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Figure 1: MagDR defends deepfakes from adversarial attacks in three main tasks, face replacement (top), face editing

(middle), and facial reenactment (bottom). In each group, we show the original generation effect (left), how adversarial

perturbations damage the generation (middle), and how the proposed defender recovers the desired output (right).

Abstract

1Deepfakes raised serious concerns on the authenticity

of visual contents. Prior works revealed the possibility to

disrupt deepfakes by adding adversarial perturbations to

the source data, but we argue that the threat has not been

eliminated yet. This paper presents MagDR, a mask-guided

detection and reconstruction pipeline for defending deep-

fakes from adversarial attacks. MagDR starts with a detec-

tion module that defines a few criteria to judge the abnor-

mality of the output of deepfakes, and then uses it to guide

1This work was supported by NSFC under Grant 61972312 and by the

Key Research and Development Program of Shaanxi under Grant 2020GY-

002.

a learnable reconstruction procedure. Adaptive masks are

extracted to capture the change in local facial regions. In

experiments, MagDR defends three main tasks of deepfakes,

and the learned reconstruction pipeline transfers across in-

put data, showing promising performance in defending both

black-box and white-box attacks.

1. Introduction

Deepfakes originally appeared as a neutral technology

that can synthesize images with the human face replaced

by another identity. While the technique benefits the com-

munity in the scenarios of e.g. creating new characters or

decorate them with vivid facial expressions, it gradually be-
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comes infamous for the unethical applications (e.g. swap

fake of celebrities into pornographic videos, or generate

a fraud video that delivers fake and malicious messages).

To avoid negative impacts to the public, researchers started

to develop algorithms to detect the images and videos that

have been contaminated by deepfakes [36, 56]. However,

the follow-up research [2, 10, 31] quickly realized that these

detectors are easily fooled by adversarial perturbations. An-

other way to confront deepfakes is to add adversarial per-

turbations to the source image so that the output is severely

damaged [38, 53]. This was believed to be more robust than

the deepfakes detectors.

However, in this paper, we reveal the feasibility of de-

fending the adversarial attacks to deepfakes. We propose

a framework named mask-guided detection and recon-

struction (MagDR). It starts with defining a few criteria

(e.g., SSIM, PSNR, etc.) that are sensitive to the abnormal-

ity of the outputs. Then, a mask-guided detector is trained

to judge, from the output image, whether the input image

has been contaminated. If yes, a reconstruction algorithm

follows to eliminate the damage of the adversarial perturba-

tions and recover the desired output.

A highlight of our approach is that we maintain a num-

ber of masks and use them to provide auxiliary informa-

tion in the detection and reconstruction procedures. The

masks can be learned from an individual training process,

and each of them corresponds to a specific part of the hu-

man face. Guided by the masks, the detector can be par-

titioned into two components which detect distortion and

inconsistency, both of which indicate the regions that are

likely to be contaminated. To reconstruct the desired output,

we design a pipeline containing several modules and equip

them with a changeable execution order and adjustable pa-

rameters. Then, we perform an adaptive optimization that

suppresses all the pre-defined criteria and produce the re-

covered output.

We evaluate our approach on two popular datasets,

namely, FaceForensics++ [37] and CelebA [23]. We cor-

respond three image-to-image translation methods, Cycle-

GAN [57], StarGAN [6], and GANimation [35], to the three

main functions of deepfakes, face editing, facial reenact-

ment, and face replacement, respectively. We investigate

two settings, one is the oblivious attack in which the attack-

ers transfer the perturbations computed on original deep-

fakes models to the defender, and the other is the adaptive

attack in which the parameters of the defenders are known

to the attacker. Experiments show that deepfakes are vul-

nerable in both scenarios, but MagDR is able to eliminate

the impact of the attack in most cases. Typical examples are

shown in Figure 1. MagDR also shows advantages in exten-

sive experiments against state-of-the-art adversarial attack-

ers [4, 25] and defenders [24, 27, 26, 38, 39, 30, 9, 48].

Interestingly, MagDR is able to transfer across different

scenarios, demonstrating its ability in both black-box and

white-box attacks, and implying that adversarial perturba-

tions are detectable by some common rules.

