 across different updates.

Datasets. To generate enough blurry images for training,

we download 500 night images from Flickr. For every im-

age, we randomly crop 10 patches of size 256 × 256. The

motion kernels are generated according to [2], and their

sizes range from 11 to 33 pixels. Similar to [9], we convolve

every image patch with 5 generated blur kernels, which

gives a total of 25,000 samples in our training dataset. To

synthesize saturated regions, we first enlarge the range of

both blurry and sharp images by a factor of 1.2 same as the
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Cho [7] Hu [13] Pan [19] Dong [9] SRN [24] Nan [17] FCNN [28] IRCNN [29] RGDN [10] Ours

Results with GT blur kernels

PSNR 28.64 24.96 28.45 25.97 25.11 28.59 29.46 29.43 28.47 30.06

SSIM 0.8846 0.7851 0.8837 0.8272 0.8064 0.8692 0.9051 0.9010 0.8427 0.9065

Results with blur kernels from [20]

PSNR 27.18 24.58 26.94 25.13 25.11 27.62 26.91 28.29 27.72 28.45

SSIM 0.8646 0.7830 0.8621 0.8069 0.8064 0.8544 0.8699 0.8860 0.8458 0.8901

Table 1: Evaluations on the given night blurry images.

(a) Inputs (b) Cho et al. [7] (c) SRN [24] (d) RGDN [10] (e) IRCNN [29] (f) FCNN [28] (g) Ours

Figure 4: Deblurring results of a real-world night blurry image. The kernel in the red rectangle in (a) is from the robust kernel

estimation method [8]. The proposed method performs favorably compared with existing non-blind deblurring methods.

Please zoom-in for a better view.

setting in [22], and then clip the images into the dynamic

range of 0 to 1. Additionally, random Gaussian noises with

standard deviations ranging from 0 to 0.01 are added to the

blurry images.

For the test dataset, we further download 100 night im-

ages from Flickr, and then generate the blurry images in the

same way as the training dataset, where the training data

and test data do not overlap. We also use real night blurry

images to evaluate the effectiveness of NBDN.

3.2. Comparisons with state­of­the­arts

In this paper, we compare our method with the ro-

bust optimization-based models [7, 19, 9] and some recent

learning-based arts [28, 29, 10, 17]. Additionally, an end-

to-end deep neural network SRN [24] is also compared to

further validate the effectiveness of NBDN. For a fair com-

parison, we use the original implementations of these meth-

ods and fine-tune the networks of [28, 24] in our training

dataset.

Synthetic data. We first evaluate all the methods in the

given testing dataset in terms of average PSNR and SSIM.

As shown in Table 1, NBDN outperforms exiting arts in

both terms of PSNR and SSIM whether the images are re-

stored with the ground truth kernels or estimated using the

existing blind deblurring method [20]. The example given

in Figure 3 demonstrates the differences between the com-

pared approaches.

The end-to-end deblurring approach SRN [24] is fine-

tuned using the proposed training data, but it achieves less

Methods Total parameters (M) Running time (s)

Cho et al. [7] - 5.25 (CPU)

Pan et al. [19] - 15.41 (CPU)

SRN [24] 21 0.37

FCNN [28] 0.45 0.13

IRCNN [29] 0.15 1.11

RGDN [10] 1.26 5.34

Ours 0.39 0.25

Table 2: Model sizes and running time comparisons.

effective results compared to others because of the lack of

the blur kernel information and ignoring the degrading pro-

cess. Note that the optimization-based methods [7, 19] ex-

plicitly exclude saturated pixels in their models. Thus, sat-

urated regions can be recovered with few artifacts in their

results. But these approaches use the sparse image prior

which often leads to the loss of details in practice (as de-

picted in Figure 3 (c) and (d)). A similar result is reported

for [9] in Figure 3 (b). In comparison, the learning-based

arts [28, 29, 10] use more efficient learned priors to recover

fine edges in most situations, and they achieve relatively

better performance in terms of average PSNR and SSIM.

However, saturated pixels are not specifically considered in

their frameworks. As a result, their results are somehow de-

graded with ringing artifacts in saturated regions (as shown

in Figure 3 (f), (g), (h)). By considering the saturated re-

gions and the learned image prior, the results from NBDN

are hardly affected by the saturated pixels, where the sharp

edges are also restored.
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(a) Input (b) M from [7] (c) ad-hoc M (d) M from CEU

(e) NBDN w/ M = 1 (f) NBDN + (b) (g) NBDN + (c) (h) NBDN + (d)

Figure 5: Comparisons of the results by different confidence

map estimation methods. Note in (b) - (d), dark pixels indi-

cate small confidence values, (b) and (d) are from the last it-

eration of corresponding methods. The results demonstrate

that CEU is able to generate a properer confidence map,

which leads to fewer artifacts in the saturated regions.

