
Learning the Best Pooling Strategy for Visual Semantic Embedding

Jiacheng Chen1∗ Hexiang Hu2∗ Hao Wu1 Yuning Jiang3 Changhu Wang1

1ByteDance AI Lab 2University of Southern California 3Alibaba Inc

Abstract

Visual Semantic Embedding (VSE) is a dominant ap-

proach for vision-language retrieval, which aims at learning

a deep embedding space such that visual data are embedded

close to their semantic text labels or descriptions. Recent

VSE models use complex methods to better contextualize and

aggregate multi-modal features into holistic embeddings.

However, we discover that surprisingly simple (but care-

fully selected) global pooling functions (e.g., max pooling)

outperform those complex models, across different feature

extractors. Despite its simplicity and effectiveness, seeking

the best pooling function for different data modality and

feature extractor is costly and tedious, especially when the

size of features varies (e.g., text, video). Therefore, we pro-

pose a Generalized Pooling Operator (GPO), which learns

to automatically adapt itself to the best pooling strategy for

different features, requiring no manual tuning while staying

effective and efficient. We extend the VSE model using this

proposed GPO and denote it as VSE∞.

Without bells and whistles, VSE∞ outperforms previous

VSE methods significantly on image-text retrieval bench-

marks across popular feature extractors. With a simple adap-

tation, variants of VSE∞ further demonstrate its strength by

achieving the new state of the art on two video-text retrieval

datasets. Comprehensive experiments and visualizations

confirm that GPO always discovers the best pooling strategy

and can be a plug-and-play feature aggregation module for

standard VSE models. Code and pre-trained models are

available at http://jcchen.me/vse_infty/

1. Introduction

Recognizing and describing the visual world with natural

language is an essential capability for artificial intelligence.

It motivates the research of image-text matching, which

challenges a learning agent to establish accurate and general-

izable alignment between visual and textual data, so that one

can identify images or videos by text queries or vice versa.

Visual semantic embedding (VSE) [9, 10, 22] tackles this
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challenge by learning a semantic embedding space, where

the distance between paired visual and textual instances in

the embedding space is optimized to be small. The core idea

of the VSE has three steps:

Step 1. Extract a set (or sequence) of features from data,

using feature extractors (e.g., ConvNets for visual data).
Step 2. Contextualize and aggregate the extracted features

to project them into the joint embedding space as holistic

vectors, using feature aggregators.
Step 3. Compute the matching score between embeddings

with a similarity metric (e.g., cosine distance).

With the feature extractor determined, one might expect that

a complex aggregator is required to achieve good results.

However, we show (in § 3) that a surprisingly simple and

efficient aggregator, a carefully selected pooling function

(e.g., max pooling), can surpass prior state-of-the-art VSE

methods with complex aggregators [17, 27, 43, 45, 46].

Such pooling functions are both simple and effective.

However, searching for the optimal pooling requires exten-

sive manual tuning and repetitive experiments (e.g., grid

search) for each data modality and features, which is tedious

and costly as it enumerates over a combinatorial number of

configurations. This search procedure could be even more

complicated when the sets of features have varying sizes.

Can we discover the best pooling strategy automatically?

In this paper, we propose a novel parameterized pooling op-

erator, Generalized Pooling Operator (GPO), to fully exploit

the strengths of pooling-based feature aggregation. GPO

generalizes over various pooling functions and learns to ad-

just itself to the best one for different data modalities and

feature extractors. Specifically, GPO learns a generator that

predicts the pooling coefficients to weight the elements of

sorted feature vectors, and use their weighted sum as the

pooling output. The coefficient generator is instantiated as a

tiny sequence model to handle variable-sized features. GPO

learns to adapt to the optimal pooling strategy, and improve

VSE models at a negligible extra computational cost.

With the proposed GPO, we build our multi-modal match-

ing system as VSE∞, which extends a standard VSE

framework[22] by using GPO as the feature aggregators for

both visual and text features. We train our system optimizing

a margin-based triplet ranking objective similar to [9], with
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Figure 1. Illustration of the standard Visual Semantic Embedding framework with the proposed pooling-based aggregator, i.e., Generalized

Pooling Operator (GPO). It is simple and effective, which automatically adapts to the appropriate pooling strategy given different data

modality and feature extractor, and improves VSE models at negligible extra computation cost.

the online hard-negative mining.

Without bells and whistles, VSE∞ surpasses all pre-

vious state-of-the-art VSE-based methods on the image-

text retrieval tasks, over COCO [21] and Flickr30K [49].

With a straightforward extension, variants of VSE∞ also

achieve the best video-text retrieval results on two bench-

mark datasets, i.e., MSR-VTT [48] and VaTeX [44]. In

additional experiments, we show that GPO consistently out-

performs other alternative learnable poolings from the litera-

ture. To better understanding GPO, we further visualize the

pooling strategy found by VSE∞, and compare it with the

one from a thorough grid search process.

Our contributions are summarized as the following:

• We empirically find that carefully selecting simple pooling

functions can outperform complex visual aggregators in

prior VSE methods for image-text matching.

