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Figure 1: Visual Sound Source Localisation: We localise sound sources in videos without manual annotation. Our key

contribution is an automatic negative mining technique through differentiable thresholding of a cross-modal correspondence

score map into a Tri-map. We use background regions with low correlation to the given sound as ‘hard negatives’ in a

contrastive learning framework.

Abstract

The objective of this work is to localize sound sources

that are visible in a video without using manual annota-

tions. Our key technical contribution is to show that, by

training the network to explicitly discriminate challenging

image fragments, even for images that do contain the ob-

ject emitting the sound, we can significantly boost the lo-

calization performance. We do so elegantly by introducing

a mechanism to mine hard samples and add them to a con-

trastive learning formulation automatically. We show that

our algorithm achieves state-of-the-art performance on the

popular Flickr SoundNet dataset. Furthermore, we intro-

duce the VGG-Sound Source (VGG-SS) benchmark, a new

set of annotations for the recently-introduced VGG-Sound

dataset, where the sound sources visible in each video clip

are explicitly marked with bounding box annotations. This

dataset is 20 times larger than analogous existing ones,

contains 5K videos spanning over 200 categories, and, dif-

ferently from Flickr SoundNet, is video-based. On VGG-SS,

we also show that our algorithm achieves state-of-the-art

performance against several baselines. Code and datasets

can be found at http://www.robots.ox.ac.uk/

˜vgg/research/lvs/.

1. Introduction

While research in computer vision largely focuses on the

visual aspects of perception, natural objects are character-

ized by much more than just appearance. Most objects,

in particular, emit sounds, either in their own right, or in

their interaction with the environment — think of the bark

of a dog, or the characteristic sound of a hammer striking

a nail. A full understanding of natural objects should not

ignore their acoustic characteristics. Instead, modelling ap-

pearance and acoustics jointly can often help us understand

them better and more efficiently. For example, several au-

thors have shown that it is possible to use sound to discover

and localize objects automatically in videos, without the use

of any manual supervision [1, 2, 14, 17, 24, 30].

In this paper, we consider the problem of localizing ‘vi-

sual sounds’, i.e. visual objects that emit characteristics

sounds in videos. Inspired by prior works [2, 14, 30], we

formulate this as finding the correlation between the visual

and audio streams in videos. These papers have shown that

not only can this correlation be learned successfully, but

that, once this is done, the resulting convolutional neural

networks can be ‘dissected’ to localize the sound source

spatially, thus imputing it to a specific object. However,

other than in the design of the architecture itself, there is lit-

tle in this prior work meant to improve the localization capa-

bilities of the resulting models. In particular, while several

models [1, 2, 30] do incorporate a form of spatial attention

which should also help to localize the sounding object as a

byproduct, these may still fail to provide a good coverage

of the object, often detecting too little or too much of it.

In order to address this issue, we propose a new training

scheme that explicitly seeks to spatially localize sounds in
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video frames. Similar to object detection [35], in most cases

only a small region in the image contains an object of inter-

est, in our case a ‘sounding’ object, with the majority of the

image often being ‘background’ which is not linked to the

sound. Learning accurate object detectors involves explic-

itly seeking for these background regions, prioritizing those

that could be easily confused for the object of interest, also

called hard negatives [7, 13, 21, 28, 31, 35]. Given that we

lack supervision for the location of the object making the

sound, however, we are unable to tell which boxes are pos-

itive or negative. Furthermore, since we seek to solve the

localization rather than the detection problem, we do not

even have bounding boxes to work with, as we seek instead

a segmentation of the relevant image area.

In order to incorporate hard evidence in our unsupervised

(or self-supervised) setting, we propose an automatic back-

ground mining technique through differentiable threshold-

ing, i.e. regions with low correlation to the given sound are

incorporated into a negatives set for contrastive learning. In-

stead of using hard boundaries, we note that some regions

may be uncertain, and hence we introduce the concept of

a Tri-map into the training procedure, leaving an ‘ignore’

zone for our model. To our knowledge, this is the first

time that background regions have been explicitly consid-

ered when solving the sound source localization problem.

We show that this simple change significantly boosts sound

localization performance on standard benchmarks, such as

Flickr SoundNet [30].

To further assess sound localization algorithms, we

also introduce a new benchmark, based on the recently-

introduced VGG-Sound dataset [4], where we provide high-

quality bounding box annotations for ‘sounding’ objects,

i.e. objects that produce a sound, for more than 5K videos

spanning 200 different categories. This dataset is 20×
larger and more diverse than existing sound localization

benchmarks, such as Flickr SoundNet (the latter is also

based on still images rather than videos). We believe this

new benchmark, which we call VGG-Sound Source, or

VGG-SS for short, will be useful for further research in this

area. In the experiments, we establish several baselines on

this dataset, and further demonstrate the benefits of our new

algorithm.