GT blur kernels

M fixed as 1 M from [7] ad-hoc M M from CEU

PSNR 29.36 29.47 29.45 30.06

SSIM 0.9037 0.9037 0.8930 0.9065

Estimated kernels from [20]

M fixed as 1 M from [7] ad-hoc M M from CEU

PSNR 28.20 28.25 27.92 28.45

SSIM 0.8878 0.8877 0.8775 0.8901

Table 3: Comparison on the test dataset w.r.t. different con-

fidence map estimation methods.

Real data. We further show a challenging real-world exam-

ple with saturation and noises and demonstrate the results

in Figure 4. We use the robust kernel estimation method

from [8] to obtain the blur kernel. Owing to the effective-

ness of the learned prior, methods from [28, 29] can ease

the blur to some extent, but their results still contain arti-

facts because saturated pixels are not properly handled in

their models. Moreover, the optimization-based method [7]

contains severe ringings in their final results. It is mainly

because that the adopted sparse regularization term is in-

effective when the noises are presented in the natural data,

and artifacts around saturated regions cannot be properly

handled because of the mislocation of the saturated regions.

The end-to-end approach SRN [24] can hardly restore the

blurry images when the blurring process is ignored. In con-

trast, NBDN can generate sharper images with fewer arti-

facts in the saturated regions.

Model sizes and running time comparisons. The pro-

posed method does not require lots of parameters and per-

forms favorably against other state-of-the-art methods in the

term of running time. We compare with the existing ap-

proaches [7, 19, 28, 29, 10, 24] on the same PC with an

Intel(R) Xeon(R) CPU and an Nvidia Tesla 1080 GPU. Ta-
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Figure 6: Sorted estimated hyper-parameters from the last

iteration of NBDN w.r.t. different levels of noise.

PSNR SSIM

GT
blur

kernels

learned static λ 28.84 0.8881

λ from HPEU 30.06 0.9065

kernels
from
[20]

learned static λ 27.79 0.8723

λ from HPEU 28.45 0.8901

Table 4: Comparison on the given test dataset with different

hyper-parameter settings.

ble 2 summarizes total parameters from different models

and the average running time in an image with a size of

300× 300. NBDN conducts one of the fastest running time

among the compared methods.

4. Analysis and Discussions

4.1. Effectiveness of CEU

The confidence map M plays an important role in our

deblurring pipeline. As shown in Figure 5 (e), when NBDN

is trained with all the confidence values in M fixed as one,

the saturated pixels will disturb the deblurring process, re-

sulting in artifacts in the restored image. The work in [7]

suggests a predefined function to compute M , which re-

quires a heuristic guess of the density of saturated pixels,

and the computed results rely heavily on the residual infor-

mation (i.e. B − I ⊗ K). However, Figure 5 (b) shows

that this function often detects image edges, and the arti-

facts in the restored result can not be fully removed when

we use this method to compute M while training NBDN

(Figure 5 (f)). Meanwhile, we show that if M is defined in

an ad-hoc strategy (pixels with values larger than a prede-

fined threshold 1 in the blurry image disobey the blur model,

and the corresponding confidence values are set to be zeros

as shown in Figure 5 (c)), NBDN trained with this scheme

also results in an image with artifacts in the saturated area

(Figure 5 (g)). In comparison, CEU uses the blurry image

1We use 0.85 for the threshold value in this setting.
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GT blur kernels

iterations 2 3 4 (proposed) 5

PSNR 26.22 29.29 30.06 30.10

SSIM 0.8303 0.8869 0.9065 0.9063

Estimated kernels from [20]

iterations 2 3 4 (proposed) 5

PSNR 25.63 28.02 28.45 28.50

SSIM 0.8207 0.8789 0.8901 0.8907

Table 5: Comparison on the given test dataset when NBDN

is trained with different iterations.

and the updated latent image to guide the estimation. As

shown in Figure 5 (d), pixels violate the blur model corre-

spond to small values in the confidence map. Figure 5 (h)

shows that NBDN restores a visually more pleasant result

when M is estimated from CEU. Quantitative evaluations

of the four schemes on the test dataset are shown in Table 3,

where M from CEU leads to the best performance among

the compared approaches when integrated into NBDN.