• We propose a novel Generalized Pooling Operator (GPO)

that generalizes various pooling functions. It learns to

automatically discover the best pooling function for image,

text, and video data with various feature extractors.

• We build up VSE∞ with GPO, which achieves the new

state-of-the-art performances among VSE methods on

image-text and video-text retrieval.

• We visualize the pooling strategies learned by GPO, and

verify that GPO learns the best pooling strategies given

the data by comparing VSE∞ with a thorough grid search

over pooling functions of all modalities.

2. Visual Semantic Embedding for

Multi-modal Matching

We begin by revisiting the formal formulation of Visual

Semantic Embedding (VSE). A VSE model (illustrated in

Figure 1) leverages a visual embedding function Φ(x) such

as convolutional neural networks (e.g. CNNs [12, 47]), and

a text embedding function Ψ(t) such as sequence models

(e.g. LSTMs [14], Transformers [42]), to compute the set of

visual features and text features, respectively:

ConvNet(x) : x→ {φn}
N

n=1,

SeqModel(t) : t→ {ψm}Mm=1

Here the set of visual features {φn}
N

n=1 has N elements

of convolutional local representations with φn ∈ R
d1 . As

aforementioned, the concrete form of φn can be feature

vectors of spatial grids from the feature map, object propos-

als [1], or spatial-pyramids [13], depending on the feature ex-

tractor. Similarly, text features {ψt}
M

m=1 denotes a sequence

of M contextualized word token features out of a sequence

model where M is the number of words and ψm ∈ R
d2 .

Here d1 and d2 are the feature dimensions.

The output visual features {φn}
N

n=1 and textual features

{ψt}
M

m=1 are then aggregated by visual and textual aggre-

gators fVISUAL(·) and fTEXT(·), to further encode the holistic

visual and text embedding v,u ∈ R
d3 as follows:

v = fVISUAL

(

{φn}
N

n=1

)

, u = fTEXT

(

{ψm}Mm=1

)

.

The compatibility score is then defined as the cosine similar-

ity between v and u, formally as:

s(x,t) =
v⊤u

‖v‖ · ‖u‖

During the inference, the s(x,t) scores are used to rank a

query text against all candidate images, and the top candidate

are returned as the prediction. We note that the inference

procedure is efficient as the visual and text embedding v

and u can be pre-computed. The pair-wise scores are then

computed by matrix multiplication.

Learning Multi-modal Matching To learn a VSE model,

existing methods mostly optimize the hinge-based triplet

ranking loss with online hard negative mining proposed by

VSE++ [9]. The concrete matching objective is defined by:

ℓMATCH =
∑

(x,t)∼D

[α− s(x,t) + s(x,t̂)]
+

+ [α− s(x,t) + s(x̂,t)]
+ (1)
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Table 1. Image-text retrieval results in R@1 of VSE models

with different visual aggregator, evaluated with MS-COCO 1K.

See § 5.1 for details.

Region [1] Grid [18]

Aggregator #Param T → I I → T T → I I → T

AvgPool [9] 0 54.0 68.5 58.9 72.4

Seg2Seq [15] 6.3M 58.5 69.9 61.5 73.3

SelfAttn [43, 45] 3.2M 56.2 70.2 60.3 73.0

GCN+AvgPool [27] 4.2M 54.9 69.0 59.5 71.8

GCN+Seg2Seq [27] 23.1M 60.7 72.5 59.5 71.1

Best Pooling Function 0 60.7 74.5 61.6 76.3

where α is a hyper-parameter. (x, t) is a positive image-text

pair in the dataset D and [x]+ ≡ max(0, x). We represent

t̂ = argmaxt′ 6=ts(x,t′) and x̂ = argmaxx′ 6=xs(x′,t) as

the hardest negative text and image examples measured by

the learned VSE model within a mini-batch.

3. VSE∞ with Generalized Pooling Operator

In this section, we first present an empirical finding that

highlights the effectiveness of well-selected pooling function

in VSE model, which motivates our methodological pursuit

(§ 3.1). We then propose our method, Generalized Pooling

Operator (GPO), with a introduction of its formal definition

(§ 3.2), followed by the details of GPO’s concrete model

architecture (§ 3.3). Finally, we summarize our multi-modal

system (VSE∞) that leverages GPO (§ 3.4).

3.1. Simple Pooling Works the Best

As aforementioned in § 1, complex aggregators f have

been investigated in the VSE literature [17, 27, 43, 45, 46],

such as sequence-to-sequence encoder (Seq2Seq), graph con-

volution network (GCN), self-attention encoder (SelfAttn),

etc. However, we surprisingly find that these aggregation

models with millions of parameters underperform carefully

selected pooling functions.

Table 1 highlights a comparison between different aggre-

gators, across two widely used image feature extractors in

the literature [18] – Grid feature is the feature maps from

ConvNets and Region feature is the ROI features from object

detectors [1] (details in § 5). The results are reported in re-

call@1 for text-based image retrieval (T→I) and vice versa.