The contributions of this paper are as follows:

• We reveal that the threats of deepfakes have not yet

been eliminated by adding adversarial perturbations to

the input image or videos.

• We find that the corruption to image-to-image transla-

tion can influence either a part of the image or the en-

tire image. The proposed mask-guided design follows

this property and achieves satisfying performance.

• We propose a heuristic, hierarchical reconstruction

module for each conditional attribute patch. We adjust

it through a progressive approach, which can largely

reduce the computational costs. Therefore, we verify

that different regions are complementary in recover-

ing the detailed textures, and the layer-by-layer archi-

tecture with a proper execution order can enhance the

performance of defense.

2. Related Work

Deepfakes. Deepfakes have gained a lot of concern for

it can generate fake images, video, voice, etc. Those gener-

ated products can highly mislead the judgment of humans.

[28, 44] survey deepfakes, which divide deepfakes on fa-

cial image or video into four main regions: Face Synthe-

sis, Face Editing, Facial Reenactment, and Face Replace-

ment. Face synthesis can generate entire non-existent face

images [16, 32, 8] that usually use GAN based methods

e.g., ProGAN [15] or StyleGAN [16], etc. Face Editing

means some attributes of the face can be added, removed,

or changed. Those attributes can be the hair, age, clothes,

ethnicity, gender [11], etc. And the methods often related

with GAN with attributes e.g., StarGan [6], attGAN [13]

and STGAN [22]. Facial Reenactment modifying the facial

expression of the person can be achieved by [22, 43, 42].

Finally, face replacement [33, 19] is an operation to swap

the face of the source image to the target image by consid-

ering the face size, pose, and skin color etc. In this paper, we

mainly focus on defending face editing, facial reenactment,

and face replacement. This is because that these deepfakes

alter source images, while face synthesis does not need any

input images.

Adversarial Attack and Defense. Researchers de-

signed a lot of attacking algorithms to add imperceptible

perturbations onto well-trained neural networks so that the

prediction is dramatically destroyed. Successful scenar-

ios include image classification [17, 29, 25], object de-

tection and semantic segmentation [49], image caption-

ing [51], video classification [5] etc. Among the first to in-

troduce adversarial examples against deep neural networks

was [41]. After that, Goodfellow et al. [12] used the sign
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of the gradient to propose a fast attack method called Fast

Gradient Sign Method (FGSM). FGSM seeks the direction

that can maximize the classification errors to update each

pixel. In [25], an iterative method called Projection Gradi-

ent Descent (PGD) was proposed. PGD makes the pertur-

bations project back to the ǫ-ball which center is the orig-

inal data when perturbations over the ǫ-ball. There have

been a lot of adversarial defense strategies [55] (Adversar-

ial Detecting[26, 24, 27], Input Reconstruction[26, 50, 21],

Adversarial (Re)training[17, 45], etc).

Attacking and Defending Deepfakes. A lot of deepfake

detectors are proposed to detect fake images in Face Syn-

thesis [40], Face Editing [36, 56], Facial Reenactment[46]

and Face Replacement [20]. Despite popularity, recent re-

searches [2, 10, 31] found those deepfake detectors are

easily to be misled via adversarial perturbations. Another

method to confront deepfakes was proposed by [38, 53].

They found that similar to other traditional computer vision

systems, deepfakes are also vulnerable to adversarial exam-

ples. Through adding adversarial perturbations to source

images, the output can be corrupted, highly influencing the

effectiveness of deepfakes. While in this paper, we demon-

strate that there is a method to resolve the newly proposed

disrupting methods.

3. Methodology

3.1. An Overview of Deepfakes and Disrupted Im
ages Generation

CycleGAN [57] uses two sets of GANs, in which two

Generators transform the images from both domains, i.e.,

Gx : x → y and Gy : y → x, and two Discriminator Dx

and Dy learn to distinguish between x and GY(y) as well

as between y and GX(x). An enhanced approach named

StarGAN [6], which performs image-to-image translations

for multiple domains using only a single model. It is a con-

ditional attribute transfer network trained by attribute clas-

sification loss and cycle consistency loss. Another work

called GANimation [35] reenacts face and uses an expres-

sion prediction loss to penalizes G for realistic expressions.

