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Abstract

RGB-Infrared person re-identification (RGB-IR ReID) is

a challenging cross-modality retrieval problem, which aims

at matching the person-of-interest over visible and infrared

camera views. Most existing works achieve performance

gains through manually-designed feature selection mod-

ules, which often require significant domain knowledge and

rich experience. In this paper, we study a general paradigm,

termed Neural Feature Search (NFS), to automate the pro-

cess of feature selection. Specifically, NFS combines a dual-

level feature search space and a differentiable search strat-

egy to jointly select identity-related cues in coarse-grained

channels and fine-grained spatial pixels. This combination

allows NFS to adaptively filter background noises and con-

centrate on informative parts of human bodies in a data-

driven manner. Moreover, a cross-modality contrastive op-

timization scheme further guides NFS to search features

that can minimize modality discrepancy whilst maximiz-

ing inter-class distance. Extensive experiments on main-

stream benchmarks demonstrate that our method outper-

forms state-of-the-arts, especially achieving better perfor-

mance on the RegDB dataset with significant improvement

of 11.20% and 8.64% in Rank-1 and mAP, respectively.

1. Introduction

Person re-identification (ReID) aims to match the

person-of-interest over non-overlapping camera views [54,

67, 44, 73, 60], serving as a central part of intelligent video

surveillance systems. Currently, most conventional ReID

methods concentrate efforts on visible images-based cross-

view matching tasks [29, 18, 46, 43, 36], which cannot

adapt well to illumination variations in real-world scenarios

(e.g., low lighting environments at nighttime). Motivated

by this challenge, associating RGB and infrared (IR) pedes-

trian images captured by dual-mode cameras for cross-
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Figure 1. Comparison of hand-crafted and automated feature se-

lection strategies. (a) Manually designing task-specific modules

to select identity-related features. (b) NFS automatically derives

the optimal feature subset from a dual-level feature search space.

modality image retrieval, a.k.a. RGB-IR ReID, has drawn

much attention in vision community [58, 64, 51, 52, 66].

Due to intrinsically different imaging mechanisms,

RGB-IR ReID suffers from undesired visual discrepancy

between visible and infrared images, which makes appear-

ance cues such as colors and textures unreliable or even

misleading for the matching task [32, 52, 58]. More-

over, such modality divergence also exacerbates the al-

ready large intra-class variations caused by diverse cam-

era viewpoints, person poses, partial occlusions, and back-

ground clutter [57, 14, 22], making it even harder to align

images of the same identity. In an effort to minimize

the modality gap, cross-modality image synthesis meth-

ods [51, 52, 22] typically leverage generative adversarial

networks (GANs) to transfer stylistic properties between

modalities to synthesize fake RGB/IR images. But it is

non-trivial to preserve identity information for generated

RGB images due to lack of color information in their IR

counterparts [11]. Another line of shared feature learning

approaches [64, 69, 66, 63] utilize convolutional neural net-
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works (CNNs) to perform cross-modality feature alignment.

One representative model-of-choice is the two-stream net-

work [63, 68, 56], which includes modality-specific shallow

layers and shared deeper layers to learn a common feature

space [58]. On the strength of two-stream structures, several

studies exploit ReID discriminative constrains, e.g., triplet

loss [67, 65, 63] or ranking loss [69, 14], to supervise the

network to mine identity-related cues. They are all com-

mitted to learning a better distance metric that enhances the

performance of similarity-based retrieval and have achieved

significant success in recent years [66].

To our understanding, whether image synthesis ap-

proaches or shared feature learning techniques, the crux of

ReID solutions is always to find sufficiently high-quality

discriminative features for matching and retrieval. To

achieve this goal, state-of-the-art methods typically intro-

duce partition stripes [66], human landmarks [49], parsing

maps [19], and body contour sketches [62] to discourage ir-

relevant features whilst preserving the identity-related ones

(Fig. 1(a)). However, it is really tough and time-consuming

to manually design a one-fit-all feature selection module

against all sorts of intra- and inter-modality variations, lead-

ing to unsatisfactory performance of human-guided feature

selection mechanisms. Driven by the above observations,

a question arises: Is there a data-driven feature selection

manner without much requirement for human interference?

Recent advances on automated machine learning (AutoML)

[17] may provide a positive answer. Using Neural Archi-

tecture Search (NAS) [72], Quan et al. [41] automatically

generate fast and effective CNNs whose performance is on

par with hand-crafted architectures in single-modality ReID

tasks. This progress inspires the idea of neuron-powered au-

tomatic feature selection discussed in this paper.