Given the candidates of Average Pooling (AvgPool), Max

Pooling (MaxPool) and K-Max Pooling (K-MaxPool [20],

details in § 3.2) with different K, it shows that the best among

them consistently outperform complex aggregators. Here,

the best results for Region and Grid feature are achieved by

MaxPool and K-MaxPool (K=20), respectively.

Analyses of the Empirical Findings. Most complex ag-

gregators are designed to contextualize the input features

spatially, leveraging the relationship between spatial grids

or regions. However, these aggregators introduce a large set

of parameters in addition to the vanilla VSE model, which

causes a higher risk of over-fitting comparing to simple pool-

ing functions. In this paper, instead of investigating why

complex aggregators are suboptimal, we focus on maximiz-

ing the advantages of pooling-based aggregation.

While the optimal pooling strategy enjoys simplicity

and effectiveness, searching it requires repetitive experi-

ments over numerous configurations (e.g., different K for

K-MaxPool), which is both tedious and costly. This process

can be more complicated when the feature extractor changes,

or when the features have variable lengths (e.g., text).

Motivated by these, we aim for a general and plug-and-

play pooling operator that generalizes over different pooling

patterns (e.g., Avg, Max and K-MaxPool with arbitrary K)

for variable-sized inputs, and learns to automatically adapt

itself to the best strategy according to the data (e.g., image,

text, video etc.) and feature extractors. We denote our pro-

posed module as the Generalized Pooling Operator (GPO).

3.2. Generalizing over Different Pooling Strategies

Suppose that we have a set of N feature vectors {φi
n}

N

n=1

and our goal is to obtain a holistic vectorized embedding vi

out from the N elements, for each dimension i = 1, . . . , d1.

Here we use the superscript i to index the i-th dimension

of the feature vector. We further denote maxk(·) as the

operator that takes the k-th maximum value from an ordered

list. Then, we can formally define commonly used pooling

strategies as the following:

• AvgPool The average pooling computes the mean value

among the N elements, as vi = 1
N

∑

N

n=1 φ
i
n, ∀i.

• MaxPool The max pooling computes the maximum value

among the N elements, as vi = max1({φ
i
n}

N

n=1), ∀i.

• K-MaxPool The K-max pooling computes the mean value

of the top-K maximum values among the N elements, as

vi = 1
K

∑

K

k=1 maxk({φ
i
n}

N

n=1), ∀i.

Main Idea As described above, GPO aims to generalize over

various pooling strategies, so that the pooling operator can

automatically find the most appropriate strategy for different

features. Therefore, GPO learns to generate the pooling

coefficients θ, and the pooling is defined as a weighted sum

over sorted features:

vi =

N
∑

k=1

θk · maxk

(

{φi
n}

N

n=1

)

, ∀i, (2)

where

N
∑

k=1

θk = 1.

Here, the coefficients θ are of the size N, with a scalar weight

θk for the k-th maximum value among the N elements. The

constraint
∑

N

k=1 θk = 1 is enforced via Softmax. The

parameterized pooling operator can approximate AvgPool,
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Figure 2. Detailed illustration of the GPO architecture.

MaxPool, K-MaxPool with arbitrary K, and more complex

pooling functions. For instance, the learned pooling strat-

egy could weight the top-K elements unevenly, or only set

non-zero values for θ1 and θN . We visualize some learned

pooling coefficients in § 5.3.

Learning to Generate the Pooling Coefficients The most

straightforward way to parameterize θ is to define it as a

trainable vector, but this can only deal with the scenario

where N is a constant integer. When the features are of

variable sizes, which is common in video and text sequences,

learning a fixed set of coefficients θ is no longer feasible.

To address this issue, we propose to learn a parameterized

function g(·, ·) as the coefficient generator:

θk = g(k,N),where k = 1, . . . ,N. (3)

As a consequence, for each position k, the coefficient gener-

ator g(·, ·) outputs a coefficient θk to aggregate {φi
n}

N

n=1.

3.3. Implementing Generalized Pooling Operator

Now we discuss the concrete implementation of the GPO

function g(·, ·). Figure 2 provides an illustration of the archi-

tecture. There are two major components in the GPO design:

(1) A positional encoding function based on trigonometric

function; (2) A sequence model that takes the positional

encoding sequence to generate pooling coefficients, based

on bidirectional Gated Recurrent Unit (BiGRU).

Encoding Position Every position index k is uniquely repre-

sented by a dense vector, such that the vector can be further

transformed to θk by parameterized functions. A common

approach here is to learn an embedding matrix in which row

k is the embedding for k. However, this presumes the input

positions {1, . . . , k, . . . ,N} orthogonal to each other. To

make more efficient use of the prior information between

position indices, we adopt the positional encoding strategy

used in Transformers [42] to vectorize positional indices:

pik =

{

sin(wj , k), when i = 2j

cos(wj , k), when i = 2j + 1
, ∀i. (4)

where wj =
1

100002j/d3
and d3 is the number of dimensions

for the positional encoding.

Generating Pooling Coefficients with a Sequence Model

Using the positional encoding above, we transform every

position index k into a dense vector pk ∈ R
d3 . Next, we

learn a sequence model to produce the pooling coefficients.