2. Related Work

2.1. Audio­Visual Sound Source Localization

Learning to localize sound sources by exploiting the nat-

ural co-occurrence of visual and audio cues in videos has

a long history. Early attempts to solve the task used shal-

low probabilistic models [9, 16, 20], or proposed segment-

ing videos into spatio-temporal tubes and associating those

to the audio signal through canonical correlation analysis

(CCA) [18].

Modern approaches solve the problem using deep neu-

ral networks — typically employing a dual stream, trained

with a contrastive loss by exploiting the audio-visual cor-

respondence, i.e. matching audio and visual representations

extracted from the same video. For example, [2, 14, 27, 30]

associate the appearance of objects with their characteris-

tic sounds or audio narrations; Hu et al. [17] first cluster

audio and visual representations within each modality, fol-

lowed by associating the resulting centroids with contrastive

learning; Qian et al. [26] proposed a weakly supervised ap-

proach, where the approximate locations of the objects are

obtained from CAMs to bootstrap the model training. Apart

from using correspondence, Owens and Efros [25] also lo-

calize sound sources through synchronization, a related ob-

jective also investigated in earlier works [6, 22], while [19]

incorporate explicit attention in this model. Afouras et

al. [1] also exploit audio-visual concurrency to train a video

model that can distinguish and group instances of the same

category.

Alternative approaches solve the task using an audio-

visual source separation objective. For example Zhao et

al. [38] employ a mix-and-separate approach to learn to as-

sociate pixels in video frames with separated audio sources,

while Zhao et al. [37] extends this method by providing the

model with motion information through optical flow. Rou-

ditchenko et al. [29] train a two-stream model to co-segment

video and audio, producing heatmaps that roughly highlight

the object according to the audio semantics. These methods

rely on the availability of videos containing single-sound

sources, usually found in well curated datasets. In other re-

lated work, Gan et al. [10] learn to detect cars from stereo

sound, by distilling video object detectors, while Gao et

al. [11] lift mono sound to stereo by leveraging spatial in-

formation.

2.2. Audio­Visual Localization Benchmarks

Existing audio-visual localization benchmarks are sum-

marised in Table 1 (focusing on the test sets). The Flickr

SoundNet sound source localization benchmark [30] is an

annotated collection of single frames randomly sampled

from videos of the Flickr SoundNet dataset [3, 33]. It

is currently the standard benchmark for the sound source

localization task; we discuss its limitations in Section 4,

where we introduce our new benchmark. The Audio-Visual

Event (AVE) dataset [34], contains 4,143 10 second video

clips spanning 28 audio-visual event categories with tem-

poral boundary annotations. LLP [36] contains of 11,849

YouTube video clips spanning 25 categories for a total of

32.9 hours collected from AudioSet [12]. The development

set is sparsely annotated with object labels, while the test set

contains dense video and audio sound event labels on the

frame level. Note that the AVE and LLP test sets contain

only temporal localisation of sounds (at the frame level),
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with no spatial bounding box annotation.

Benchmark Datasets # Data # Classes Video BBox

Flickr SoundNet [30] 250 ∼50‡ × X

AVE [34]† 402 28 X ×
LLP [36]† 1,200 25 X ×
VGG-SS 5,158 220 X X

Table 1: Comparison with the existing sound-source locali-

sation benchmrks. Note that VGG-SS has more images and

classes. †These datasets contain only temporal localisation

of sounds, not spatial localisation. ‡ We determined this via

manual inspection.

3. Method

Our goal is to localize objects that make characteristic

sounds in videos, without using any manual annotation.

Similar to prior work [2], we use a two-stream network

to extract visual and audio representations from unlabelled

video. For localization, we compute the cosine similarity

between the audio representation and the visual represen-

tations extracted convolutionally at different spatial loca-

tions in the images. In this manner, we obtain a positive

signal that pulls together sounds and relevant spatial loca-

tions. For learning, we also need an opposite negative sig-

nal. A weak one is obtained by correlating the sound to

locations in other, likely irrelevant videos. Compared to

prior work [1, 2], our key contribution is to also explicitly

seek for hard negative locations that contain background or

non-sounding objects in the same images that contain the

sounding ones, leading to more selective and thus precise

localization. An overview of our architecture can be found

in Figure 2.

While the idea of using hard negatives is intuitive, an ef-

fective implementation is less trivial. In fact, while we seek

for hard negatives, there is no hard evidence for whether

any region is in fact positive (sounding) or negative (non-

sounding) as videos are unlabelled. An incorrect classi-

fication of a region as positive or negative can throw off

the localization algorithm entirely. We solve this problem

by using a robust contrastive framework that combines soft

thresholding and Tri-maps, which enables us to handle un-

certain regions effectively.

In sections 3.1 to 3.3 we first describe the task of audio-

visual localization using contrastive learning in its oracle

setting, assuming, for each visual-audio pair, we do have

the ground-truth annotation for which region in the image

is emitting the sound. In section 3.4, we introduce our pro-

posed idea, which replaces the oracle, and discuss the dif-

ference between our method and existing approaches.

