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Abstract

Object localization in 3D space is a challenging as-

pect in monocular 3D object detection. Recent advances

in 6DoF pose estimation have shown that predicting dense

2D-3D correspondence maps between image and object 3D

model and then estimating object pose via Perspective-n-

Point (PnP) algorithm can achieve remarkable localization

accuracy. Yet these methods rely on training with ground

truth of object geometry, which is difficult to acquire in

real outdoor scenes. To address this issue, we propose

MonoRUn, a novel detection framework that learns dense

correspondences and geometry in a self-supervised man-

ner, with simple 3D bounding box annotations. To regress

the pixel-related 3D object coordinates, we employ a re-

gional reconstruction network with uncertainty awareness.

For self-supervised training, the predicted 3D coordinates

are projected back to the image plane. A Robust KL loss

is proposed to minimize the uncertainty-weighted reprojec-

tion error. During testing phase, we exploit the network

uncertainty by propagating it through all downstream mod-

ules. More specifically, the uncertainty-driven PnP algo-

rithm is leveraged to estimate object pose and its covari-

ance. Extensive experiments demonstrate that our proposed

approach outperforms current state-of-the-art methods on

KITTI benchmark.1

1. Introduction

Monocular 3D object detection is an active research area

in computer vision. Although deep-learning-based 2D ob-

ject detection has achieved remarkable progress [3, 30], the

3D counterpart still poses a much greater challenge on accu-

rate object localization, since a single image cannot provide

explicit depth information. To address this issue, a large

number of works leverage geometrical priors and solve the

object pose (position and orientation in camera frame) via

*Corresponding author: Wei Tian.
1Code: https://github.com/tjiiv-cprg/MonoRUn.
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Figure 1. 3D reconstruction is conducted by regressing the pixel-

related object coordinate map, which can be visualized as local

point cloud in object space. For self-supervision, the object coor-

dinates are reprojected to recover the image coordinate map. To

focus on foreground pixels, we estimate the aleatoric uncertainty

of network prediction. The coordinate uncertainty can be further

propagated to estimate the pose covariance.

2D-3D constraints. These constraints either require extra

keypoint annotations [4, 13], or exploit centers, corners and

edges of ground truth bounding boxes [21, 27]. Yet the ac-

curacy largely depends on the number and quality of avail-

able constraints, and the performance degrades in occlusion

and truncation cases with fewer visible keypoints. A more

robust approach is using dense 2D-3D correspondences, in

which every single foreground pixel is mapped to a 3D point

in the object space. This has proven successful in monocu-

lar 6DoF pose estimation tasks [15].

Current state-of-the-art dense correspondence meth-

ods [22, 28, 40] rely on both ground truth pose and 3D

object model, so that target 3D coordinate map and ob-

ject mask can be rendered for training supervision. This

requirement restricts the training data to synthetic or sim-

ple laboratory scenes, where exact or pre-reconstructed 3D

models are readily available. However, 3D object detec-

tion in real scenes (e.g., driving scenes) mostly deals with

category-level objects, where acquiring accurate 3D models

for all instances is impractical. An intuitive idea could be
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using LiDAR points to generate sparse coordinate maps for

supervision. However, the persisting challenge is the defi-

ciency of LiDAR points on specific objects or parts, e.g., on

distant objects or reflective materials.

A workaround to the lack of ground truth is leveraging

self-supervision. Typically, Wang et al. [35] adopted a self-

supervised network to directly learn object pose with the

given ground truth 3D geometry. Our work, on the con-

trary, adopts the opposite idea: learning the 3D geometry

from ground truth pose in a self-supervised manner during

training, and then solving the object pose via 2D-3D corre-

spondences during testing.

In this paper, we propose the MonoRUn, a novel

monocular 3D object detection method using self-

supervised reconstruction with uncertainty propagation.

MonoRUn can extend off-the-shelf 2D detectors by append-

ing a 3D branch to the region of interest (RoI) within each

predicted 2D box. The 3D branch regresses dense 3D ob-

ject coordinates in the RoI, which effectively builds up the

geometry and 2D-3D correspondences.