With the idea in mind, we investigate RGB-IR ReID

from a one-fit-all feature search perspective. Different from

existing manually-designed [66, 32, 4] or NAS-generated

network structures [41], our goal is to pursue better ReID

performance by discovering discriminative features with

data-driven search neurons. To this end, we cast feature se-

lection as a bilevel optimization problem [28] (i.e., deriving

the optimal feature subset from the best feature learning re-

sults) and propose a novel paradigm, Neural Feature Search

(NFS, Fig. 1(b)). Starting from the hierarchical feature ex-

traction mechanism of CNNs [39], NFS includes a dual-

level feature search space where each feature map is decom-

posed in terms of pixel and channel dimensions. This al-

lows feature selection operations to be jointly performed in

a mutually reinforcing manner—channel-level search iden-

tifies relevant response maps from the global view while

pixel-level search scans every spatial position to selectively

process local part features of a person. To improve the

search efficiency, we utilize reparameterization tricks [31]

to relax the search space to be continuous, which makes the

optimization of search neurons compatible with stochastic

gradient descent (SGD). Considering the inherent modality

discrepancy issue of RGB-IR ReID, a cross-modality con-

trastive optimization scheme is further introduced as a su-

pervision signal that discourages irrelevant features whilst

encouraging modality-invariant cues during the searching

process. Extensive experiments show that NFS significantly

outperforms the state-of-the-arts by 12.01% and 11.20%

gains of Rank-1 accuracy on SYSU-MM01 (multi-shot, all

search mode) and RegDB (visible-to-infrared mode) bench-

marks, respectively. To summarize, this paper brings three

main contributions:

• We propose an AutoML-powered neural feature search

method for RGB-IR person re-identification, which

automates the feature selection process to substantially

improve the matching accuracy with less human ef-

forts. To our best knowledge, this is one of the first at-

tempts to utilize automatic feature selection techniques

for cross-modality ReID.

• We introduce a novel feature search space allowing

both spatial and channel-wise feature selection. Based

on this search space, we present an efficient feature

search algorithm embedded with a cross-modality con-

trastive optimization mechanism, effectively tackling

the modality discrepancy in RGB-IR ReID.

• Extensive experiments on two mainstream RGB-IR

ReID benchmarks demonstrate the superiority of NFS

compared with previous state-of-the-arts.

2. Related Work

RGB-based Person ReID. RGB-based person ReID

studies mainly focus on handling intra-class variations of

pose [29], scale [18], and background clutter [46] presented

in visible images. Nowadays, substantial research efforts

[18, 50, 30, 8, 61] have been devoted to deep learning-

based ReID for more effective feature learning and align-

ment. For example, graph neural networks [43, 36] make

full use of relationships between global embedding vectors

to map images into a discriminative feature space. Self-

attention based methods [48, 33] explore pixel similarities

to let the network concentrate on informative biometrics

such as face against the background clutter. Apart from

global feature representation learning, several local feature

learning approaches [49, 71] also employ pretrained pose

estimation models to decompose the human body into land-

marks or parsing maps and perform fine-grained feature

alignment over pose changes and occlusions. Although hav-

ing achieved considerable success in reducing intra-class

variations, most existing single-modality ReID methods are

ill-suited for cross-modality image retrieval in poor lighting

environments [68, 65, 63].
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Figure 2. An overview of our NFS paradigm. It combines modality-aware search cells and cross-modality contrastive optimization mecha-

nism to conduct automated feature selection on two-stream CNNs based feature space. Each learnable search cell is jointly optimized with

network parameters to derive the optimal feature subset in every shared block. The cross-modality contrastive optimization mechanism

further enables NFS to search modality-invariant features that can minimize modality discrepancy while maximizing inter-class distance.

RGB-Infrared Person ReID. In addition to intra-class

variations, RGB-IR ReID also considers the modality dis-

crepancy issue caused by different wavelength ranges of

visible and infrared cameras [52]. Current RGB-IR ReID

researches mainly resort to either GAN-based [51, 52, 5, 4,

70, 55] or shared feature learning approaches [69, 64, 66,

58, 32] to handle both intra- and inter-modality variations.