Since the size of feature set N varies, it is necessary for the

coefficient generator to be aware of the size of feature set.

Therefore, we make use of a sequence-to-sequence decoder

function, which takes the sequence of positional encodings

p = {pk}
N

k=1 as input and outputs the sequence of pooling

coefficients θ = {θk}
N

k=1. The decoder function consists of

a small BiGRU and a multi-layer perceptron (MLP):

{hk}
N

k=1 = BiGRU({pk}
N

k=1), θk = MLP(hk) (5)

Here hk is the output of the BiGRU at the position k.

Learning Generator with Diverse Set Sizes To make

GPO’s coefficient generator g(·, ·) better approximate differ-

ent pooling patterns for variable-sized inputs, we perform

a data augmentation strategy to allow it observing a larger

variety of feature set sizes. During the training, we randomly

drop 20% inputs vectors to perturb the size of the input fea-

ture set, which we call Size Augmentation. We show in

Appendix that applying this strategy to both image and text

effectively improve the performance of VSE models.

3.4. Building up VSE∞ using GPO

We build up our multi-modal matching model (dubbed

VSE∞) by pluging GPO into the standard VSE framework

(§ 2). Specifically, we replace the visual and text aggregators

in the standard VSE framework (i.e., AvgPool) with two

GPOs. The two GPOs project the image feature vectors

and text feature vectors independently into two holistic em-

beddings, to further compute the matching score. VSE∞
is closely related to previous VSE models. We adopt the

learning framework of VSE++ [9] (Eq. 1), which improves

early VSE models [10, 22] with an additional online hard

negative mining procedure. We refer to § 5 for more details.

4. Related Works

Existing image-text matching methods can be categorized

differently based on how the cross-modal interaction is im-

plemented. As aforementioned, Visual Semantic Embedding

(VSE) [9, 10, 22, 27, 46] learns a joint embedding space,

such that the compatibility score can be computed as a inner-

product between the two holistic image and text vectors.
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Table 2. Image-Text Retrieval Results of VSE-based methods on COCO and Flickr30K datasets, using different visual and textual backbones

(denoted by bold section title). ⋆: Ensemble results of two models; on IN/IN+VG/IG: Models pre-trained on ImageNet [38], ImageNet and

VisualGenome [23], or Instagram [32], respectively. The best and second best results (in RSUM) are marked bold in red and black. We refer

to the Appendix for extensions of this table with more baselines and COCO 5K results.

Data Split COCO 5-fold 1K Test [5] Flickr30K 1K Test [49]

Eval Task IMG → TEXT TEXT → IMG IMG → TEXT TEXT → IMG

Method Feature Type R@1 R@5 R@10 R@1 R@5 R@10 RSUM R@1 R@5 R@10 R@1 R@5 R@10 RSUM

ResNet-101 Faster-RCNN on IN+VG (BUTD) [1] + BiGRU

LIWE [45]2019 Region 73.2 95.5 98.2 57.9 88.3 94.5 507.6 69.6 90.3 95.6 51.2 80.4 87.2 474.3

VSRN⋆[27]2019 Region 76.2 94.8 98.2 62.8 89.7 95.1 516.8 71.3 90.6 96.0 54.7 81.8 88.2 482.6

CVSE [43]2020 Region 69.2 93.3 97.5 55.7 86.9 93.8 496.4 70.5 88.0 92.7 54.7 82.2 88.6 476.7

Our: VSE++ Region 68.5 92.6 97.1 54.0 85.6 92.7 490.5 62.2 86.6 92.3 45.7 73.6 81.9 442.3

Our: VSE∞ Region 78.5 96.0 98.7 61.7 90.3 95.6 520.8 76.5 94.2 97.7 56.4 83.4 89.9 498.1

Our: VSE∞ Region+Grid 80.0 97.0 99.0 64.8 91.6 96.5 528.8 80.7 96.4 98.3 60.8 86.3 92.3 514.8

ResNet-101 Faster-RCNN on IN+VG (BUTD) [1] + BERT [7]

Our: VSE++ Region 67.9 91.9 97.0 54.0 85.6 92.5 488.9 63.4 87.2 92.7 45.6 76.4 84.4 449.7

Our: VSE∞ Region 79.7 96.4 98.9 64.8 91.4 96.3 527.5 81.7 95.4 97.6 61.4 85.9 91.5 513.5

Our: VSE∞ Region+Grid 82.2 97.5 99.5 68.1 92.9 97.2 537.4 85.3 97.2 98.9 66.7 89.9 94.0 532.0

ResNeXT-101 on IG (WSL) [32] + BERT [7]

Our: VSE++ Grid 79.6 97.1 99.0 66.4 91.1 95.5 528.7 80.9 96.6 98.9 65.2 89.5 93.7 524.8

Our: VSE∞ Grid 84.5 98.1 99.4 72.0 93.9 97.5 545.4 88.4 98.3 99.5 74.2 93.7 96.8 550.9