To overcome the need for supervised foreground seg-

mentation, we estimate the uncertainty of the predicted co-

ordinates and adopt an uncertainty-driven PnP algorithm,

which focuses on the low-uncertainty foreground. Further-

more, by forward propagating the uncertainty through PnP

module, we can estimate the pose covariance matrix, which

is used for scoring the detection confidence.

Self-supervision is conducted by projecting the predicted

3D coordinates back to the image via ground truth object

pose and camera intrinsic parameters. To minimize the re-

projection error with uncertainty awareness, we propose the

Robust KL loss that minimizes the KL divergence between

the predicted Gaussian distribution and the ground truth

Dirac distribution. This novel loss function is the key to

the state-of-the-art performance for the MonoRUn network.

To summarize, our main contributions are as follows:

• We propose a novel monocular 3D object detection

network with uncertainty awareness, which can be

trained without extra annotations (e.g., keypoints, 3D

models, masks). To the best of our knowledge, this

is the first dense correspondence method employed for

3D detection in real driving scenes.

• We propose the Robust KL loss for general deep re-

gression with uncertainty awareness, and demonstrate

its superiority over the plain KL loss in previous work.

• Extensive evaluation on KITTI [10] benchmark shows

significant improvement of our approach compared to

current state-of-the-art methods.

2. Related Work

Monocular 3D Object Detection The majority of previ-

ous methods can be roughly divided into the following two

categories, based on how depth information is derived.

1) With off-the-shelf monocular depth estimators.

Representatively, Pseudo-LiDAR [39] converts the esti-

mated depth map to 3D point cloud and takes advan-

tage of existing LiDAR-based 3D object detection pipeline.

D4LCN [8] uses depth map as guidance to generate dy-

namic depth-wise convolutional filters, which can extract

3D information from RGB image more effectively. These

methods largely benefit from the pre-trained depth estima-

tor, e.g., DORN [9], which may have generalization issues.

2) With 2D-3D geometrical constraints. Deep-

MANTA [4] annotates the training data with 36-keypoint

3D vehicle templates. A network is trained to find the

the best-matched template and regress 2D keypoint coor-

dinates, and vehicle pose is computed via EPnP [20] algo-

rithm. RTM3D [21] detects virtual keypoints (corners and

center of the 3D bounding box) using a CenterNet-like [41]

network. Another commonly used constraint is 2D box and

3D box consistency, first used by Mousavian et al. [27]. The

above methods suffer from constraint deficiency by trunca-

tion or occlusion.

Dense Correspondence and 3D Reconstruction Most

existing work uses ground truth geometry to train deep cor-

respondence mapping networks. Nevertheless, some have

explored end-to-end training via differentiable PnP algo-

rithm without ground truth geometry.

1) With geometry supervision. Pix2Pose [28] directly

regresses normalized object coordinates (NOC) of each ob-

ject pixel. DPOD [40] predicts two-channel UV correspon-

dences that map the object surface to 3D coordinates. Re-

garding category-level objects, Wang et al. [36] demon-

strated that the scale-invariant NOC can handle unseen in-

stances in a given category. These methods are only tested

on synthetic or simple indoor data.

2) Without geometry supervision. Brachmann and

Rother [1] proposed an approximate PnP back-propagation

method to train an end-to-end network for Structure from

Motion (SfM) problem. A further development is the

BPnP [5], which is an exact PnP back-propagation ap-

proach. However, both methods train the networks in

conjunction with reprojection loss as regularization term,

which is essentially self-supervision. The potential of self-

supervision alone is not investigated in these researches.

Uncertainty Estimation The uncertainty in deep learn-

ing consists of aleatoric and epistemic uncertainty [18].

The former captures noise inherent in observations, while

the latter represents the uncertainty of model parameters.

Kendall and Gal [18] introduced heteroscedastic regres-

sion for deep networks to directly output data-dependent

aleatoric uncertainty, which can be learned with a KL

loss [14, 18] function. Yet the plain KL loss is sensitive

to outliers and is not well-balanced against other loss func-

tions, leaving room for improvement.
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Figure 2. Training and testing pipeline of MonoRUn. The uncertainty-aware variables in red are modeled by Monte Carlo approach or

by probabilistic models (e.g., Gaussian models).