In this model, the output of deepfakes can be simplified as

G(x, c), where c is the target class that defines the specific

condition where we want to modify in different deepfakes.

Generating disrupted images, which adds some imper-

ceptible perturbation in the source image, is similar to gen-

erating adversarial examples. Recently, [38, 53] utilized it-

erative gradient-based methods (e.g. I-FGSM [17]) to gen-

erate disrupting images. In this work, we use both the it-

erative gradient-based method PGD [25] and the optimize-

based strategy C&W [4] to generate disrupted images for

comprehensive attack settings.

Let x̂ be a generated disrupted input image, i.e., x̂ =
x + δ, where x is the input image and δ is a human-

imperceptible perturbation. As such, the disrupted output

can be formulated as G(x̂, c), and the objective function

for perturbation generation is:

max
δ

L(G(x̂, c), r), subject to ||δ||∞ ≤ ǫ, (1)

where ǫ is the maximum magnitude of the perturbation and

L is the loss function to define the difference between the

inputs. If we pick r to be the ground-truth output, i.e.,

r = G(x, c), we will get the ideal disruption which aims

to maximize the distortion of the output.

While sometimes we may need to get some specific al-

tered output image. Accordingly, we need to minimize the

distance L between G(x̂, c) and rt, where rt can represent

any image we want it to be. This is known as the targeted

attack and its formulation can be organized as:

min
δ

L(G(x̂, c), rt), subject to ||δ||∞ ≤ ǫ, (2)

In addition, to disrupt a network in many defense sce-

narios, we perform a modified L calculation method that

corresponds to adaptive attacks [3, 1, 14]:

max
δ

K
∑

k=1

L(fk(G(x+ δ, c), r)), subject to ||δ||∞ ≤ ǫ,

(3)

where fk is a defense pre-processing operation, and we have

K different defense methods with different magnitudes and

types.

3.2. The Framework for Defending Deepfakes

The proposed framework is named MagDR, standing for

mask-guided detection and reconstruction. As shown in

Figure 2 (a), it contains two major components, a detec-

tor and a reconstructor, both of which are guided by a set of

pre-defined criteria computed on adaptive masks. The over-

all idea is to sense the presence of adversarial attacks from

the output image (which is often significantly perturbed),

and perform an adjustable algorithm to suppress all the cri-

teria to an acceptable value, after which we believe that the

output has been reconstructed.

Before entering the elaboration of technical details, we

point out that the implementation of each module can be

freely changed under the designed framework. That being

said, we look forward to future research that improves the

performance of MagDR by using more accurate criteria as

well as stronger detectors and reconstructors.

3.2.1 Predefined Module for MagDR

Distance Metrics Definition. We define D as the whole

set of distance estimation functions. Each Di(xi,xj) rep-
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Figure 2: The MagDR Framework. It is a unified framework suitable for various deepfake models, e.g., StarGAN, and

GANimation. Input with adversarial perturbations is first fed into detectors. If it is considered disrupted, MagDR reconstructs

it through reconstructor, replace the disrupted input with reconstructed one, then do the processes again. The detector consists

of two sub-detectors, and the core of the reconstructor is Rec-Nets. We use the pre-trained conditional attribute tensor to help

detector and reconstructor for detailed image information, where the grey region of masks needs to be preserved when doing

calculations.

resents a distance estimation function which calculates the

difference of input image pair. In particular, Di can be

computed in a number of different ways. In our set-

tings, we compute the distances between Φl(G(x̂, c), r))
and Φl(G(x, c), r)) on the l-th layer using Lp, SSIM and

PSNR, where Φl is the mapping from an image to its in-

ternal DNN representation at layer l. Besides, we calculate

the cosine similarity at layer L − 1, where L denotes the

number of layers of the network.