4.2. Effectiveness of HPEU

The proposed HPEU considers the varying noise levels

and contexts in different images to generate dynamic hyper-

parameters. Compared to [28] who learns static hyper-

parameters, our method enables dynamic control of the

strength of the regularization term when encountered dif-

ferent noise levels. We verify the effectiveness of HPEU

by adding 0, 0.5% and 1% random noises to the clean im-

ages in the testing dataset and compare the estimated hyper-

parameters. As shown in Figure 6, hyper-parameters are

larger, which enlarges the denoising effect derived from the

penalty term, when the blurry images are added with sev-

erer noises. This observation validates the significance of

HPEU when the blurry images are with varying noises.

We further verify the effectiveness of HPEU by con-

ducting an ablation study of the deblurring results on the

given test dataset. Following the instruction in [28], we

learn optimal hyper-parameter settings by replacing HPEU

with learnable hyper-parameters λ and retrain the weights

of NBDN. Results from these two schemes are shown in

Table 4, where results generated by the dynamic parameter

setting (i.e. HPEU) outperform that by the learned static

one.

4.3. Convergence analysis

We use 4 iterations for NBDN and 15 iterations for the

CG loop in our setting. We quantitatively evaluate the con-

vergence properties of our method on the given test dataset

and show the results in Table 5 and 6. All the compared

models are trained in the same way as we train the original

GT blur kernels

iterations 5 10 15 (proposed) 20

PSNR 29.17 29.84 30.06 30.04

SSIM 0.8958 0.9014 0.9065 0.9070

Estimated kernels from [20]

iterations 5 10 15 (proposed) 20

PSNR 27.74 28.18 28.45 28.42

SSIM 0.8787 0.8852 0.8901 0.8923

Table 6: Comparisons of the results on the test dataset when

NBDN is trained with different iterations in the CG-loop.

implementation of NBDN.

Table 5 shows NBDN converges well after 4 iterations.

The results do not change significantly after 3 iterations.

Note that the 2-iteration network is different from the 2 it-

eration stage of the proposed four-iteration network.

Table 6 reports that NBDN does not generate better re-

sults when 20 iterations are used in the CG loop compared

to the method using 15 iterations in the CG. Thus, we use 15

iterations for the CG loop as the trade-off between accuracy

and speed.

5. Conclusion

In this paper, we propose a non-blind deblurring network

for night blurry images. Our algorithm can incorporate the

existing scheme that treat the deblurring process as itera-

tively denoising and deconvolution. To explicitly detect pix-

els that violate the convolution model during the deblurring

process, we learn a confidence map that can determine in-

fluences to the optimization from every pixel. We have de-

veloped a hyper-parameter estimation unit to dynamically

handle different noise levels, which does not require the

ad-hoc strategies to determine the hyper-parameter value

when handling each image. We have proposed a CG-based

method which can be embedded in the deep CNNs for bet-

ter image restoration. The experimental results demonstrate

that the proposed approach achieves favorable performance

against state-of-the-art deblurring methods.

Acknowledgements

The work of Jinshan Pan was supported by the National

Natural Science Foundation of China (Nos. 61872421,

61922043), and the National Key Research and Develop-

ment Program of China under Grant 2018AAA0102001;

The work of Faming Fang was supported by the Key

Project of the National Natural Science Foundation of

China under Grant 61731009, the NSFC-RGC under Grant

61961160734, the National Natural Science Foundation of

China under Grant 61871185, and the Science Foundation

of Shanghai under Grant 20ZR1416200.

10549



References

[1] Nicolas Ballas, Li Yao, Chris Pal, and Aaron Courville.

Delving deeper into convolutional networks for learning

video representations. arXiv preprint arXiv:1511.06432,

2015. 4, 5

[2] Ayan Chakrabarti. A neural approach to blind motion de-

blurring. In ECCV, 2016. 5

[3] Chunhui Chen and Olvi L Mangasarian. A class of smooth-

ing functions for nonlinear and mixed complementarity

problems. Computational Optimization and Applications,

1996. 1

[4] Liang Chen, Faming Fang, Shen Lei, Fang Li, and Guixu

Zhang. Enhanced sparse model for blind deblurring. In

ECCV, 2020. 3

[5] Liang Chen, Faming Fang, Tingting Wang, and Guixu

Zhang. Blind image deblurring with local maximum gra-

dient prior. In CVPR, 2019. 3

[6] Liang Chen, Faming Fang, Jiawei Zhang, Jun Liu, and Guixu

Zhang. Oid: Outlier identifying and discarding in blind im-

age deblurring. In ECCV, 2020. 1

[7] Sunghyun Cho, Jue Wang, and Seungyong Lee. Handling

outliers in non-blind image deconvolution. In ICCV, 2011.