3. Proposed Approach

3.1. Problem Formulation and Approach Overview

Given an RGB image, the aim of 3D object detection is

to localize and classify all objects of interest, yielding a 3D

bounding box with class label for each object. The 3D box

can be parameterized with dimensions d =
[
l h w

]T

and pose p =
[
β tx ty tz

]T
, where β is the object yaw

angle and tx, ty, tz is the bottom center of the box in camera

coordinate system.

Based on off-the-shelf 2D object detectors, we aim to

predict a 3D object coordinate map using the RoI features

within each 2D box. For self-supervision, given the ground

truth pose pgt and camera model, we can project the 3D co-

ordinates back to the image, obtaining the reprojected 2D

coordinates (urp, vrp). The objective is to recover the origi-

nal 2D coordinates (u, v). However, if we simply minimize

the reprojection error without foreground segmentation, the

network will be disrupted by large errors (hence large un-

certainty) on irrelevant background points. Therefore, we

design an uncertainty-aware reconstruction module that es-

timates the aleatoric uncertainty of (urp, vrp), and the net-

work is optimized by minimizing the uncertainty-weighted

reprojection error using the proposed Robust KL loss.

During inference, we adopt the uncertainty-driven PnP

module, through which the network uncertainty is propa-

gated to object pose, represented with a multivariate normal

distribution. This distribution is used by the scoring head to

compute the detection confidence.

3.2. Self­Supervised Reconstruction Network

To deal with category-level objects of various sizes, we

employ two network branches to predict the 3D dimensions

and the dimension-invariant normalized object coordinates

(NOC) [36] respectively. Then, the object coordinate vector

xOC is the element-wise product (denoted by ◦) of NOC

vector xNOC and dimension vector d:

xOC = xNOC ◦ d. (1)

The first branch is called the global extractor, which ex-

tracts the global understanding of an object and predicts the

3D dimensions. The second branch is called the NOC de-

coder, which predicts the dense NOC map using convolu-

tional layers. Since convolutional layers have limited capa-

bility of understanding the global context, we let the global

extractor predict an additional global latent vector to en-

hance the NOC decoder. This latent vector potentially en-

codes the occlusion, truncation and shape of the object, and

is found to be beneficial for aleatoric uncertainty estimation

(as shown in Section 4.4). Details about the network are

presented as follows.

Global Extractor As shown in Fig. 2, a 7×7 RoI feature

map is extracted from a higher level of the feature pyra-

mid. The features are then flattened and fed into the global

extraction head, which extracts a 16-channel global latent

vector and predicts the 3D dimensions. The dimensions can

be directly supervised by the annotated 3D bounding box

sizes. For this network branch, we adopt two 1024-channel

fully connected layers, as shown in Fig. 3.

NOC Decoder The NOC decoder network is designed to

aggregate the global latent vector and local convolutional

features for NOC prediction. This is realized by incorpo-

rating the Excitation operation from the Squeeze-Excitation

Network [16]. As shown in Fig. 4, the channel size of the

latent vector is first expanded to 256. Then, a channel-wise

addition is conducted before the upsampling layer. Apart

from predicting the three-channel NOC map, the NOC de-
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latent vector, while the MLP score head exploits both the detec-

tion results and the global feature to predict the detection score.
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Figure 4. The NOC decoder network aggregates the local fea-

tures and global embeddings by channel-wise addition, and out-

puts the dense NOCs as well as standard deviations of reprojected

coordinates. For upsampling, we adopt the CARAFE layer [37],

which is more efficient than the deconvolutional layer often used

in instance segmentation.

coder network is also responsible for estimating the two-

channel aleatoric uncertainty map, as explained in the next

paragraph.

Self-Supervision with Aleatoric Uncertainty Given the

ground truth of object pose, the predicted object coordinates

can be projected back to the image plane. The reprojection

error of the pixel (u, v) is formulated as:

r(u,v) = K(RxOC
(u,v) + t)−

[
u
v

]

(2)

with the camera projection function K(·), rotation matrix

R, and translation vector t =
[
tx ty tz

]T
. To focus

on minimizing foreground error without instance segmen-

tation, we introduce the aleatoric uncertainty in our work.