For GAN-based approaches, early attempts [5] usually

adopt adversarial training strategies to reduce the distri-

bution divergence of modality-specific features. Along a

somewhat different line, Wang et al. [51] leverage GANs

to transfer stylistic properties of IR images to their RGB

counterparts for jointly pixel and feature alignment. Several

studies also apply pair-wise pixel alignment [52], feature

disentanglement [4], or intermediate modality generation

[22, 55] to further eliminate appearance differences across

modalities. However, it is non-trivial to accurately choose

the suitable target for style transfer [32], which may lead

to identity inconsistency during the complicated adversar-

ial training process [11]. As for the shared feature learning

category, Wu et al. [58] first contribute a large benchmark

dataset (SYSU-MM01) and propose a one-stream zero-

padding network for RGB-IR image matching. Nowadays,

two-stream CNNs based methods are dominating the cross-

modality person ReID community. For instance, some re-

cent studies extend two-stream CNNs with deep metric

learning [64, 69, 14, 63, 65, 68, 45] or the attention mech-

anism [66, 56] to learn modality-sharable representations

against both modality discrepancy and high sample noises.

Several works [10, 32] also employ modality-specific or

modality-aware learning avenues to perform cross-modality

identity recognition at the classifier level.

Neural Architecture Search. Recent years have wit-

nessed a growing body of Neural Architecture Search

(NAS) researches [9, 23] that have achieved considerable

success in various domains, e.g., image classification [42],

semantic segmentation [3], object detection [25], ReID

[41], and multi-modal fusion [39], etc. Generally, NAS

aims to automatically search optimal operations or topol-

ogy of deep neural networks for specific learning tasks.

They first construct a task-oriented search space that defines

which architectures can be discovered in principle. Based

on the search space, different search strategies, including re-

inforcement learning-based methods [12, 40], evolutionary

methods [27, 42], gradient-based ones [28, 24], and Monte

Carlo Tree Search (MCTS) approaches [37, 53], are pro-

posed and prove effective for improving both sample effi-

ciency and model performance. Inspired by the basic idea

of NAS, we present a one-fit-all feature selection strategy

for RGB-IR person ReID, revolutionizing manually-crafted

feature selection components in the existing literature.

3. Methodology

Fig. 2 presents an overview of our proposed method.

On the basis of a two-stream network (Section 3.1), NFS

mainly includes a dual-level search space for spatial and

channel-wise feature selection, and a differentiable fea-

ture search algorithm (Section 3.2) governed by the cross-

modality contrastive optimization scheme (Section 3.3) to

prune discriminative cues fast and accurately.
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3.1. Baseline RGBIR Person ReID

We adopt the two-stream CNN employed in [69, 67, 66]

as the baseline network†. To capture modality-invariant in-

formation, parameters of the first convolutional block are

independent for each modality, while the other layers are

shared to learn discriminative features [58]. After the last

convolutional layer with global average pooling, a shared

batch normalization layer is used to attain final representa-

tions for heterogeneous images. During the training phase,

we aim to minimize the following baseline loss function:

Lb = Lid + Ltri, (1)

where Lid is the softmax cross-entropy loss and Ltri is the

weighted regularization triplet (WRT) loss [67].

3.2. Modalityaware Neural Feature Search

Unlike NAS approaches searching optimal topology and

operations for a top-performing architecture [28, 59, 40],

NFS searches for identity-related features from a CNN-

based feature space. In this paper, we cast the automatic

feature search as a hyperparameter learning task, where the

search hyperparameters and network weights are jointly op-

timized to derive the optimal discriminative feature subset.

It can be formulated as a bilevel optimization problem [28]:

min
y∈Y

min
W

L(y,W ). (2)

Given output feature maps Y , we seek to discover a subset

of features y ∈ Y , which can minimize the loss L(y,W )
after optimizing network weights W . Here, we highlight

two key points of solving the problem: a dual-level feature

search space and an efficient search algorithm.

Dual-level Feature Search Space. The search space

defines what neural architectures might be discovered in

principle [28, 59], which plays a crucial role in high-

performance NAS. Similarly, NFS is also closely related to

a well-designed feature search space that covers as many

as possible identity-related cues. As discriminative fea-

tures are mainly extracted by the shared part of the base-

line model [58], we establish a search space including all

feature candidates extracted by every shared convolutional

block. More formally, a shared block L takes a feature map

X ∈ R
Cin×W×H as input and outputs another fine-grained

feature map YL ∈ R
Cout×W

2
×H

2 , i.e.,

YL(p) =
∑

p
′∈Rk

Wc(p
′

)X(p+ p
′

) p ∈ Ω, (3)

where C, W , and H represent the number of channels,

width, and height, respectively. p denotes a specific pixel

position, Rk is the support region of kernel with size k,

†https://github.com/mangye16/Cross-Modal-Re-ID-baseline

Wc ∈ R
Cin×Cout×k×k represents convolution weights,

Ω = {(i, j)|i ≤ W, j ≤ H, i, j ∈ Z
+} is the spatial do-

main of YL. The union of YL forms the vanilla feature space

Y = {YL|L ∈ {1, ..., N}}, and N is the number of blocks.