3.1. Audio­Visual Feature Representation

Given a short video clip with N visual frames and audio,

and considering the center frame as visual input, i.e. X =
{I, a}, I ∈ R

3×Hv×Wv , a ∈ R
1×Ha×Wa . Here, I refers

to the visual frame, and a to the spectrogram of the raw

audio waveform. In this manner, representations for both

modalities can be computed by means of CNNs, which we

denote respectively f(·; θ1) and g(·; θ2). For each video Xi,

we obtain visual and audio representations:

Vi = f(Ii; θ1), Vi ∈ R
c×h×w, (1)

Ai = g(ai; θ2), Ai ∈ R
c. (2)

Note that both visual and audio representation have the

same number of channels c, which allows to compare them

by using dot product or cosine similarity. However, the

video representation also has a spatial extent h × w, which

is essential for spatial localization.

3.2. Audio­Visual Correspondence

Given the video and audio representations of eqs. (1)

and (2), we put in correspondence the audio of clip i with

the image of clip j by computing the cosine similarity of the

representations, using the audio as a probe vector:

[Si→j ]uv =
〈Ai, [Vj ]:uv〉

‖Ai‖ ‖[Vi]:uv‖
, uv ∈ [h]× [w].

This results in a map Si→j ∈ R
h×w indicating how strongly

each image location in clip j responds to the audio in clip i.
To compute the cosine similarity, the visual and audio fea-

tures are L2 normalized. Note that we are often interested

in correlating images and audio from the same clip, which

is captured by setting j = i.

3.3. Audio­Visual Localization with an Oracle

In the literature, training models for audio-visual lo-

calization has been treated as learning the correspondence

between these two signals, and formulated as contrastive

learning [1, 2, 17, 26, 30].

Here, before diving into the self-supervised approach,

we first consider the oracle setting for the contrastive

learning where ground-truth annotations are available.

This means that we are given a training set D =
{d1, d2, . . . , dk}, where each training sample di =
(Xi,mi) consists of a audio-visual sample Xi, as given

above, plus a segmentation mask mi ∈ B
h×w with ones for

those spatial locations that overlap with the object that emits

the sounds, and zeros elsewhere. During training, the goal is

therefore to jointly optimize f(·; θ1) and g(·; θ2), such that

Si→i gives high responses only for the region that emits the

sound present in the audio. In this paper, we consider a spe-

cific type of contrastive learning, namely, InfoNCE [23].
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Figure 2: Architecture Overview. We use an audio-visual pair as input to a dual-stream network shown in (a), f(·; θ1) and

g(·; θ2), denoting the visual and audio feature extractor respectively. Cosine similarity between the audio vector and visual

feature map is then computed, giving us a heatmap of size 14 × 14. (b) demonstrates the soft threshold being applied twice

with different parameters, generating positive, negative regions. The final Tri-map and the uncertain region are highlighed in

(c).

Optimization. For each clip i in the dataset (or batch), we

define the positive and negative responses as:

Pi =
1

|mi|
〈mi, Si→i〉,

Ni =
1

|1−mi|
〈1−mi, Si→i〉

︸ ︷︷ ︸

hard negatives

+
1

hw

∑

i 6=j

〈1, Si→j〉

︸ ︷︷ ︸

easy negatives

.

where 〈·, ·〉 denotes Frobenius inner product. To interpret

this equation, note that the inner product simply sums over

the element-wise product of the specified tensors and that 1

denotes a h× w tensor of all ones. The first term in the ex-

pression for Ni refers to the hard negatives, calculated from

the “background” (regions that do not emit the characteris-

tic sound) within the same image, and the second term de-

notes the easy negatives, coming from other images in the

dataset. The optimization objective can therefore be defined

as:

L = −
1

k

k∑

i=1

[

log
exp(Pi)

exp(Pi) + exp(Ni)

]

Discussion. Several existing approaches [1, 2, 14, 30] to

self-supervised audio-visual localization are similar. The

key difference lies in the way of constructing the positive

and negative sets. For example, in [30] a heatmap generated

by using the soft-max operator is used to pool the positives

and images from other video clips are treated as negatives;

instead, in [2], positives come from max pooling the corre-

spondence map, Si→i and the negatives from max pooling

Si→j for j 6= i. Crucially, all such approaches have missed

the hard negatives term defined above, computed from the

background regions within the same images that do con-

tain the sound. Intuitively this term is important to obtain

a shaper visual localization of the sound source; however,

while this is easy to implement in the oracle setting, obtain-

ing hard negatives in self-supervised training requires some

care, as discussed next.

3.4. Self­supervised Audio­Visual Localization

In this section, we describe a simple approach for replac-

ing the oracle, and continuously bootstrapping the model to

achieve better localization results. At a high level, the pro-

posed idea inherits the spirit of self-training, where predic-

tions are treated as pseudo-ground-truth for re-training.