More specifically, we use univariate Gaussian distribution

to model the reprojected 2D coordinates, and let the net-

work predict the means and standard deviations, which are

optimized using the Robust KL loss. Formally we could

follow the uncertainty propagation path in Fig. 2 and pre-

dict the uncertainty of intermediate variables at first. Prac-

tically, leveraging the flexibility of deep networks, we take

a shortcut by letting the NOC decoder directly regress the

standard deviations of reprojected 2D coordinates, as shown

in Fig. 4.

Additional Epistemic Uncertainty Estimating the epis-

temic uncertainty is essential for safety-critical applications

such as autonomous driving. Following [18], we compute

the mean and variance of xOC using Monte Carlo dropout

during inference. We insert a channel dropout layer [34] af-

ter RoI Align [11] and a 1D dropout layer after each FC

layer. Since PnP algorithms handle 2D projection vari-

ances more efficiently, we first transform the 3D variances

of object coordinates into 2D variances of reprojected co-

ordinates, which is then combined with the aleatoric uncer-

tainty. Details are shown in the supplementary materials.

3.3. Robust KL Loss

By definition, KL loss is derived from the KL divergence

between the predicted distribution and target distribution.

Assuming Gaussian priors, the KL divergence is as follows:

DKL(Ntgt‖Npred)

=
1

2

(

σ2
tgt

σ2
pred

+
(µpred − µtgt)

2

σ2
pred

− 1 + log
σ2

pred

σ2
tgt

)

. (3)

For fixed target distribution, log σ2
tgt is constant and can

be omitted in the minimization. Assuming narrow target

(Dirac-like), (µpred−µtgt)
2 dominates much more than σ2

tgt.

Let y = µtgt, the minimization objective is simplified as:

LKL =
1

2σ2
pred

(µpred − y)2 +
1

2
log σ2

pred. (4)

We call Eq. (4) the Gaussian KL loss. Hereafter we omit

the subscript (·)pred for brevity. To capture heteroscedas-

tic aleatoric uncertainty in regression, Kendall and Gal [18]

proposed to directly predict the data-dependent mean µ and

log variance log σ2 using deep networks, which is opti-

mized by Eq. (4). Apparently, the first term in Eq. (4) is

a weighted L2 loss, where errors with higher uncertainty

are less punished.

Despite its probabilistic origin, the Gaussian KL loss has

two defects when applied to a deep regression model:

• As a generalization form of L2 loss, the Gaussian KL

loss is not robust to outliers;

• The gradient w.r.t. µ tends to increase as the denomina-

tor 2σ2 decays during training, whereas regular L2 or

L1 losses have decreasing or constant gradient, leading

to loss imbalance in multi-task learning.

Regarding the first problem, an alternative KL loss de-

rived from Laplacian distribution is used in work [7, 18]:

LLapKL =

√
2

σ
|µ− y|+ log σ. (5)

Same as the L1 loss, this function is not differentiable at

µ = y. To overcome this issue, we design a mixed KL loss,
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written as a function of weighted error e = (µ − y)/σ and

standard deviation σ:

LmKL =







1

2
e2 + log σ, |e| ≤

√
2,

√
2|e| − 1 + log σ, |e| >

√
2.

(6)

It can be verified that this function is differentiable w.r.t.

both µ and σ (on condition that σ > 0). The mixed KL loss

can be regarded as an extension of Huber loss (smooth L1),

which is robust to outliers and easier to optimize.

The second problem is caused by the increasing weight

1/σ as the denominator σ decays during training. This

can be mitigated by normalizing the weight such that its

batch-wise mean equals unity. Inspired by Batch Normal-

ization [17], we perform online estimate of the mean weight

ŵ = E[1/σ] using exponential moving average:

ŵ ← αŵ + (1− α)
1

N

N∑

i=1

1

σi

, (7)

where α is the momentum, N is the number of samples in

a batch. The finalized Robust KL loss is simply the weight-

normalized mixed KL loss:

LRKL =
1

ŵ
LmKL. (8)

In practice, directly optimizing σ can lead to gradient

explosion. Therefore, we let the network predict the loga-

rithmic standard deviation log σ as an alternative.