Motivated by the fact that discriminative features present

modality-specific distributions in spatial and channel di-

mensions of YL [4], we introduce modality-aware search

cells to decompose the original feature space Y into two

subspaces: pixel-level subspace and depth-level subspace.

The former includes vectors in each spatial position that de-

scribe local patches of an input image. The latter contains

multiple detector response maps that globally reflect partic-

ular properties of the image content. Fig. 2(Left) illustrates

how the search cell exactly works. Given the output feature

map YL, we first initialize a set of parameters Pm
L with a

uniform distribution to map features from modality m into a

specific probability field. As for pixel-level feature search,

Pm
L ∈ R

Cout×W

2
×H

2 covers every pixel in the spatial do-

main. And for depth-level search, Pm
L ∈ R

Cout contains

all channels of YL. During the searching process, the prob-

ability field is activated by a sigmoid function, denoted as

P̃m
L = σ(Pm

L ), to indicate the possibilities of features at

corresponding positions are informative to distinguish dif-

ferent persons. Then, a binary search gate Gm
L (p) is gener-

ated based on P̃m
L to determine whether the pixel at posi-

tion p should be selected. By passing YL through all search

gates, the output activation map ỸL can be formulated as:

ỸL(p) =

{

YL(p), Gm
L (p) = 1

0, Gm
L (p) = 0.

(4)

Here, Eq. 2 is transformed into an optimization problem

with all search gates Gm as the upper-level variables and the

network weights W as lower-level ones, that is:

min
Gm

Lval (W
∗(Gm),Gm)

s.t. W ∗(Gm) = argmin
W

Ltrain(W,Gm),
(5)

where Ltrain and Lval denote the training loss and the val-

idation loss (Eq. 14), respectively.

Search Algorithm. As the search space is discrete and

large-scale, finding the optimal feature set through brute-

force enumeration is much inefficient. To tackle this ob-

stacle, we utilize reparameterization tricks [28] to relax

the search space to be continuous and directly improve the

search efficiency via SGD. We assume that feature selec-

tion is essentially a binary classification problem and thus

exploiting a continuous Bernoulli distribution [31] to simu-

late stochastic discrete sampling with P̃m ∈ (0, 1). Based

on Gm, the sampled features Xm are as:

Xm ∼ Bernoulli(P̃m) ⇐⇒ p(xm | P̃m) ∝ p̂(xm | P̃m)

= (P̃m)x
m

(1− P̃m)1−x
m

,

(6)
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p(xm | P̃m) = C(P̃m)(P̃m)x
m

(1− P̃m)1−x
m

, (7)

C(P̃m) =

{

2 tanh−1(1−2P̃m)

1−2P̃m
, if P̃m 6= 0.5

2, otherwise.
(8)

After relaxation, Gm and W can be jointly optimized using

the straight-through estimator (STE) [1]:

∇GmLval ≈ ∇P̃mLval. (9)

Finally, Eq. 5 is solved with Neural Feature Search out-

lined in Alg. 1. We first search for identity-related fea-

tures by iteratively optimizing Gm with Lval and W with

Ltrain. After obtaining the optimal search gates, the whole

network is trained and evaluated following the standard fea-

ture learning paradigm of RGB-IR ReID [66].

Algorithm 1 NFS - Neural Feature Search

Input: the search parameters P̃m and the network weights

W ; the training set DT and the testing set DE

Output: the trained network and the optimal feature set

1: Randomly split DT into the search training set Dtrain and the

search validation set Dval

2: while not converged do

3: Update W by descending ∇WLtrain(W, P̃m) on Dtrain

4: Update search gates Gm by descending

∇P̃mLval(W −∇WLtrain(W, P̃m), P̃m)) on Dval

5: Derive optimal Gm based on P̃m

6: Train the network weight W with the derived Gm on DT

7: Evaluate the network and Gm on DE

3.3. CrossModality Contrastive Optimization

Apart from the search efficiency, how to supervise search

cells to select more informative features is also impor-

tant for NFS. Unlike close-set classification tasks, RGB-IR

ReID is an open-set problem where identities in testing are

different from those in training. In such a scenario, the se-

lected features of ‘seen’ and ‘unseen’ classes may be tan-

gled in the feature space. Meanwhile, the appearance dis-

crepancy between RGB and IR images often enlarges the

feature distribution variance of each class, leading to fuzzy

decision boundaries in identity recognition problems.