Conditional Mask Tensor Generation. For enhancing

the detection and reconstruction, we bring 19-class soft fa-

cial region masks in our MagDR from a pre-trained face

parser same as MagGAN [47] introduced. The face parser

is a modified BiseNet [54] trained on the CelebAMask-

HQ dataset [18] 2. Then we select N attribute region

masks based on our deepfake tasks. For each attribute

ai, we define its influence regions represented by two

probability masks Mi ∈ [0, 1]H×W . Then, we concate-

nate these attribute mask regions into a conditional mask

tensor, where the mask can be denoted as a probability

map M ∈ [0, 1]N×H×W of the N facial parts, satisfying
∑N

i=1
Mi,h,w = 1h,w. The module of conditional mask

tensor generation is shown in Figure 2 (f).

2https://github.com/zllrunning/face- parsing.

PyTorch
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3.2.2 The Detector

As Figure 2 (a) shown, to detect different patterns of cor-

ruption, our detector contains two sub-detectors: a distor-

tion detector and a consistency detector. We combine these

two sub-detectors together as a function d : S → {0, 1} to

decide whether the input is an adversarial sample or not.

Distortion Detector. As Figure 1 shows, deepfakes nor-

mally modify the conditional attribute region of the input.

Thus, it is weird for the output that there is abnormality out

of the conditional attribute region. Motivated by this obser-

vation, we use the changes of attribute regions measured by

the aforementioned conditional attribute region mask and

distance metrics to develop a distortion detector, as shown

in Figure 2 (b).

d̄i =
D(Mi ◦ x,Mi ◦G(x, c))

Si

(4)

where d̄i is the distance metrics vector with the conditional

attribute region, and Si is the number of pixels of the at-

tribute region mask.

In practice, we cannot determine whether the image is

polluted or not by directly using the distance of the target

attribute region larger than a threshold. This is because that

the threshold is affiliated with specific deepfake tasks and

images. To address the problem, we propose to use the dis-

tance metrics of the target attribute region as the benchmark

to compare with other regions.

Vi =

{

1 if max{d̄i − dc} ≥ 0,

0 otherwise
(5)

where dc is the distance of the target attribute region Mc.

Based on the difference of conditional regions, we can con-

clude the input is disrupted or not. In particular, if the

distance metrics of the calculated region is larger than the

benchmark, we will assume this region is corrupted and set

the flag as 1. Otherwise, it is considered as clean and set as

0. Thus, we naturally use the number of disrupted patches

to decide whether an image is disrupted or not.

In addition, we can use the vector d̄i to define distor-

tion score that measures the distortion magnitude of the dis-

rupted output. Specifically, it is formulated as:

Sdist =
∑

i 6=c

w ◦ sigmoid(d̄i) (6)

where w is the regularization vector of the distance metric

d̄i.

Consistency Detector. The distortion detector is effec-

tive in detecting disrupted images when there are a lot of

corruptions out of the conditional attribute region. How-

ever, it becomes less effective if corruption is caused in the

whole image. To overcome this problem, we consider the

vulnerability of adversarial perturbations as a breakthrough

to detect disrupted images. We use many image process-

ing methods to obtain a set of augmented images. These

augmented images are regarded as the protected input of

deepfakes. Correspondingly, there are a lot of different rep-

resentations contained in the output. With them, as shown

in Figure 2 (c), we calculate the consistency score Scons:

dk = D(G(x̂, c),G(fk(x̂), c))

µ = Efk|F[d
k]

σ
2 = Efk|F[(d

k − µ)2]

Scons = σ

(7)

Here, K is the number of image pre-processing methods.

If Scons is larger than the predefined threshold, we treat the

input image as the adversarial example which may influence

the whole image region, and vice versa.

3.2.3 The Reconstructor

The reconstructor aims to recover the correct output of

deepfakes by reducing the effect of added perturbations.

Formally, it is modelled as minimizing the distance between

original output and reconstructed output:

minD(G(x, c),G(T(x̂), c)) (8)

where T(·) is an image transformation function. Ide-

ally, T(·) should be model-agnostic, sophisticated and non-

differentiable, making it harder for the adversary to circum-

vent the transformed model by back-propagating the dis-

tance metrics through it.

As shown in Figure 2 (d), our proposed approach uses

the image restoration technique to purify disrupted images.