1, 2, 3, 4, 5, 6, 7

[8] Jiangxin Dong, Jinshan Pan, Zhixun Su, and Ming-Hsuan

Yang. Blind image deblurring with outlier handling. In

ICCV, 2017. 6, 7

[9] Jiangxin Dong, Jinshan Pan, Deqing Sun, Zhixun Su, and

Ming-Hsuan Yang. Learning data terms for non-blind de-

blurring. In ECCV, 2018. 2, 5, 6

[10] Dong Gong, Zhen Zhang, Qinfeng Shi, Anton van den Hen-

gel, Chunhua Shen, and Yanning Zhang. Learning an opti-

mizer for image deconvolution. IEEE TNNLS, 2020. 2, 5, 6,

7

[11] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Delving deep into rectifiers: Surpassing human-level perfor-

mance on imagenet classification. In CVPR, 2015. 5

[12] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In CVPR,

2016. 4

[13] Zhe Hu, Sunghyun Cho, Jue Wang, and Ming-Hsuan Yang.

Deblurring low-light images with light streaks. In CVPR,

2014. 2, 6

[14] Diederik P Kingma and Jimmy Ba. Adam: A method for

stochastic optimization. arXiv preprint arXiv:1412.6980,

2014. 5

[15] Dilip Krishnan and Rob Fergus. Fast image deconvolution

using hyper-laplacian priors. In NIPS, 2009. 2

[16] Jun Liu, Ming Yan, and Tieyong Zeng. Surface-aware blind

image deblurring. IEEE TPAMI, 43(3):1041–1055, 2021. 3

[17] Yuesong Nan and Hui Ji. Deep learning for handling ker-

nel/model uncertainty in image deconvolution. In CVPR,

2020. 6

[18] Jinshan Pan, Zhe Hu, Zhixun Su, and Ming-Hsuan Yang. l0-

regularized intensity and gradient prior for deblurring text

images and beyond. IEEE TPAMI, 39(2):342–355, 2017. 3

[19] Jinshan Pan, Zhouchen Lin, Zhixun Su, and Ming-Hsuan

Yang. Robust kernel estimation with outliers handling for

image deblurring. In CVPR, 2016. 1, 2, 5, 6, 7

[20] Jinshan Pan, Deqing Sun, Hanspeter Pfister, and Ming-

Hsuan Yang. Blind image deblurring using dark channel

prior. In CVPR, 2016. 6, 7, 8

[21] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,

James Bradbury, Gregory Chanan, Trevor Killeen, Zeming

Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An

imperative style, high-performance deep learning library. In

Neurips, 2019. 5

[22] Wenqi Ren, Jiawei Zhang, Lin Ma, Jinshan Pan, Xiaochun

Cao, Wangmeng Zuo, Wei Liu, and Ming-Hsuan Yang. Deep

non-blind deconvolution via generalized low-rank approxi-

mation. In NIPS, 2018. 2, 6

[23] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net:

Convolutional networks for biomedical image segmentation.

In MICCAI, 2015. 4

[24] Xin Tao, Hongyun Gao, Xiaoyong Shen, Jue Wang, and Ji-

aya Jia. Scale-recurrent network for deep image deblurring.

In CVPR, 2018. 5, 6, 7

[25] Oliver Whyte, Josef Sivic, and Andrew Zisserman. Deblur-

ring shaken and partially saturated images. IJCV, 2014. 1,

2

[26] David P. Wipf and Haichao Zhang. Revisiting bayesian blind

deconvolution. JMLR, 2014. 1

[27] Li Xu, Shicheng Zheng, and Jiaya Jia. Unnatural l0 sparse

representation for natural image deblurring. In CVPR, 2013.

3

[28] Jiawei Zhang, Jinshan Pan, Wei-Sheng Lai, Rynson W. H.

Lau, and Ming-Hsuan Yang. Learning fully convolutional

networks for iterative non-blind deconvolution. In CVPR,

2017. 2, 4, 5, 6, 7, 8

[29] Kai Zhang, Wangmeng Zuo, Shuhang Gu, and Lei Zhang.

Learning deep cnn denoiser prior for image restoration. In

CVPR, 2017. 2, 4, 5, 6, 7

10550