Here, we attend to decrease the feature distribution vari-

ance from an invariant feature selection perspective. To this

end, we introduce a ReID-oriented optimization criterion

that can eliminate modality discrepancy and maximize the

inter-class distance simultaneously. The basic idea comes

from recent advances on contrastive learning [47, 21, 15],

which aim to attract positive pairs whilst repulsing negative

ones [2]. Given a training batch B = {(irgb, iir)|irgb ∈
Irgb, iir ∈ Iir}, the half of which are RGB images Irgb
while the others are their IR counterparts Iir, we randomly

arrange their embedding vectors ~irgb and ~iir into multiple

cross-modality pairs (~irgb,~iir) and generate pair-wise la-

bels according to their identities ID(~irgb) and ID(~irgb):

Label =

{

1, ID(~irgb) = ID(~iir)

0, ID(~irgb) 6= ID(~iir).
(10)

For each positive image pair, we seek to minimize the

distance between them, so that the modality discrepancy

and intra-class variations can be jointly eliminated. We

evaluate the pair-wise distance in Euclidean space, which

is widely applied in image retrieval [13, 67], i.e.,

DE = ||~irgb −~iir||2. (11)

On the contrary, for negative pairs, we aim to keep them far

from each other for distinction. In order to make the opti-

mization objective explicitly, we quantify the dissimilarity

of each negative pair DT with an explicit margin T :

DT = max(0, T − ||~irgb −~iir||2). (12)

Taking all positive and negative pairs into account, the con-

trastive loss Lc can be formulated as:

Lc(Label,~irgb,~iir) = (Label)(DE)
2+(1−Label)(DT )

2.

(13)

The overall learning objective for NFS is a weighted

summation of the baseline loss Lb and cross-modality con-

trastive loss Lc, defined as:

L = Lb + λLc, (14)

where λ is a trade-off coefficient to balance the influence of

each learning objective.

4. Experiments

4.1. Datasets and Experimental Settings

Datasets. Our experiments are based on two standard

real-world benchmarks for RGB-IR person ReID, named

SYSU-MM01 [58] and RegDB [38], respectively. The

SYSU-MM01 dataset contains images captured by four vis-

ible and two near infrared cameras in indoor and outdoor

environments. Statistically, the training set includes 22,258

RGB and 11,909 IR images of 395 identities, and the query

set involves 3,803 IR images of 96 identities. The gallery set

has four versions according to different evaluation modes,

including all search or indoor search and single-shot or

multi-shot. Details of each mode can be found in [58].

The RegDB dataset contains 8,240 images of 412 identi-

ties, with 206 identities for training and the rest for testing.

Each identity has 10 IR and 10 RGB images. We evaluate

both visible-to-infrared and infrared-to-visible modes [51]

by alternatively using all RGB/IR images as the gallery set.
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Table 1. Comparison on the SYSU-MM01 dataset with Rank-1, 10, 20 (%) and mAP (%) evaluation metrics.

Method

All Search Indoor Search

Single-shot Multi-shot Single-shot Multi-shot

r1 r10 r20 mAP r1 r10 r20 mAP r1 r10 r20 mAP r1 r10 r20 mAP

HOG [6] 2.76 18.3 31.9 4.24 3.82 22.8 37.6 2.16 3.22 24.7 44.5 7.25 4.75 29.2 49.4 3.51

LOMO [26] 3.64 23.2 37.3 4.53 4.70 28.2 43.1 2.28 5.75 34.4 54.9 10.2 7.36 40.4 60.3 5.64

Zero-Padding [58] 14.8 54.1 71.3 15.9 19.1 61.4 78.4 10.9 20.6 68.4 85.8 26.9 24.4 75.9 91.3 18.6

TONE+HCML [64] 14.3 53.2 69.2 16.2 - - - - - - - - - - - -

BDTR [69] 17.0 55.4 72.0 19.7 - - - - - - - - - - - -

D-HSME [14] 20.7 62.8 78.0 23.2 - - - - - - - - - - - -

IPVT+MSR [20] 23.2 51.2 61.7 22.5 - - - - - - - - - - - -

cmGAN [5] 27.0 67.5 80.6 27.8 31.5 72.7 85.0 22.3 31.6 77.2 89.2 42.2 37.0 80.9 92.1 32.8