Our: VSE∞ ⋆ Grid 85.6 98.0 99.4 73.1 94.3 97.7 548.1 88.7 98.9 99.8 76.1 94.5 97.1 555.1

Therefore, VSE relies on learning strong image and text

embedding functions to obtain high-quality joint embedding

space. Frome et al. [10] used this approach for zero-shot im-

age recognition [2, 24, 34], via matching visual embeddings

with semantic word embeddings. Kiros et al. [22] extends

the idea by using bi-directional LSTMs to encode sentence

as the semantic embedding. Faghri et al. proposes VSE++,

which learns with online hard-negative mining and further

improves the quality of VSE models [9]. VSE++ is one of

the most fundamental VSE methods that use AvgPool as the

feature aggregator. Beyond the above, more research along

this line focused on improving the visual or text embedding

function (especially the aggregator), or designing auxiliary

training objectives [8, 11, 17, 27, 33, 40, 41, 46].

Recently, methods using BERT models for vision-

language data (V+L BERTs) [6, 16, 26, 28, 29, 31] learns

to perform rich cross-modal interaction, via tailored mecha-

nisms such as (single/multi-headed) cross-attention [25, 42].

These methods typically use a BERT [7] as the text feature

extractor and learn additional cross-modal Transformers for

rich cross-modal interactions. At the same time, these meth-

ods perform large-scale visual-linguistic pre-training with

a collection of datasets with paired images and text (e.g.,

the Conceptual Caption dataset [39]). Comparing to this

family of methods, VSE models are inferior in empirical

performances as its lack of strong cross-modal interaction.

However, VSE models are orders of magnitude more effi-

cient than V+L BERTs in terms of cross-modal retrieval as

the latter requires the huge BERT model to forward over all

pairs of images and texts. In § 5.1.1, we show that the best

VSE∞ can attain a close image-text matching performance

to the best V+L BERT method while being much faster in

large-scale multi-modal retrieval.

5. Experiments

We conduct experiments to validate VSE∞ on image-text

(§ 5.1.1) and video-text matching (§ 5.1.2). We compare

GPO with alternative poolings in § 5.2, and analyze the

learned GPO in § 5.3. We refer to the Appendix for complete

experimental details and more ablation studies.

5.1. Multi­modal Retrieval Experiments

Multi-modal retrieval is typically evaluated using the met-

ric of recall at K (R@K), with K = {1, 5, 10}. We fol-

low [3, 46] to use RSUM, which is defined as the sum of

recall metrics at K = {1, 5, 10} of both I→T (I2T) and

T→I (T2I) retrievals, as a summarizing metric to gauge re-

trieval model’s overall performances. In all experiments, we

set the dimensions of the positional encoding and BiGRU to

be 32. Therefore, GPO has 0.1M parameter in total, which

is less than 1% of the entire model.

5.1.1 Image-text Retrieval

Setup For image-text retrieval, we perform experiments on

MS-COCO [5, 30] and Flickr30K [49] over various feature
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Table 3. Comparison between variants of VSE∞ and V+L BERTs.

All methods uses BERT-base. ⋆: ensemble results of two models.

R/G in parenthesis represents Region/Grid features.

Data Split COCO 5K Test [5]

Eval Task IMG → TEXT TEXT → IMG

Method Pretrain CNN R@1 R@5 R@1 R@5

ViLBERT[50] ✓ BUTD 53.5 79.7 38.6 68.2

ViLBERT DG[50] ✓ BUTD 57.5 84.0 41.8 71.5

UNICODER VL[26] ✓ BUTD 62.3 87.1 46.7 76.0

UNITER[6] ✓ BUTD 64.4 87.4 50.3 78.5

OSCAR[29] ✓ BUTD 70.0 91.1 54.0 80.8

Our Methods

VSE∞ (R) ✗ BUTD 58.3 85.3 42.4 72.7

VSE∞ (R+G) ✗ BUTD 62.5 87.8 46.0 75.8

VSE∞ (G) ✗ WSL 66.4 89.3 51.6 79.3

VSE∞ (G) ⋆ ✗ WSL 68.1 90.2 52.7 80.2

extractors. Each image of these two datasets is associated

with five text descriptions. COCO contains 123,287 images,

we use the data split of [9, 21, 25] where there are 113,287

training images, 5000 test images, and 5000 validation im-

ages. Flickr30K contains 31,000 images, we also use the

same data split as [9], where there are 29,000 training im-

ages, 1000 test images, and 1000 validation images. COCO

results are reported in 5K and 1K, where the 1K results are

averaged over the five 1K data folds. The image feature ex-

tractors are categorized into Region feature and Grid feature

following the naming convention in [18], where grid feature

represents the feature maps from a CNN, and region feature

represents object-level features from a detector.

Implementation Details The dimension of the joint embed-

ding space is 1024. We use pre-extracted object features [1]

as the region feature (BUTD feature). For grid feature, the

CNN backbone is fine-tuned, and we increase the resolution

of input images to 512×512 as suggested by [18]. We exper-

iment with two different CNNs: (1) ResNet-101 of Faster-

RCNN [37] pre-trained on ImageNet and Visual Genome

(BUTD) [1] and (2) ResNeXT-101(32×8d) [47] pre-trained

on Instagram (WSL) [32]. Meanwhile, we use either BiGRU

or BERT-base as the text feature extractor. We refer to the

Appendix for full training details and more results.