Specifically, given a dataset D = {X1, X2, . . . , Xk}
where only audio-visual pairs are available (but not the

masks mi), the correspondence map Si→i between audio

and visual input can be computed in the same manner as

section 3.2. To get the pseudo-ground-truth mask m̂i, we

could simply threshold the map Si→i:

m̂i =

{

1, if Si→i ≥ ǫ

0, otherwise

Clearly, however, this thresholding, which uses the Heav-

iside function, is not differentiable. Next, we address this

issue by relaxing the thresholding operator.

Smoothing the Heaviside function. Here, we adopt a

smoothed thresholding operator in order to maintain the

end-to-end differentiability of the architecture:

m̂i = sigmoid((Si→i − ǫ)/τ)

where ǫ refers to the thresholding parameter, and τ denotes

the temperature controlling the sharpness.

Handling uncertain regions. Unlike the oracle setting,

the pseudo-ground-truth obtained from the model predic-

tion may potentially be noisy, we therefore propose to set up
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an “ignore” zone between the positive and negative regions,

allowing the model to self-tune. In the image segmentation

literature, this is often called a Tri-map and is also used for

matting [5, 32]. Conveniently, this can be implemented by

applying two different ǫ’s, one controlling the threshold for

the positive part and the other for the negative part of the

Tri-map.

Training objective. We are now able to replace the oracle

while computing the positives and negatives automatically.

This leads to our final formulation:

m̂ip = sigmoid((Si→i − ǫp)/τ)

m̂in = sigmoid((Si→i − ǫn)/τ)

Pi =
1

|m̂ip|
〈m̂ip, Si→i〉

Ni =
1

|1− m̂in|
〈1− m̂in, Si→i〉+

1

hw

∑

j 6=i

〈1, Si→j〉

L = −
1

k

k∑

i=1

[

log
exp(Pi)

exp(Pi) + exp(Ni)

]

where ǫp and ǫn are two thresholding parameters (validated

in experiment section), with ǫp > ǫn. For example if we

set ǫp = 0.6 and ǫn = 0.4, regions with correspondence

scores above 0.6 are considered positive and bellow 0.4 neg-

ative, while the areas falling within the [0.4, 0.6] range are

treated as “uncertain” regions and ignored during training

(Figure 2).

4. The VGG-Sound Source Benchmark

As mentioned in Section 2, the SoundNet-Flickr sound

source localization benchmark [30] is commonly used for

evaluation in this task. However, we found it to be unsat-

isfactory in the following aspects: i) both the number of

total instances (250) and sounding object categories (ap-

proximately 50) that it contains are limited, ii) only certain

reference frames are provided, instead of the whole video

clip, which renders it unsuitable for the evaluation of video

models, and iii) it provides no object category annotations.

In order to address these shortcomings, we build on the

recent VGG-Sound dataset [4] and introduce VGG-SS, an

audio-visual localization benchmark based on videos col-

lected from YouTube.

4.1. Test Set Annotation Pipeline

In the following sections, we describe a semi-automatic

procedure to annotate the objects that emit sounds with

bounding boxes, which we apply to obtain VGG-SS with

over 5k video clips, spanning 220 classes.

(1) Automatic bbox generation. We use the entire VGG-

Sound test set, containing 15k 10-second video clips, and

extract the center frame from each clip. We use a Faster

R-CNN object detector [28] pretrained on OpenImages to

predict the bounding boxes of all relevant objects. Follow-

ing [4], we use a word2vec model to match visual and audio

categories that are semantically similar. At this stage, there

are roughly 8k frames annotated automatically.

(2) Manual image annotation. We then annotate the re-

maining frames manually. There are three main challenges

at this point: (i) there are cases where localization is ex-

tremely difficult or impossible, either because the object is

not visible (e.g. in extreme lighting conditions), too small

(‘mosquito buzzing’), or is diffused throughout the frame

(‘hail’, ‘sea waves’, ‘wind’); (ii) the sound may originate ei-

ther from a single object, or from the interactions between

multiple objects and a consistent annotation scheme must

be decided upon; and finally (iii), there could be multiple

instances of the same class in the same frame, and it is

challenging to know which of the instances are making the

sound from a single image.

We address these issues in three ways: First, we remove

categories (e.g. mainly environmental sounds such as wind,

hail etc) that are challenging to localize, roughly 50 classes;

Second, as illustrated in Figure 3a, when the sound comes

from the interaction of multiple objects, we annotate a tight

region surrounding the interaction point; Third, if there are

multiple instances of the same sounding object category in

the frame, we annotate each separately when there are less

than 5 instances and they are separable, otherwise a single

bounding box is drawn over the entire region, as shown in

the top left image (‘human crowd’) in Figure 3a.