3.4. Uncertainty­Driven PnP

Maximum Likelihood Estimation To solve PnP with un-

certainty is to perform the maximum likelihood estimation

(MLE) of pose p, in which the negative log likelihood

(NLL) function is the sum of squared reprojection error

r(u,v) measured in Mahalanobis distance:

p∗ = argmin
p

1

2

∑

(u,v)∈RoI

rT
(u,v)Σ

−1
(u,v)r(u,v) (9)

with Σ(u,v) = diag[σ2
urp
, σ2

vrp
]
∣
∣
(u,v)

, where σurp
, σvrp

are

the predicted standard deviations of the reprojected coor-

dinates. This minimization can be solved efficiently using

the Levenberg-Marquardt algorithm.

Covariance Estimation For probabilistic object localiza-

tion, we also need to estimate the covariance of p∗, which

can be approximated by the inverse Hessian of the NLL at

p∗ [29]:

Cov[p∗] ≈ H(p∗)−1. (10)

To avoid computing the second derivative during inference,

we approximate the exact Hessian using the Gauss-Newton

matrix J(p∗)TJ(p∗), with J(p∗) = ∂rall/∂p
T
∣
∣
p∗

, where

rall =
[
r1/σ1 r2/σ2 . . . r2n/σ2n

]T
(flattened vector

of all weighted reprojection errors).

Online Covariance Calibration In practice, using

Eq. (10) can result in a much lower covariance than the ac-

tual one. This is mainly because Eq. (9) assumes that the

reprojection error of each point is independent, whereas the

network outputs are apparently correlated. Therefore, we

further conduct online covariance calibration using a 4×1

learnable calibration vector k:

Σp∗ = exp(diagk)
(
J(p∗)TJ(p∗)

)−1
exp(diagk). (11)

The calibration vector can be learned by applying the mul-

tivariate Gaussian KL loss:

Lcalib =
1

2
(p∗−pgt)

TΣ−1
p∗ (p∗−pgt)+

1

2
log detΣp∗ , (12)

where p∗ is detached and only the calibration vector is op-

timized. Despite the defects of Gaussian KL loss stated in

Section 3.3, it is sufficient for the simple calibration task.

3.5. Scoring Head

The confidence score of a detected object, denoted by

c, can be decomposed into localization score Pr[Fg] (the

probability of detecting a foreground object) and classifica-

tion score Pr[Cls] (the probability of predicting the correct

class label). For 3D object detection, the score can be ex-

pressed as the product of 3D localization conditional prob-

ability and 2D score:

c3D = Pr[Fg3D|Fg2D]
︸ ︷︷ ︸

c3DLoc

Pr[Fg2D] Pr[Cls]
︸ ︷︷ ︸

c2D

. (13)

The 2D score c2D is given by the 2D detection module.

Thus, we only need to predict the 3D localization score

c3DLoc. Since the 3D branch is trained only with positive

2D samples, the predicted c3DLoc is naturally conditional.

By sampling object poses from the estimated distribu-

tionN (p∗,Cov[p∗]), the 3D localization score can be com-

puted via Monte Carlo integration w.r.t. 3D IoU, as we show

in the supplementary material. Due to slow 3D IoU calcula-

tion, Monte Carlo scoring has adverse effects on inference

time. Therefore, we practically adopt the multi-layer per-

ceptron (MLP) approach (Fig. 3), which is faster, end-to-

end trainable, and capable of fusing both pose uncertainty

and network features to predict a more reliable score. To

train the MLP scoring branch, we use the same binary cross-

entropy loss as in [31, 32]:

Lscore = −ctgt log c3DLoc − (1− ctgt) log(1− c3DLoc), (14)

where c3DLoc is the output of MLP, which is bounded to 0~1

by logistic activation function, ctgt is a clamped linear func-

tion w.r.t. the 3D IoU between prediction and ground truth:

ctgt = max(0,min(1, 2IoU3D − 0.5)). (15)

The performance comparison between Monte Carlo and

MLP is presented in the supplementary materials.
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3.6. Network Training

The proposed MonoRUn network can be trained with

three different setups, which are compared in the experi-

ments.