Main Results Table 2 compares VSE∞ with VSE baselines

over different feature extractors. VSE++ is the fundamen-

tal VSE method as described in § 4, we re-implement it

(denoted as Our: VSE++) and apply it on latest feature

extractors (e.g., BUTD image features, BERT, etc.). The

major difference to its original implementation is the input

image size for grid feature. LIWE [45], VSRN [27], and

CVSE [43] are state-of-the-art VSE methods proposed in

recent two years (we compare with more baselines in the

Appendix). We use numbers directly from original papers

except for CVSE, for which we re-run the official code af-
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Figure 3. We compare single GPU inference time for text-based

image retrieval (lower the better). VSE methods are much faster

than V+L BERTs, especially when number of images grows large.

ter removing unfair additional label inputs and fixing its

1K evaluation setting (details in Appendix). Region+Grid

means training two separate models with region and grid

feature and averaging their similarity outputs. Over all three

combinations of feature extractors, VSE∞ outperforms the

baselines without using complicated aggregator. Besides,

VSE∞ with WSL+BERT as feature extractors achieves the

best empirical results, improving over the second best fea-

ture extractors by a large margin. VSE∞ is better than the

baselines in both performance and simplicity. We present the

COCO 5K Test results, and results with additional feature

extractors in the Appendix.

Comparing VSE∞ with V+L BERTs We further compare

VSE∞ with state-of-the-art V+L BERTs in Table 3. We

report results on COCO 5K as the 1K results reported by

V+L BERTs is computed on the first 1K fold, instead of the

average result over the five 1K folds. Without large-scale

V+L pre-training, our VSE∞ (R+G) is no worse than three

out of five V+L BERTs using the same feature extractors.

By using the WSL CNN to compensate for the lack of pre-

training, VSE∞ further outperforms UNITER and gets very

close to OSCAR [29], which is the current best V+L BERT.

This is a promising result since VSE models by design do

not have any fine-grained cross-modal interaction as V+L

BERTs (see § 4). Meanwhile, VSE methods are orders of

magnitude faster for large-scale multi-modal retrieval as the

holistic embeddings can be pre-computed or indexed [19],

and matrix multiplication is all we need to compute the

compatibility score. To demonstrate this, we perform an

additional text-to-image retrieval experiment with increasing

size of image candidates, and visualize the model’s inference

time in Figure 3. When the number of image candidates is

small, we observe that VSE is a hundred time faster than

V+L BERT. As the number of image candidates grows, the

gap of time cost increases almost quadratically. VSE∞ fully

exploits existing feature extractors and pushes the perfor-

mance of VSE-based methods to a new height, which have

significant impact in real-world problems such as image

search with text query.

Evaluating VSE∞ with Crisscrossed Captions We eval-
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Table 4. Results on video-text retrieval benchmarks. ∞: Methods modified to using the GPO to aggregate frame and word features.

Method
VIDEO → TEXT TEXT → VIDEO

R@1 R@5 R@10 R@1 R@5 R@10 RSUM

VSE++[9] 14.4 34.1 45.6 8.3 24.0 34.1 160.5

VSE∞ 16.0 38.6 50.2 8.7 25.3 35.9 174.7

HGR [4] 15.0 36.7 48.8 9.2 26.2 36.5 172.4

HGR∞ 15.0 39.0 51.7 9.1 25.9 36.3 177.0

(a) MSR-VTT Video-Text Retrieval [48]

VIDEO → TEXT TEXT → VIDEO

R@1 R@5 R@10 R@1 R@5 R@10 RSUM

47.8 78.6 86.2 34.7 71.3 81.7 400.3

51.2 78.7 86.3 34.2 71.6 81.9 403.9

48.9 79.1 87.9 35.6 73.5 83.4 408.4

51.0 78.8 87.7 37.3 73.4 82.4 410.6

(b) VATEX Video-Text Retrieval [44]

Table 5. Evaluations on COCO 5K test set with Crisscrossed

Caption (CxC). All models are trained on the COCO dataset.

Method
I → T T → I T → T I → I

R@1 R@5 R@1 R@5 R@1 R@5 R@1 R@5

VSRN [27] 52.4 81.9 40.1 71.1 41.0 64.8 44.2 76.7

DE [35] 55.9 84.2 41.7 72.3 42.6 64.9 38.5 73.6

VSE∞ (BUTD) 60.6 87.4 46.2 76.3 45.9 68.7 44.4 78.3

VSE∞ (WSL) 67.9 90.6 53.6 81.1 46.7 69.2 51.3 83.2

uate our best models (with BERT and Grid features on ei-

ther BUTD or WSL backbones) on the Crisscrossed Cap-

tions(CxC) [35] extension of COCO, which evaluates image-

text matching systems more holistically with additional intra-

modal and inter-modal semantic similarity annotations. Ta-

ble 5 shows that our model can significantly outperform

the baseline for both inter-modality and intra-modality (on

BUTD features). Moreover, VSE∞ with WSL feature can

further boost the performances.