(3) Manual video verification. Finally, we conduct man-

ual verification on videos using the VIA software [8]. We

do this by watching the 5-second video around every an-

notated frame, to ensure that the sound corresponds with

the object in the bounding box. This is particularly im-

portant for the cases where there are multiple candidate in-

stances present in the frame, however, only one is making

the sound, e.g. human singing.

The statistics after every stage of the process and the fi-

nal dataset are summarised in Table 2. The first stage gen-

erates bounding box candidates for the entire VGG-Sound

test set (309 classes, 15k frames); the manual annotation

process then removes unclear classes and frames, resulting

in roughly 260 classes and 8k frames. Our final video ver-

ification further cleans up the the test set, yielding a high-

quality large-scale audio-visual benchmark — VGG-Sound

Source (VGG-SS), which is 20 times larger than the exist-

ing one [30].

5. Experiments

In the following sections, we describe the datasets, eval-

uation protocol and experimental details used to thoroughly
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(a) VGG-SS benchmark examples

41.2%
28.5%

16.3%

9.
97
%

4.1%

0.0~0.2
0.2~0.4
0.4~0.6
0.6~0.8
0.8~1.0

(b) Bounding box areas

89.6%

7.41%
2.98% 1

2
>2

(c) Number of bounding boxes

Figure 3: VGG-SS Statistics. Figure 3a: Example VGG-SS images and annotations showing class diversity (humans,

animals, vehicles, tools etc.) Figure 3b: Distribution of bounding box areas in VGG-SS, the majority of boxes cover less

than 40% of the image area. Figure 3c shows the distribution of number of bounding boxes - roughly 10% of the test data is

challenging with more than one bounding box per image.

Stage Goal # Classes # Videos

1 Automatic BBox Generation 309 15k

2 Manual Annotation 260 8k

3 Video Verification 220 5k

Table 2: The number of classes and videos in VGG-SS after

each annotation stage.

assess our method.

5.1. Training Data

For training our models, we consider two large-scale

audio-visual datasets, the widely used Flickr SoundNet

dataset and the recent VGG-Sound dataset, as detailed next.

Only the center frames of the raw videos are used for train-

ing. Note, other frames e.g. (3/4 of the video) are tried for

training, no considerable performance change is observed.

Flickr SoundNet: This dataset was initially proposed in [3]

and contains over 2 million unconstrained videos from

Flickr. For a fair comparison with recent work [17, 26, 30],

we follow the same data splits, conducting self-supervised

training with subsets of 10k or 144k image and audio pairs.

VGG-Sound: VGG-Sound was recently released with over

200k clips for 300 different sound categories. The dataset

is conveniently audio-visual, in the sense that the object

that emits sound is often visible in the corresponding video

clip, which naturally suits the task considered in this paper.

Again, to draw fair comparisons, we conduct experiments

with training sets consisting of image and audio pairs of

varying sizes, i.e. 10k, 144k and the full set.

5.2. Evaluation protocol

In order to quantitatively evaluate the proposed ap-

proach, we adopt the evaluation metrics used in [26, 30]:

Consensus Intersection over Union (cIoU) and Area Under

Curve (AUC) are reported for each model on two test sets,

as detailed next.

Flickr SoundNet Testset: Following [17, 26, 30], we

report performance on the 250 annotated image-audio pairs

of the Flickr SoundNet benchmark. Every frame in this

test set is accompanied by 20 seconds of audio, centered

around it, and is annotated with 3 separate bounding boxes

indicating the location of the sound source, each performed

by a different annotator.

VGG-Sound Source (VGG-SS): We also re-implement

and train several baselines on VGG-Sound and evaluate

them on our proposed VGG-SS benchmark, described in

section 4.

5.3. Implementation details

As Flickr SoundNet consists of image-audio pairs, while

VGG-Sound contains short video clips, when training on

the latter we select the middle frame of the video clip and

extract a 3s audio segment around it to create an equivalent

image-audio pair. Audio inputs are 257 × 300 magnitude

spectrograms. The dimensions for the audio output from

the audio encoder CNN is a 512D vector, which is max-

pooled from a feature map of 17× 13× 512, where 17 and

13 refer to the frequency and time dimension respectively.

For the visual input, we resize the image to a 224 × 224 ×
3 tensor without cropping. For both the visual and audio

stream, we use a lightweight ResNet18 [15] as a backbone.

Following the baselines [17, 26], we also pretrain the visual

encoder on ImageNet. We use ǫp = 0.65 and ǫn = 0.4,

τ = 0.03. All models are trained with the Adam optimizer

using a learning rate of 10−4 and a batch size of 256. During

testing, we directly feed the full length audio spectrogram

into the network.