D2RL [55] 28.9 70.6 82.4 29.2 - - - - - - - - - - - -

DGD+MSR [10] 37.4 83.4 93.3 38.1 43.9 86.9 95.7 30.5 39.6 89.3 97.7 50.9 46.6 93.6 98.8 40.1

JSIA-ReID [52] 38.1 80.7 89.9 36.9 45.1 85.7 93.8 29.5 43.8 86.2 94.2 52.9 52.7 91.1 96.4 42.7

AlignGAN [51] 42.4 85.0 93.7 40.7 51.5 89.4 95.7 33.9 45.9 87.6 94.4 54.3 57.1 92.7 97.4 45.3

AGW [67] 47.50 84.39 92.14 47.65 - - - - 54.17 91.14 95.98 62.97 - - - -

Xmodal [22] 49.92 89.79 95.96 50.73 - - - - - - - - - - - -

DDAG [66] 54.75 90.39 95.81 53.02 - - - - 61.02 94.06 98.41 67.98 - - - -

NFS (Ours) 56.91 91.34 96.52 55.45 63.51 94.42 97.81 48.56 62.79 96.53 99.07 69.79 70.03 97.70 99.51 61.45

Table 2. Comparison on the RegDB dataset with Rank-1, 10, 20 (%) and mAP (%) evaluation metrics.

Method
Visible to Infrared Infrared to Visible

r1 r10 r20 mAP r1 r10 r20 mAP

Zero-Padding [58] 17.75 34.21 44.35 18.90 16.63 34.68 44.25 17.82

Tone + HCML [64] 24.44 47.53 56.78 20.88 21.70 45.02 55.58 22.24

BDTR [69] 33.56 58.61 67.43 32.76 32.92 58.46 68.43 31.96

D2RL [55] 43.4 66.1 76.3 44.1 - - - -

DGD+MSR [10] 48.43 70.32 79.95 48.67 - - - -

JSIA-ReID [52] 48.1 - - 48.9 48.5 - - 49.3

D-HSME [14] 50.85 73.36 81.66 47.00 50.15 72.40 81.07 46.16

IPVT+MSR [20] 58.76 85.75 90.27 47.85 - - - -

AlignGAN [51] 57.9 - - 53.6 56.3 - - 53.4

Xmodal [22] 62.21 83.13 91.72 60.18 - - - -

DDAG [66] 69.34 86.19 91.49 63.46 68.06 85.15 90.31 61.80

NFS (Ours) 80.54 91.96 95.07 72.10 77.95 90.45 93.62 69.79

Evaluation Protocols. We follow standard evaluation

protocols [58, 67] for RGB-IR ReID. Gallery and query im-

ages are from different modalities. The standard cumulated

matching characteristics (CMC) curve and mean average

precision (mAP) are used for performance evaluation.

Implementation Details. The proposed method is im-

plemented in PyTorch and trained on an NVIDIA 2080Ti

GPU. In order to facilitate comparisons with state-of-the-

art ReID researches [67, 66, 32], we adopt the ResNet-50

[16] pretrained on ImageNet [7] as our backbone network.

Following [66, 65, 63, 67], we set the stride of the last con-

volutional block as 1 for fine-grained feature maps. All im-

ages are resized to 288 × 144 then augmented with random

cropping and horizontal flipping. We randomly sample 80%

images from the original training set as the search training

set and use the rest as the search validation set (Alg. 1, Line

1). We first make all search cells learnable to discover the

optimal discriminative feature set. After obtaining the opti-

mal feature set, we retrain the network on the original train-

ing set. At the training stage, we adopt a warm-up strategy

[34] and optimize the two-stream CNN using SGD with 0.9

momentum during a total of 80 epochs. The initial learn-

ing rate is set to 0.1 and decays by 0.1 and 0.01 at the 16th

and 50th epoch, respectively. Following [66], we randomly

sample 8 identities with 4 RGB and 4 IR images per person,

resulting in totally 64 images for each training batch.

4.2. Comparison with Stateoftheart Methods

In this subsection, we compare the proposed NFS

with naive baselines as well as the state-of-the-art meth-

ods, including traditional feature extraction methods (HOG

[6] and LOMO [26]); GAN-based models (cmGAN [5],

D2RL [55], JSIA-ReID [52], AlignGAN [51], and Xmodal

[22]); deep metric learning (BDTR [69], D-HSME [14],

IPVT+MSR [20], and DGD+MSR [10]); and shared feature

learning approaches (Zero-Padding [58], TONE+HCML

[64], AGW [67], and DDAG [66]). Since most of them

follow the standard evaluation protocols of the two exper-

imental datasets, we directly use the original results from

published papers for comparison.