5.1.2 Video-text Retrieval

Setup We evaluate our method on two video datasets: MSR-

VTT [48] and VATEX [44]. MSR-VTT contains 10,000

videos while each video has 20 text descriptions, and we

use the standard split with 6573 videos for training, 2990

for testing and 497 for validation. VATEX contains 25,991

videos for training, 6000 for testing and 3000 for validation,

and the 10 English descriptions for each video are used in

the experiments. We splits the original validation set into

new validation and testing set, each with 1500 videos, as [4].

Implementation Details We use ResNet-152 pre-trained on

ImageNet to extract frame features for MSR-VTT and use

the official I3D feature for VATEX. All implementations

are based on the official code of the video-text matching

method HGR [4], and we re-train all models. BiGRU is the

text backbone for all experiments and the VSE setting is

similar to 5.1.1 except that visual features are frame-level

video features. Complete details are in the Appendix.

Main Results Table 4 presents the effectiveness of VSE∞
on video-text matching. VSE++ for video-text matching

is an extension of the image-text version. HGR [4] is the

current state-of-the-art method, which employs hierarchical

matching strategies. By replacing the AvgPool on frames and

text with GPO, VSE∞ clearly outperforms VSE++ in terms

of RSUM. Additionally, we change the pooling function in

the global-matching branch of HGR [4] with GPO (denoted

as HGR∞), and get consistent improvements.
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Figure 4. Left figure studies different aggregators on two visual

features, with AvgPool as the text aggregator for BiGRU. Right

figure studies different aggregators on two textual features, while

using GPO as the visual aggregator for the region features.

5.2. Comparing GPO to Alternative Poolings

We compare GPO with several representative learnable

pooling methods across four combos of visual and text fea-

ture extractors. GPO’s Size Augmentation is used in all

cases for fair comparison. The baselines include:

• Generalized Mean Pooling (GeM) [36], an adaptive

pooling function with a single trainable parameter, and is

popular in image search literature;

• Feature-sorting Pooling (FSPool) [51], a learnable pool-

ing that handles variable-sized inputs by interpolating a

fixed-size learnable vector, which was proposed to encode

sets in permutation-invariant manner. FSPool generates

different pooling coefficients for each feature dimension.

• CLS token based aggregation, which is widely used for

aggregating text features in the BERT models [7]. For

BiGRU, we simply take the feature of the first token for

the CLS aggregation.

Figure 4 presents the comparison in R@1 of COCO I2T,

we skip T2I results since the conclusions are the same. In

the left part of visual pooling, FSPool is close to GPO on
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Figure 5. Visualization of pooling coefficients learned by GPO. The left and right figures are the VSE models on “BUTD Region+BiGRU”

and “WSL Grid+BERT” features, respectively.
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Figure 6. Illustrating the grid search process using K-MaxPool with

various K, on BUTD region and BiGRU features. The results are

the RSUM values of COCO 5-fold 1K evaluation.

grid feature, but much worse on region feature. We note

that the official GeM implementation is not numerical stable

and it causes gradient explosion when training with region

feature and BiGRU. In the right of Figure 4, we vary over

different textual pooling strategies, with BiGRU or BERT

being the text feature extractor. Again, GPO outperforms all

alternative pooling methods. It is worth noting that BERT’s

default CLS aggregator is far from being optimal in the

context of multi-modal matching. Above all, GPO is the best

pooling strategy on various combinations of features, and

can serve as a plug-and-play per-modality feature aggregator.

5.3. Visualizing and Understanding GPO

To better understand the pooling patterns learned by GPO,

we visualize the learned pooling coefficients of GPO in Fig-

ure 5. On BUTD region feature, GPO approximates MaxPool,

which is consistent with the observation in § 3. On grid

feature, the coefficients are less regular, but large position

indices take up most large values. We additionally observe

that GPO generates non-zero coefficients for the maximum

and minimum values of BiGRU features, which goes beyond

the pattern of K-MaxPool. The learned pooling strategy for

BERT is close to MaxPool.

Comparing GPO against Grid Search. We recall that the

main motivation of GPO is to fully exploit the advantages of

simple pooling functions but eliminate the repetitive manual

experiments for seeking the best pooling hyperparameter.

To verify how GPO address this challenge, we conduct a

manual grid search over K-MaxPool with different K val-

ues for image-text matching with BUTD region and BiGRU

features. GPO’s Size Augmentation is used here for fair

comparison as it improves performance (see Appendix for

details). As shown by Figure 6, the best RSUM given by the

grid search is 520.4, which is slightly worse than the 520.8

of the corresponding GPO entry in Table 2, which means

that GPO successfully refrains us from the costly repetitive

search. Note that GPO generates a pooling strategy beyond

K-MaxPool for BiGRU (Figure 5), although it does not make

it significantly better than the best-selected K-MaxPool.