6. Results

In the following sections, we first compare our results

with recent work on both Flickr SoundNet and VGG-SS

dataset in detail. Then we conduct an ablation analysis

showing the importance of the hard negatives and the Tri-

map in self-supervised audio-visual localization.
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6.1. Comparison on the Flickr SoundNet Test Set

In this section, we compare to recent approaches by

training on the same amount of data (using various differ-

ent datasets). As shown in Table 3, we first fix the train-

ing set to be Flickr SoundNet with 10k training samples

and compare our method with [2, 14, 26]. Our approach

clearly outperforms the best previous methods by a sub-

stantial gap (0.546% vs. 0.582%). Second, we also train on

VGG-Sound using 10k random samples, which shows the

benefit of using VGG-Sound for training. Third, we switch

to a larger training set consisting of 144k samples, which

gives us a further 5% improvement compared to the previ-

ous state-of-the-art method [17]. In order to tease apart the

effect of various factors in our proposed approach, i.e. in-

troducing hard negative and using a Tri-map vs different

training sets, i.e. Flickr144k vs. VGG-Sound144k, we con-

duct an ablation study, as described next.

Method Training set CIoU AUC

Attention10k [30] Flickr10k 0.436 0.449

CoarsetoFine [26] Flickr10k 0.522 0.496

AVObject [1] Flickr10k 0.546 0.504

Ours Flickr10k 0.582 0.525

Ours VGG-Sound10k 0.618 0.536

Attention10k [30] Flickr144k 0.660 0.558

DMC [17] Flickr144k 0.671 0.568

Ours Flickr144k 0.699 0.573

Ours VGG-Sound144k 0.719 0.582

Ours VGG-Sound Full 0.735 0.590

Table 3: Quantitative results on Flickr SoundNet testset. We

outperform all recent works using different training sets and

number of training data.

Model Pos ǫ Neg ǫ Tri-map CIoU AUC

a X × × 0.675 0.568

b X X × 0.667 0.544

c X X X 0.719 0.582

Table 4: Method ablations. The amount of hard negatives

are investigated here, only proper amount of negatives can

benefit the models.

6.2. Ablation Analysis

In this section, we train our method using the 144k-

samples training data from VGG-Sound and evaluate it on

the Flickr SoundNet test set. The goal is to investigate the

benefit of introducing hard negative regions and the Tri-

map in the self-supervised learning formulation. As shown

in table 4, we first note that using hard negatives naı̈vely

Method CIoU AUC

Attention10k [30] 0.185 0.302

AVobject [1] 0.297 0.357

Ours 0.344 0.382

Table 5: Quantitative results on the VGG-SS testset. All

models are trained on VGG-Sound 144k and tested on

VGG-SS.

does not help: comparing model a trained using only pos-

itives and model b adding negatives from the complemen-

tary region decreases performance slightly. This is because

all the non-positive areas have been counted as negatives,

whereas regions around the object are often hard to define.

Therefore deciding for all pixels whether they are positive

or negative is problematic. Second, comparing model b and

model c where some areas between positives and negatives

are ignored during training by using the Tri-map, we obtain

a large 4.4% gain, demonstrating the importance of defining

an “uncertain” region and allowing the model to self-tune.

We show more results in the extended Arxiv version.

6.3. Comparison on VGG­Sound Source

In this section, we evaluate the models on the newly pro-

posed VGG-SS benchmark. As shown in Table 5, the CIoU

is reduced significantly for all models compared to the re-

sults in Table 3, showing that VGG-SS is a more diverse

and challenging benchmark than Flickr SoundNet. How-

ever, our proposed method still outperforms all other base-

line methods by a large margin of around 5%.

6.4. Qualitative results

In Figure 4, we threshold the heatmaps with different

thresholds, e.g. ǫp = 0.65 and ǫn = 0.4 (same as the ones

used during training). The objects and background are accu-

rately highlighted in the positive region and negative region

respectively, so that the model can learn proper amount of

hard negatives. We visualize the prediction results in Fig-

ure 5, and note that the proposed method presents much

cleaner heatmap outputs. This once again indicates the ben-

efits of considering hard negatives during training.

6.5. Open Set Audio­visual Localization

We have so far trained and tested our models on data

containing the same sound categories (closed set clas-

sification). In this section we determine if our model

trained on heard/seen categories can generalize to classes

that have never been heard/seen before, i.e. to an open

set scenario. To test this, we randomly sample 110 cat-

egories (seen/heard) from VGG-Sound for training, and

evaluate our network on another disjoint set of 110 un-

seen/unheard categories (for a full list please refer to sup-
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Figure 4: Example Tri-map visualisations. We show images, heatmaps and Tri-maps here. The Tri-map effectively identify

the objects and the uncertain region let the model only learn controlled hard negatives.

Annotation Attetion10k (144k data) Ours (144k data)AV-object (10k data) Ours (10k data)

(a) Visualisation on Flickr SoundNet testset

Annotation Attetion10k (144k data) Ours (144k data)AV-object (10k data) Ours (10k data)

(b) Visualisation on VGG-SS testset

Figure 5: Qualitative results for models trained on various methods and data amount. The first column shows annotation

overlaid on images, the following two column shows predictions trained on 10k data and the last tow column show predictions

trained on 144k data. Our method has no false positives in the predictions as the hard negatives are penalised in the training.