Experimental results on SYSU-MM01 are shown in Ta-

ble 1. We see that there is a significant performance decline

when applying hand-crafted descriptors HOG and LOMO

to cross-modality ReID, regardless of their promising ca-

pacities in general ReID tasks. Besides, image synthe-

sis methods (AlignGAN, JSIA-ReID, Xmodal, and D2RL)

perform better than traditional shared feature learning ap-

proaches (Zero-Padding and TONE+HCML), possibly ow-

ing to the effectiveness of pixel-level alignment. Specifi-

cally, recent methods such as AGW, DDAG, as well as our

proposed NFS outperform typical GAN-based approaches.

This is probably because it is ill-posed to transfer identity-
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related information of IR images to generated RGB images.

Notably, the proposed model achieves 56.91% Rank-1 iden-

tification rate and 55.45% mAP score in the most difficult

single-shot & all search setting, which outperforms most

of state-of-the-art methods by a large margin. Compared

to DDAG based on the graph attention mechanism, NFS

is much easier to implement and still presents better per-

formance. Similar improvement can be observed in multi-

shot modes. For example, our method largely surpasses

AlignGAN with the improvement of 12.01% in Rank-1

and 14.66% in mAP, which demonstrates highly robustness

when the gallery size increases.

Results on the RegDB dataset are listed in Table 2. Gen-

erally, performance of all methods is higher than that on

SYSU-MM01, as images of RegDB present less intra-class

variations [51]. Our approach greatly improves the state-of-

the-art under both evaluation modes. Specifically, in the

visible-to-infrared mode, NFS makes a marked improve-

ment of 11.20% in Rank-1 and 8.64% in mAP compared

to the top-performing method DDAG [66]. Similar incre-

ment also presents in the infrared-to-visible mode, which

shows that our method is robust to multi-modal query set-

tings. In conclusion, the above results clearly indicate the

effectiveness of our automated feature search paradigm.

4.3. Ablation Study

This subsection studies the effectiveness of each module

involved in NFS on SYSU-MM01 ( all and indoor search,

single-shot settings). As in Table 3, B denotes the baseline

two-stream network with the learning objective Lb, N rep-

resents the neural feature search block, and C indicates the

cross-modality contrastive optimization mechanism.

Table 3. Evaluation of each module on SYSU-MM01.

Method
All Search Indoor Search

r1 r10 mAP r1 r10 mAP

B 47.00 84.11 46.46 52.70 89.30 60.93

B + N 48.91 86.03 47.92 54.12 92.20 62.31

B + C 52.29 90.22 50.91 57.23 94.14 65.32

B + N + C 56.91 91.34 55.45 62.79 96.53 69.79

Effectiveness of Neural Feature Search. We evaluate

how much improvement can be made by NFS with base-

line learning objective Lb. To be fair, all hyperparameters

are fixed during evaluation. As shown in 2nd row of Ta-

ble 3, NFS brings 1.91% Rank-1 and 1.46% mAP increases

in all search mode compared with B (row 2). Similar im-

provement can be observed in indoor search mode. This in-

crement suggests that automated feature selection not only

governs the baseline network to focus on informative parts

of human bodies but also filters high sample noises.

Influence of Contrastive Optimization. Here, we in-

vestigate the contribution of contrastive loss. Considerable

enhancement (5.29% of Rank-1 and 4.45% of mAP for all

search, 4.53% of Rank-1 and 4.39% of mAP for indoor

search) on the baseline model can be observed in Table 3.

This improvement manifests the superiority of contrastive

loss for learning identity-related information. We further

validate its effectiveness on NFS and the results are listed

in the 4th row of Table 3. We observe that, with contrastive

loss, NFS significantly surpasses the baseline model with

9.91% growth of Rank-1 and 8.99% gain of mAP for all

search, while performance boost in indoor search is even

more pronounced. Notably, from the comparison between

3rd and 4th row of Table 3, we see that NFS brings more

benefits (4.62% of Rank-1 and 4.54% of mAP) to the base-

line model with C, demonstrating that the contrastive loss

not only contributes to the optimization of B, but also en-

courages NFS to discover more discriminative features.

Impact of Search Scope. In this part, we compare

the performance of NFS conducted at different convolution

stages (Table 4). The Rank-1 and mAP tend to increase

when NFS is conducted on more layers. The best result ap-

pears when we perform NFS on Stage 1, 2, and 3. This is

probably because, searching more stages expands the search

space, which allows us to explore more varied selections of

features. However, blindly extending the search scope will

pose great challenges to the discovery of an optimal feature

set. The underlying reason is that STE will generate more

and more gradient estimation errors when backpropagating

through too many layers [1].

Table 4. Comparison on NFS at different convolution stages.