Fully Self-Supervised Reconstruction (Without Extra

Supervision) In this mode, neither the LiDAR point su-

pervision nor the end-to-end PnP is used. The 3D recon-

struction process is trained in a fully self-supervised man-

ner, except that 3D dimensions are directly supervised. The

overall loss function is formulated as:

Lself = L2D + Lproj + Ldim + Lscore + λLcalib, (16)

where L2D is the 2D detection loss, Lproj is a Robust KL

loss on self-supervised reprojection error, Ldim is a smooth

L1 loss on dimension error, and λ is a hyperparameter for

calibration loss, which is set to 0.01.

LiDAR Supervision Direct NOC loss can be imposed

by converting foreground LiDAR points into sparse ground

truth of NOC map. In this case, the aleatoric uncertainty is

unnecessary. Thus, we adopt the weighted smooth L1 loss:

LNOC =
1

∑

i

wi

∑

i

wiLSmoothL1(x
NOC
i,pred − xNOC

i,LiDAR), (17)

where xNOC
i denotes the i-th element of the NOC tensor, wi

equals 1 where xNOC
i,LiDAR is available and 0 elsewhere. The

overall loss becomes:

LLiDAR = Lself + LNOC. (18)

Without specific statement, we train all the models using

this setup.

End-to-End Training Incorporating the PnP back-

propagation approach in [5], we apply smooth L1 loss on

the Euclidean errors of estimated translation vector and yaw

angle. Details of the PnP derivatives and loss functions are

presented in the supplementary materials. Since end-to-end

training is unstable at the beginning, we use a similar train-

ing protocol to [1], i.e., applying end-to-end training as re-

finement after self-supervised training. This setup is only

investigated in ablation studies for pure comparison.

4. Experiments

4.1. Dataset

We evaluate the proposed model on the KITTI-Object

benchmark [10]. It consists of 7481 training images and

7518 test images as well as the corresponding point clouds,

comprising a total of 80256 labeled objects in eight classes.

Each object is assigned to one of three difficulty levels ac-

cording to truncation, occlusion and 2D box height. The

training images are further split into 3712 training and 3769

validation images [6]. The official benchmark evaluates de-

tection performance on three classes: Car, Pedestrian and

Cyclist. Evaluation metrics are based on precision-recall

curves with 3D IoU threshold of 0.7 or 0.5. We adopt the

official metric that computes the 40-point interpolated aver-

age precision (AP) [33].

4.2. Implementation Details

2D Detector We use pre-trained Faster R-CNN [30] with

ResNet-101 [12] as backbone. We adopt a six-level feature

pyramid network [23], in which an additional upsampled

level is added.

Reconstruction Module We set the dropout rate to 0.5

for 1D dropout layers and 0.2 for channel dropout layers.

Network outputs (dimensions, NOCs) are normalized w.r.t.

the mean and standard deviation calculated from training

data. When training with multiple classes, we predict a set

of class-specific latent vectors, dimensions and NOCs.

Data Augmentation During training, we apply random

flip and photometric distortion augmentation. We set two

NOC decoder branches at the last 1×1 convolutional layer

for original and mirrored objects respectively.

Training Schedule The network is trained by the

AdamW [24] optimizer with a weight decay of 0.01. We

take a batch size of 6 on two Nvidia RTX 2080 Ti GPUs,

and train the network using cosine learning rate decay with

a base learning rate of 0.0002. Total epochs are 32 for the

full training set and 50 for the split training set. For end-to-

end training, we append a second cycle of 15 epochs with a

reduced base learning rate of 0.00003.

Testing Configuration For epistemic uncertainty, we use

50 Monte Carlo dropout samples as in [18]. By default, we

only sample the global extractor to estimate the dimension

uncertainty (see discussions in Section 4.4). During post-

processing, we use 3D non-maximum suppression (NMS)

with an IoU threshold of 0.01.