# training Data Test class CIoU AUC

70k Heard 110 0.289 0.362

70k Unheard 110 0.263 0.347

Table 6: Quantitative results on VGG-SS for unheard

classes. We vary the training set (classes) and keep the test-

ing set fixed (subset of the VGG-SS).

plementary). We use roughly 70k samples for both heard

and unheard classes.

Heard and unheard evaluations are shown in Table 6,

where for the heard split we also train the model on 70k

samples containing both old and new classes. The differ-

ence in performance is only 2%, which demonstrates the

ability of our network to generalize to unheard or unseen

categories. This is not surprising due to the similarity be-

tween several categories. For example, if the training cor-

pus contains human speech, one would expect the model

to be capable of localizing human singing, as both classes

share semantic similarities in audio and visual features.

7. Conclusion

We revisit the problem of unsupervised visual sound

source localization. For this task, we introduce a new large-

scale benchmark called VGG-Sound Source, which is more

challenging than existing ones such as Flickr SoundNet.

We also suggest a simple, general and effective technique

that significantly boosts the performance of existing sound

source locators, by explicitly mining for hard negative im-

age locations in the same image that contains the sounding

objecs. A careful implementation of this idea using Tri-

maps and differentiable thresholding allows us to signifi-

cantly outperform the state of the art.

Acknowledgements

This work is supported by the UK EPSRC CDT in Au-

tonomous Intelligent Machines and Systems, the Oxford-

Google DeepMind Graduate Scholarship, the Google PhD

Fellowship, and EPSRC Programme Grants Seebibyte

EP/M013774/1 and VisualAI EP/T028572/1.

16874



References

[1] Triantafyllos Afouras, Andrew Owens, Joon Son Chung, and

Andrew Zisserman. Self-supervised learning of audio-visual

objects from video. In Proc. ECCV, 2020. 1, 2, 3, 4, 7
[2] Relja Arandjelovic and Andrew Zisserman. Objects that

sound. In Proc. ECCV, 2017. 1, 2, 3, 4, 7
[3] Yusuf Aytar, Carl Vondrick, and Antonio Torralba. Sound-

net: Learning sound representations from unlabeled video.

In Advances in Neural Information Processing Systems,

2016. 2, 6
[4] Honglie Chen, Weidi Xie, Andrea Vedaldi, and Andrew Zis-

serman. Vggsound: A large-scale audio-visual dataset. In

International Conference on Acoustics, Speech, and Signal

Processing, 2020. 2, 5
[5] Yung-Yu Chuang, Aseem Agarwala, Brian Curless, David H.

Salesin, and Richard Szeliski. Video matting of complex

scenes. ACM Transactions on Graphics, 21(3):243–248, Jul

2002. SIGGRAPH 2002 Proceedings, special issue. 5
[6] Joon Son Chung and Andrew Zisserman. Lip reading in the

wild. In Proc. ACCV, 2016. 2
[7] Navneet Dalal and Bill Triggs. Histograms of oriented gra-

dients for human detection. In Proc. CVPR, 2005. 2
[8] Abhishek Dutta and Andrew Zisserman. The via annotation

software for images, audio and video. In Proc. ACMM, vol-

ume 27 of MM 19, New York, USA, Oct 2019. ACM, ACM.

to appear in Proceedings of the 27th ACM International Con-

ference on Multimedia (MM 19). 5
[9] John W Fisher III, Trevor Darrell, William T Freeman, and

Paul A Viola. Learning joint statistical models for audio-

visual fusion and segregation. In NEURIPS, 2000. 2
[10] Chuang Gan, Hang Zhao, Peihao Chen, David Cox, and An-

tonio Torralba. Self-supervised moving vehicle tracking with

stereo sound. In Proceedings of the IEEE International Con-

ference on Computer Vision, pages 7053–7062, 2019. 2
[11] Ruohan Gao and Kristen Grauman. 2.5d visual sound. In

CVPR, 2019. 2
[12] Jort F Gemmeke, Daniel PW Ellis, Dylan Freedman, Aren

Jansen, Wade Lawrence, R Channing Moore, Manoj Plakal,

and Marvin Ritter. Audio set: An ontology and human-

labeled dataset for audio events. In 2017 IEEE Interna-

tional Conference on Acoustics, Speech and Signal Process-

ing (ICASSP), pages 776–780. IEEE, 2017. 2
[13] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra

Malik. Rich feature hierarchies for accurate object detection

and semantic segmentation. In Proc. CVPR, 2014. 2
[14] David Harwath, Adria Recasens, Dı́dac Surı́s, Galen

Chuang, Antonio Torralba, and James Glass. Jointly dis-

covering visual objects and spoken words from raw sensory

input. In Proceedings of the European conference on com-

puter vision (ECCV), pages 649–665, 2018. 1, 2, 4, 7
[15] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In Proc.