Figure 6 shows that the best combination of pooling func-

tions for visual and text modalities are entangled with each

other. For instance, the best textual pooling function varies

when the visual pooling function is changed. Therefore, a

n× n search is necessary to find the optimal combinations

of K, where n is the number of grids for each modality.

This could become worse when the visual feature includes

multiple feature extractors (e.g., region+grid), as the search

complexity can further become O(n3).
In summary, GPO keeps the effectiveness and efficiency

of best-selected pooling functions, and avoids the annoy-

ing grid search process. GPO can serve as a plug-and-play

aggregation module to improve VSE models.

6. Conclusion

In this paper, we propose the Generalized Pooling Opera-

tor (GPO), which learns to automatically adapt itself to the

best pooling strategy for different data and feature backbone.

As a result, we build up our VSE∞ by extending the standard

VSE model with GPO as the feature aggregators. VSE∞
outperforms previous VSE methods significantly on image-

text retrieval benchmarks across popular feature extractors.

We further demonstrate that our VSE model achieves compa-

rable image-text matching performances to vision+language

BERT models, without visual-linguistic pre-training. Com-

prehensive ablation experiments confirm that GPO discovers

proper pooling strategies. With simple adaptations, variants

of VSE∞ further demonstrate effectiveness by achieving the

new state of the art on two video-text retrieval datasets.
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[36] Filip Radenović, Giorgos Tolias, and O. Chum. Fine-tuning

cnn image retrieval with no human annotation. TPAMI,

41:1655–1668, 2019. 7
[37] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.

Faster r-cnn: Towards real-time object detection with region

proposal networks. In Adv. Neural Inform. Process. Syst.,

2015. 6
[38] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-

jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,

Aditya Khosla, Michael S. Bernstein, Alexander C. Berg, and

Fei-Fei Li. Imagenet large scale visual recognition challenge.

IJCV, 115:211–252, 2014. 5
[39] Piyush Sharma, Nan Ding, Sebastian Goodman, and Radu

Soricut. Conceptual captions: A cleaned, hypernymed, image

alt-text dataset for automatic image captioning. In ACL, 2018.

5
[40] Richard Socher, Andrej Karpathy, Quoc V. Le, Christopher D.

Manning, and Andrew Y. Ng. Grounded compositional se-

mantics for finding and describing images with sentences.

Transactions of the Association for Computational Linguis-

tics, 2:207–218, 2014. 5
[41] Yale Song and Mohammad Soleymani. Polysemous visual-

semantic embedding for cross-modal retrieval. In IEEE Conf.

Comput. Vis. Pattern Recog., 2019. 5
[42] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkor-

eit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia

Polosukhin. Attention is all you need. In Adv. Neural Inform.

Process. Syst., 2017. 2, 4, 5
[43] Haoran Wang, Ying Zhang, Zhong Ji, Yanwei Pang, and Lin

Ma. Consensus-aware visual-semantic embedding for image-

text matching. Eur. Conf. Comput. Vis., 2020. 1, 3, 5, 6
[44] Xin Wang, Jiawei Wu, Junkun Chen, Lei Li, Y. Wang, and

William Yang Wang. Vatex: A large-scale, high-quality multi-

lingual dataset for video-and-language research. In Int. Conf.

Comput. Vis., pages 4580–4590, 2019. 2, 7
[45] Jonatas Wehrmann, Mauricio A. Lopes, Douglas M. Souza,

and Rodrigo C. Barros. Language-agnostic visual-semantic

embeddings. In Int. Conf. Comput. Vis., pages 5803–5812,

2019. 1, 3, 5, 6
[46] Hao Wu, Jiayuan Mao, Yufeng Zhang, Yuning Jiang, Lei

Li, Weiwei Sun, and Wei-Ying Ma. Unified visual-semantic

embeddings: Bridging vision and language with structured

meaning representations. In IEEE Conf. Comput. Vis. Pattern

Recog., 2019. 1, 3, 4, 5
[47] Saining Xie, Ross B. Girshick, Piotr Dollár, Zhuowen Tu, and

Kaiming He. Aggregated residual transformations for deep

neural networks. IEEE Conf. Comput. Vis. Pattern Recog.,

2016. 2, 6
[48] J. Xu, T. Mei, Ting Yao, and Y. Rui. Msr-vtt: A large video

description dataset for bridging video and language. In IEEE

Conf. Comput. Vis. Pattern Recog., pages 5288–5296, 2016.

2, 7
[49] Peter Young, Alice Lai, Micah Hodosh, and Julia Hocken-

maier. From image descriptions to visual denotations: New

similarity metrics for semantic inference over event descrip-

tions. TACL, 2:67–78, 2014. 2, 5
[50] Bowen Zhang, Hexiang Hu, Vihan Jain, Eugene Ie, and Fei

Sha. Learning to represent image and text with denotation

graph. In EMNLP, 2020. 6
[51] Y. Zhang, Jonathon S. Hare, and A. Prügel-Bennett. Fspool:

Learning set representations with featurewise sort pooling.

Int. Conf. Learn. Represent., 2020. 7

15798