It has two components, which together form an effective

pipeline that is difficult to bypass. First, we apply the condi-

tional region mask to help us obtain specific facial patches.

Second, we use a multi-stage module Rec-Net shown in

Figure 2 (e), to enhance the image quality and simulta-

neously remove adversarial perturbations. Rec-Net is the

core component of the Reconstructor, and its algorithmic

description is outlined in Algorithm. 1.

The final criteria score Sfinal uses the distortion score

Sdist in Eq. 6 and the consistency score Scons in Eq. 7 to

judge the abnormality of the output:

Sfinal = λSdist + Scons (9)

where λ is the hyper-parameter to balance two different de-

tectors.

3.3. Advantages of Proposed Method

Our proposed method offers a number of advantages.

First and most important, it is agnostic to attack algorithms
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Algorithm 1: Rec-Net Training for a Patch

/* Pre-training Procedure */

Input: Training set X, Transformation methods f
p

k
for

reconstruction in layer Bi, Sfinal refer to Eq. 9

Output: Layer Qi

1 K = the number of method categories in Bi.

2 P = the number of parameters for each category in fk .

3 Evaluate each methods f
p

k
in training set X by Sfinal.

4 Find the optimal parameters q for each category methods fk .

5 Insert f
q

k
into layer Qi.

6 K = the number of methods in Qi.

/* Obtain the i-th transformation method

for rec-net R */

Input: Input image patch x, Layer Qi, Layer Bi, Sfinal

Output: Processing methods sequence of rec-net R

7 Evaluate each methods f
q

k
in layer Qi for patch x.

8 Select the top-3 method categories Cj based on the Sfinal.

9 Use the top-3 categories as the index, obtain the subset layer B′

i
.

10 Select the top-1 scored method fb
Cj

in the subset as the optimal

transformation method in layer Bi.

11 Insert fb
Cj

into Ri.

and attacked models. Second, as it leverages the vulnera-

bility of perturbations, it thus can achieve strong detection

efficiency of those perturbations with little altering. Third,

it takes strong adaptive defense ability with different attack

degrees. Fourth, unlike many recently proposed techniques,

which degrade critical image information as part of their de-

fense, our proposed method preserves image quality while

simultaneously providing a strong defense. Last, due to its

modular nature, the proposed approach can be used as a uni-

versal module in existing deepfake models.

4. Experiments

4.1. Datasets and Model Architecture

Datasets. We mainly use two datasets in our experi-

ments: FaceForensics++ [37] and CelebA [23]. FaceForen-

sics++ contains 1000 original video sequences. And all

of them have been manipulated by Deepfakes, Face2Face,

FaceSwap and NeuralTextures. The data is collected from

977 youtube videos and all videos contain a trackable

mostly frontal face without occlusions. CelebFaces At-

tributes Dataset (CelebA) contains 200K celebrity images

that cover large pose variations and background clutter.

CelebA has large diversities, large quantities, and rich an-

notations, including 10,177 number of identities, 202,599

number of face images, and 5 landmark locations, 40 binary

attributes annotations per image. The size of each image is

cropped to 128×128.

Model Architectures. We use the CycleGAN, Star-

GAN, and GANimation image translation architectures to

demonstrate our framework on different scenarios men-

tioned above. For CycleGAN, we use FaceForensics++

dataset to train a face to face model with 200 epochs. For

StarGAN and GANimation, We use the open-source imple-

mentation 3 refered in Nataniel et al. [38] and fine-tuned on

the CelebA dataset.

4.2. Attack Settings and Evaluation Metircs

We mainly use C&W and PGD methods to craft ad-

versarial examples. They are different attack methods in

which one is gradient-based and another is optimization-

based, which can prove our attack setting is comprehensive.

We also use the different hyper-parameters, as well as the

loss function to control the distortion in the different deep-

fake models. For CycleGAN attacking, we use the target

attack settings in which the target label is the input image.

And perform the untarget attack in StarGAN and GANima-

tion models that could make more distortion of the output.

These objective functions can refer to Eq. 1 and Eq. 2.