CVPR, 2016. 6
[16] J Hershey and JR Movellan. Audio-vision: Locating sounds

via audio-visual synchrony. In NEURIPS, volume 12, 1999.

2
[17] Di Hu, Feiping Nie, and Xuelong Li. Deep multimodal clus-

tering for unsupervised audiovisual learning. In Proc. CVPR,

June 2019. 1, 2, 3, 6, 7

[18] Hamid Izadinia, Imran Saleemi, and Mubarak Shah. Mul-

timodal analysis for identification and segmentation of

moving-sounding objects. IEEE Transactions on Multime-

dia, 15(2):378–390, 2012. 2
[19] Naji Khosravan, Shervin Ardeshir, and Rohit Puri. On at-

tention modules for audio-visual synchronization. arXiv

preprint arXiv:1812.06071, 1, 2018. 2
[20] Einat Kidron, Yoav Y Schechner, and Michael Elad. Pixels

that sound. In Proc. CVPR, 2005. 2
[21] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and

Piotr Dollr. Focal loss for dense object detection. Proc.

ICCV, 2017. 2
[22] Etienne Marcheret, Gerasimos Potamianos, Josef Vopicka,

and Vaibhava Goel. Detecting audio-visual synchrony using

deep neural networks. In Sixteenth Annual Conference of the

International Speech Communication Association, 2015. 2
[23] Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Repre-

sentation learning with contrastive predictive coding. arXiv

preprint arXiv:1807.03748, 2018. 3
[24] Andrew Owens and Alexei A. Efros. Audio-visual scene

analysis with self-supervised multisensory features. In Proc.

ECCV, 2018. 1
[25] Andrew Owens and Alexei A. Efros. Audio-visual scene

analysis with self-supervised multisensory features. Proc.

ECCV, 2018. 2
[26] Rui Qian, Di Hu, Heinrich Dinkel, Mengyue Wu, Ning Xu,

and Weiyao Lin. Multiple sound sources localization from

coarse to fine. In Proc. ECCV, 2020. 2, 3, 6, 7
[27] Janani Ramaswamy and Sukhendu Das. See the sound, hear

the pixels. In Proceedings of the IEEE/CVF Winter Con-

ference on Applications of Computer Vision (WACV), March

2020. 2
[28] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.

Faster R-CNN: Towards real-time object detection with re-

gion proposal networks. In NEURIPS, 2016. 2, 5
[29] Andrew Rouditchenko, Hang Zhao, Chuang Gan, Josh Mc-

Dermott, and Antonio Torralba. Self-supervised audio-visual

co-segmentation. In Proc. ICASSP, pages 2357–2361. IEEE,

2019. 2
[30] Arda Senocak, Tae-Hyun Oh, Junsik Kim, Ming-Hsuan

Yang, and In So Kweon. Learning to localize sound source

in visual scenes. In Proc. CVPR, 2018. 1, 2, 3, 4, 5, 6, 7
[31] Abhinav Shrivastava, Abhinav Gupta, and Ross Girshick.

Training region-based object detectors with online hard ex-

ample mining. In Proc. CVPR, 2016. 2
[32] Xin Tao, Hongyun Gao, Xiaoyong Shen, Jue Wang, and Ji-

aya Jia. Scale-recurrent network for deep image deblurring.

In Proc. CVPR, pages 8174–8182, 2018. 5
[33] Bart Thomee, David A Shamma, Gerald Friedland, Ben-

jamin Elizalde, Karl Ni, Douglas Poland, Damian Borth, and

Li-Jia Li. Yfcc100m: the new data in multimedia research.

Communications of the ACM, 59(2):64–73, 2016. 2
[34] Yapeng Tian, Jing Shi, Bochen Li, Zhiyao Duan, and Chen-

liang Xu. Audio-visual event localization in unconstrained

videos. In Proc. ECCV, pages 247–263, 2018. 2, 3
[35] Paul Viola and Michael Jones. Robust real-time object de-

tection. In Proc. of IEEE Workshop on Statistical and Com-

putational Theories of Vision, 2001. 2
[36] Dingzeyu Li Yapeng Tian and Chenliang Xu. Unified mul-

tisensory perception: Weakly-supervised audio-visual video

16875



parsing. In ECCV, 2020. 2, 3
[37] Hang Zhao, Chuang Gan, Wei-Chiu Ma, and Antonio Tor-

ralba. The sound of motions. Proc. ICCV, 2019. 2
[38] Hang Zhao, Chuang Gan, Andrew Rouditchenko, Carl Von-

drick, Josh McDermott, and Antonio Torralba. The sound of

pixels. In Proc. ECCV, 2018. 2

16876