4.3. Comparison to the State of the Art

We evaluate two variations of our model (fully self-

supervised and plus LiDAR supervision) on the official test

set and the validation split. Table 1 lists the top methods

from the official leaderboard. We observe that: (1) When

trained with LiDAR supervision, our method outperforms

the state of the art by a wide margin. Note that the top

three competitors also use extra supervision and even ex-

tra data (by using depth estimators pre-trained on the much

larger KITTI-Depth dataset). (2) When trained without

extra supervision, our method still outperforms the non-

depth methods (RTM3D [21], MonoPair [7]) on the offi-

cial test set. (3) Our method achieves state-of-the-art accu-

racy within a reasonable runtime (0.070 s, including Monte

Carlo and PnP), whereas the top three competitors spend
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Method
Test APIoU≥0.7 Val APIoU≥0.5 Val APIoU≥0.7 Time

(sec)Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard

M3D-RPN [2] 14.76 9.71 7.42 48.53 35.94 28.59 14.53 11.07 8.65 0.16

MonoPair [7] 13.04 9.99 8.65 55.38 42.39 37.99 16.28 12.30 10.42 0.057

RTM3D [21] 14.41 10.34 8.77 - - - - - - 0.055

AM3D* [26] 16.50 10.74 9.52 - - - 28.31 15.76 12.24 0.4

PatchNet* [25] 15.68 11.12 10.17 - - - 31.6 16.8 13.8 0.4

D4LCN* [8] 16.65 11.72 9.51 - - - 22.32 16.20 12.30 0.2

Ours (w/o extra supv.) 16.04 10.53 9.11 55.88 40.03 35.59 17.26 12.27 10.41 0.070

Ours (+ LiDAR supv.) 19.65 12.30 10.58 59.71 43.39 38.44 20.02 14.65 12.61 0.070

Table 1. 3D detection performance of Car category on KITTI official test set and validation set. The 1st, 2nd and 3rd place are color

coded. * indicates using the pre-trained depth estimator DORN [9]. Wang et al. [38] pointed out that the training data of DORN overlaps

with KITTI-Object validation data, causing the 3D detectors to overfit. We use gray to indicate the values affected by overfitting.

Method
Ped. APIoU≥0.5 Cycl. APIoU≥0.5

Easy Mod. Hard Easy Mod. Hard

M3D-RPN [2] 4.92 3.48 2.94 0.94 0.65 0.47

MonoPSR [19] 6.12 4.00 3.30 8.37 4.74 3.68

MonoPair [7] 10.02 6.68 5.53 3.79 2.12 1.83

Ours 10.88 6.78 5.83 1.01 0.61 0.48

Table 2. 3D detection performance of Pedestrian and Cyclist

categories on KITTI official test set. Red indicates the best.

more than 0.2 s (not counting the 0.5 s depth estimation

time of DORN [9]).

For Pedestrian and Cyclist, we present the detection per-

formance in Table 2. Our method (with LiDAR supervi-

sion) achieves the best performance in Pedestrian detection,

yet underperforms in Cyclist detection, presumably due to

inadequate training samples.

4.4. Ablation Studies

In this section, all models are trained and evaluated with

the train/val split. We show the mean value of all six AP

metrics (mAP) for 3D Car detection. All results are pre-

sented in Table 3.

Self-Supervision versus LiDAR Supervision While

self-supervision alone can achieve the state-of-the-art per-

formance (28.57), using only LiDAR supervision leads to

very poor performance (18.84), which demonstrates the im-

portance of self-supervision. Nonetheless, the overall best

result is reached with both supervisions together (31.21).

As revealed in Fig. 5b, the self-supervised geometry does

not necessarily match the true surface and is therefore

prone to overfitting, which can be alleviated by the shape-

regularizing effect from LiDAR supervision.

Robust KL Loss By comparing the performance of

smooth L1 loss (26.35), Laplacian KL loss (29.47), mixed

KL loss (30.05) and Robust KL loss (31.21), we observe

incremental improvements. The largest performance gap

is between LSmoothL1 and LLapKL, which reveals the contri-

bution of aleatoric uncertainty. Moreover, both Gaussian-

Lproj

(Self)

LNOC

(LiDAR)
E2E Epistemic

Latent

vector
mAP

LRKL X X 31.21

LRKL X 28.57

X X 18.84

LSmoothL1 X X 26.35

LLapKL X X 29.47

LmKL X X 30.05

LLapKL X X X 29.73

LRKL X X X 31.09

LRKL X dim X 31.47

LRKL X full X 31.16

LRKL X 29.78

Table 3. Results of ablation studies on reprojection loss func-

tion, LiDAR supervision, end-to-end training, epistemic uncer-

tainty and latent vector.