Specifically, all of those images are under the attack suc-

cess situation and the magnitude of perturbation is con-

strained in the ǫ norm ball. And we adopt the recall rate,

the precision rate and the F1 score to quantify the detection

performance. All experiments are run on the same set of

images and against the same attacks for a fair comparison.

4.3. Detection Performance

We compare our proposed detector with a number of

state-of-the-art adversarial examples detectors. These in-

clude training a model to distinguish the difference of ad-

versarial examples and normal samples [24, 27, 7], calcu-

lating the reconstruction errors to detect adversarial exam-

ples [26], and training a network to do binary classification

on disrupted and clean outputs (OTD).

4.3.1 Detecting Defense-unaware Attacks

We test the performance of three deepfakes under the

defense-unaware attack, where the attackers generate the

disrupted images in the models without any defense mod-

ules. We calculate the precision, accuracy, and F1 score

of detectors on disrupted images w.r.t. the perturbation ǫ.

Table. 1 shows the performance of detectors under differ-

ent attack methods and different deepfake scenarios. From

Table. 1, we can see that our method performs the best in

all cases. Under the same attack settings, those methods

proposed to detect adversarial examples in the classifica-

tion tasks are at a low performance of detection. And we

also perform the ablation study to demonstrate the effec-

tiveness of the consistency detector (CD) and distortion de-

tector (DD). The results show consistency detector performs

well in the face replacement. Because the corruption in the

3https: / / github. com / natanielruiz/ disrupting-

deepfakes
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Table 1: Comparison of detection performance across different attack methods and deepfakes. Note that all of these pertur-

bations are generated under the defense-unaware situation.

Defense Models Attack Methods

Face Replacement Face Editing Facial Reenactment

Precision Recall F1 Precision Recall F1 Precision Recall F1

Lu et al. [24]
C&W 0.48 0.50 0.43 0.62 0.57 0.52 0.56 0.60 0.56

PGD 0.45 0.53 0.46 0.66 0.65 0.64 0.50 0.55 0.50

Metzen et al. [27]
C&W 0.52 0.52 0.51 0.48 0.46 0.40 0.48 0.51 0.44

PGD 0.46 0.44 0.43 0.50 0.55 0.49 0.48 0.47 0.40

Meng et al. [26]
C&W 0.51 0.51 0.50 0.53 0.53 0.52 0.49 0.50 0.46

PGD 0.56 0.56 0.56 0.90 0.89 0.89 0.56 0.55 0.55

OTD
C&W 0.28 0.53 0.36 0.20 0.33 0.25 0.60 0.57 0.46

PGD 0.27 0.52 0.35 0.52 0.51 0.50 0.45 0.49 0.36

NNIF et al. [7]
C&W 0.82 0.66 0.73 0.83 0.85 0.84 0.85 0.54 0.66

PGD 0.78 0.62 0.69 0.83 0.79 0.81 0.80 0.52 0.63

DD (ours)
C&W 0.84 1.00 0.91 0.96 0.96 0.96 0.92 0.92 0.92

PGD 0.76 1.00 0.87 0.99 0.99 0.99 0.94 0.94 0.94

CD (ours)
C&W 0.87 0.99 0.92 0.96 0.96 0.96 0.76 0.86 0.81

PGD 0.95 0.94 0.94 0.98 0.99 0.99 0.97 0.78 0.87

MagDR (CD+DD)
C&W 0.96 1.00 0.98 0.96 0.96 0.96 0.92 0.92 0.92

PGD 0.95 1.00 0.97 1.00 1.00 1.00 0.97 0.94 0.95

situation is huge and influenced in the whole image, the dis-

tortion detector can not get a proper benchmark for compar-

ison. And the distortion detector is good at detecting partial

corruption. So it performs well in the facial reenactment.

Finally, MagDR combines the advantages of the two com-

ponents to obtain superior detection performance.