Stage1 Stage2 Stage3 Stage4 r1 mAP

1
√

- - - 53.75 53.02

2 -
√

- - 53.41 52.67

3 - -
√

- 53.64 53.25

4 - - -
√

53.92 52.83

5
√ √

- - 55.62 54.31

6
√

-
√

- 54.85 53.97

7
√

- -
√

54.45 53.76

8 -
√ √

- 55.13 54.07

9 -
√

-
√

54.41 53.29

10 - -
√ √

54.42 53.87

11
√ √ √

- 56.91 55.45

12
√ √

-
√

55.21 53.13

13
√

-
√ √

55.72 54.35

14 -
√ √ √

55.94 54.62

15
√ √ √ √

55.18 54.21

4.4. Influence of Hyperparameters

In this subsection, we investigate the influence of hyper-

parameters involved in NFS, including the contrastive mar-

gin T (Eq. 12) and trade-off coefficient λ (Eq. 14). All re-

sults are based on SYSU-MM01 (single-shot & all search).

The Contrastive Margin T . Due to significant appear-

ance differences between RGB and IR images, the original

distance among negative pairs is relatively large. Thus, we

tune the contrastive margin T from 10 to 20. The corre-

sponding Rank-1 results are shown in Fig. 3(Left). NFS

consistently outperforms the AGW baseline [67] with dif-

ferent margins and achieves best performance at T = 15.
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Figure 3. Parameter analysis for margin T and trade-off weight λ.

The Trade-off Coefficient λ. We also evaluate influence

of the trade-off coefficient λ. Since the initial contrastive

loss value may be very large, we consider λ from 0.01 to

0.1. As in Fig. 3(Right), consistent improvement can be

observed again when we apply different λ. NFS achieves

the best Rank-1 accuracy when λ = 0.04.

SYSU-MM01

ID + TripletOriginal images ID Loss Ours

RegDB

Original images OursID Loss ID + Triplet

RGB Images

IR Images

Figure 4. Visualization of feature maps produced by NFS with dif-

ferent loss functions on SYSU-MM01 and RegDB datasets. Best

viewed in color.

4.5. Visualization of Learned Features

In order to inspect the effectiveness of our feature search

based method, we visualize feature maps in the first shared

block for 8 randomly selected images (4 samples per modal-

ity) on the two benchmark datasets (Fig. 4). It can be ob-

served that, with the introduction of triplet loss (column 3),

background noises are effectively eliminated while person

information is preserved by search cells. We also see that

significant improvement can be achieved when applying the

contrastive loss (column 4) to NFS – not only irrelevant

information is further filtered but also more discriminative

cues are detected simultaneously.

We also examine the internal features captured by NFS

using t-SNE [35]. As shown in Fig. 5, we visualize the

learned representations of NFS and the baseline method

on SYSU-MM01 and RegDB (5 randomly selected person

identities per dataset). Specifically, Fig. 5(a) and 5(c) show

the distribution of features extracted by the baseline method

(a)  Baseline on SYSU-MM01 (b) NFS on SYSU-MM01 

(d) NFS on RegDB(c) Baseline on RegDB

Figure 5. t-SNE visualization of the distribution of learned repre-

sentations from NFS and the baseline method [67]. Different col-

ors represent features of different identities. Circle and cross sym-

bols refer to features of RGB and infrared images, respectively.

while Fig. 5(b) and 5(d) illustrate the NFS feature distri-

bution. In comparison with Fig. 5(a) and 5(c), we see

that feature distributions from visible and infrared modal-

ities are fairly closer and less discriminable in Fig. 5(b)

and 5(d). This indicates that NFS effectively minimizes the

modality gap by aligning distributions of the two modal-

ities. Furthermore, it is also observed that the proposed

method separates feature points into disjoint clusters with

larger inter-class margin while ensuring positive pairs from

different modalities well aggregated. In a nutshell, NFS has

a strong capability of detecting more discriminative cues in

cross-modality settings.

5. Conclusion

This paper presents a novel insight of automated feature

selection for RGB-IR ReID. A Neural Feature Search (NFS)

paradigm is proposed to adaptively discover more identity

characteristics. We first construct a dual-level feature search

space, which makes it possible to jointly perform global-

channel and local-spatial search operations. Then, we de-

velop an efficient search algorithm to accelerate the selec-

tion process. Governed by a cross-modality contrastive op-

timization objective, this auto-searching algorithm is better

able to select more high-quality invariant feature subsets for

matching and retrieval. Experimental results on two stan-

dard RGB-IR ReID benchmarks demonstrate the effective-

ness of NFS surpassing previous state-of-the-arts.
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