Laplacian mixture and weight normalization make impor-

tant contributions to the Robust KL loss, totaling an mAP

increase of 1.74 compared to the Laplacian KL loss.

End-to-End Refinement We observe that the perfor-

mance of end-to-end refinement is strongly related to the

baseline performance. For the baseline trained with Lapla-

cian KL loss (29.47), end-to-end refinement boosts the mAP

by 0.26 (29.73). For the baseline trained with Robust

KL loss (31.21), however, end-to-end refinement slightly

worsens the performance (31.09). This validates that self-

supervised training with Robust KL loss can better optimize

the network than end-to-end training via differentiable-PnP.

Epistemic Uncertainty Estimating the epistemic uncer-

tainty of box dimensions alone shows improvement to the

baseline (31.47 vs 31.21). When sampling the full recon-

struction network, we observe adverse effect on the detec-

tion performance (31.16).

Latent vector When disabling the latent vector, the per-

formance drops significantly (29.78 vs 31.21). To find out

how the latent vector impacts the network performance, we

evaluate the network sensitivity to the latent vector by reset-
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(a) 3D bounding boxes in images and bird’s-eye views (BEV). Red indicates

detected boxes (along with 95% confidence ellipse), ground truth boxes are color

coded by their occlusion levels: fully visible, partly occluded, difficult to see.

(b) The image patches and their corresponding recon-

struction results. Note that LiDAR helps regularizing

the shape, which alleviates overfitting. Future work

may explore other shape regularization techniques,

e.g., using prior models.

Figure 5. Visualization of detection and reconstruction results on the KITTI validation set.

Lproj
mAP

(original)

mAP

(zero latent)
Diff

LSmoothL1 (w/o aleatoric) 26.35 26.33 −0.02

LRKL (w/ aleatoric) 31.21 29.23 −1.98

Table 4. Performance sensitivity to the latent vector.

ting it to zero during inferring. As shown in Table 4, only

the network with aleatoric uncertainty is sensitive to the la-

tent vector. This implies that the latent vector encodes very

important information for the estimation of aleatoric uncer-

tainty.

4.5. Reliability of the Localization Uncertainty

As the online covariance calibration is conducted on the

training data, the model tends to be overconfident on the

testing data. To assess the reliability of the localization un-

certainty (w.r.t. the translation vector t), we discretize the

ground truth object distance tz into a number of bins. For

the samples in each bin, we calculate the mean covariance

matrix of prediction (Σt∗ ), as well as the covariance ma-

trix of the actual localization error (Cov[t∗ − tgt]). Ideally,

these two covariance matrices should be equal. For compar-

ison, we calculate the Gaussian entropy of the two covari-

ance matrices respectively:

Hpred =
1

2
log det

(
2πeΣt∗

)
, (19)

Hactual =
1

2
log det(2πeCov[t∗ − tgt]). (20)

As shown in Fig. 6, on the train split, the predicted uncer-

tainty is very close to the actual error. This demonstrates the

effectiveness of covariance calibration. For the unseen vali-

dation data, since epistemic sampling does not cover the full

network, the model generally predicts overconfident results,

(a) Train split. (b) Val split.

Figure 6. Gaussian entropy of predicted and actual covariance

matrices vs object distance, tested on the Car category of train and

val splits.

which can be roughly corrected by applying an empirical

covariance scaling factor.

5. Conclusion

We presented the MonoRUn framework, a novel monoc-

ular 3D object detector with state-of-the-art performance

and high practicality. To employ dense correspon-

dence method for 3D detection in real driving scenes,

we overcame the deficiency of geometry supervision by

self-supervised reconstruction with uncertainty awareness.

Meanwhile, we made uncertainty-aware deep regression

networks easier to optimize by proposing the Robust KL

loss. Finally, we are among the first to explore probabilistic

3D object localization by uncertainty propagation through

PnP, which may open up new possibilities for downstream

tasks such as robust tracking and motion prediction.
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