4.3.2 Detecting Defense-aware Attacks

For a complete analysis, we investigate the detection perfor-

mance under the defense-aware attack, which is also called

adaptive attack [1]. It is the most difficult defense scenar-

ios because the adversary knows the technique details of the

detection methods. When launching an attack, the attacker

can leverage the knowledge to fool the detector by generat-

ing specific perturbations. The adaptive-attack methods can

refer to Eq. 3, which ensures it can reduce the performance

of detectors through more iterations. While a good detec-

tion method should increase the attack cost which means

attackers should continuing to increase the iterations for the

desired attack. As Figure 3 shows, with the iteration in-

crease, the F1-score going down under the adaptive attack

settings. And the detectors which trained on some datasets

shows their poor performance and high vulnerability. While

our method can greatly keep the stability of highest detec-

tion performance under more aggressive attacks.

4.4. Reconstruction Performance

We compare our proposed reconstructor with number

of recently introduced state-of-the-art image transforma-

tion based defense schemes in the literature. These include

JPEG Compression [9], Adversarial training + Blur [38],
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Meng et al.
Metzen et al.
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CD (ours)
OTD
NNIF

Figure 3: Illustration the F1-score under defense-aware at-

tacks. Iter denotes the iteration number of searching the

adversarial perturbations.

Auto-encoder reformer [26], Random Noise [48], Super-

Resolution [30], Me-net [52], Pixel Deflection(PD) [34].

As Table. 2 shows, we evaluate reconstructors under two

dimensions: input-pair and output-pair. We expect the re-

constructors should alter less in the input-pair while keep-

ing high similarity in the output-pair. The results show the

randomized method [48, 34] does not have any reconstruc-

tion ability in deepfake tasks, even make things worse. The

Auto-encoder-based reconstructor [52, 26] has a huge dif-

ference between the desired images. And our method can

perform superior in both two evaluated dimensions.

Figure 4 shows the effect of all of the compared defense

methods on a disrupted image. The perturbations applied to
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Table 2: Performance comparison with state-of-the-art reconstruction mechanisms. (I) is the difference between original

input and reconstructed input. (O) is the difference between original outputs and reconstructed outputs.

Metrics Xie [48] Prakash [34] Meng [26] Yang [52] Nataniel [38] Gintare [9] Mustafa [30] MagDR

MSE (I) 25.59 25.56 27.66 21.17 24.59 17.69 15.53 11.40

SSIM (I) 0.72 0.72 0.76 0.81 0.75 0.82 0.88 0.89

PSNR (I) 32.90 32.91 30.12 32.44 33.25 36.11 38.60 39.92

Feature Similarity (I) 0.72 0.73 0.67 0.73 0.69 0.72 0.75 0.77

MSE (O) 257.19 242.34 34.98 27.47 43.64 35.25 30.60 23.93

SSIM (O) 0.09 0.08 0.68 0.75 0.69 0.82 0.86 0.88

PSNR (O) 12.86 13.37 28.08 30.17 28.26 30.12 31.35 33.48

Feature Similarity (O) 0.09 0.14 0.66 0.74 0.66 0.71 0.75 0.76

Ground-truth Without Defense Xie et al. [48] Prakash et al. [34] Meng et al. [26]

Yang et al. [52] Nataniel et al. [38] Gintare et al. [9] Mustafa et al. [30] MagDR

Figure 4: Visual comparison of the deepfakes outputs of different reconstructed inputs by defense methods. In each case, (top-

left) is the disrupted input, (top-right) is the reconstructed input, and (bottom) is the output obtained from the reconstructed

input. The output images are enlarged two times for better visualization.

samples are the same. And the reconstruction performance

is quite equally with which is reflected in Table. 2.

5. Conclusions

This paper presents a two-step framework named

MagDR (mask-guided detection and reconstruction) to de-

fend deepfakes from adversarial attacks. The core idea is

to compute a few unsupervised criteria that are sensitive to

the adversarial perturbations on the output image. Then, an

iterative process involving detection and reconstruction is

performed, recovering the output to the desired form.

Beyond the promising results, our work delivers a mes-

sage to the community that image-to-image translation al-

gorithms seem easier to protect themselves from adversarial

attacks because the attacks often generate meaningless pat-

terns on the output image (rather than semantic predictions),

making themselves easy to be detected. We expect the at-

tacks to become stronger when they realize this weakness

and generate more ‘natural’ perturbations, and it may raise

new challenges to defend such ‘smarter’ attackers.
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