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Abstract

Deep learning-based methods have achieved remarkable

performance for image dehazing. However, previous studies

are mostly focused on training models with synthetic hazy

images, which incurs performance drop when the models

are used for real-world hazy images. We propose a Prin-

cipled Synthetic-to-real Dehazing (PSD) framework to im-

prove the generalization performance of dehazing. Starting

from a dehazing model backbone that is pre-trained on syn-

thetic data, PSD exploits real hazy images to fine-tune the

model in an unsupervised fashion. For the fine-tuning, we

leverage several well-grounded physical priors and com-

bine them into a prior loss committee. PSD allows for

most of the existing dehazing models as its backbone, and

the combination of multiple physical priors boosts dehazing

significantly. Through extensive experiments, we demon-

strate that our PSD framework establishes the new state-

of-the-art performance for real-world dehazing, in terms of

visual quality assessed by no-reference quality metrics as

well as subjective evaluation and downstream task perfor-

mance indicator.

1. Introduction

Due to the existence of haze, outdoor images often suf-

fer from low contrast and limited visibility, which adversely

affects the performance of subsequent high-level computer

vision tasks, such as object detection and recognition. Thus,

more and more attention is drawn to image dehazing, that

aims to recover the clean image from a hazy input.

According to the physical scattering model [24, 27], the

hazing process is usually formulated as

I(x) = J(x)t(x) +A(1− t(x)) (1)
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(a) Hazy image (b) DAD [34]

(c) MSBDN [6] (d) Ours

Figure 1. Dehazing results on a real hazy image.

where I(x) is the observed hazy image, J(x) is the scene

radiance to be recovered. A and t(x) are the global atmo-

spheric light and the transmission map, respectively.

Estimating the clean image from a single hazy input is an

ill-posed problem. Early methods [1, 8, 9, 11, 37] try to es-

timate transmission map by physical priors and then restore

image via the scattering model. However, these physical

priors are not always reliable, leading to inaccurate trans-

mission estimates and unsatisfied dehazing results.

With the advances in deep learning, many methods based

on convolutional neural networks (CNNs) [3,4,7,14,22,31,

32] have been proposed to overcome the drawbacks of us-

ing physical priors. They are more efficient and outperform

traditional prior-based algorithms. In common cases, large

quantities of paired hazy/clean images are necessary for the

training of CNN-based dehazing models. However, it is al-

most impossible to obtain these image pairs from the real

world, and most learning-based methods resort to training

on synthetic data. Unfortunately, due to the domain gap

between synthetic and real data, dehazing models trained

on synthetic images usually generalize poorly to real-world

hazy images.

Recently, this issue has been picked up by a handful of
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studies. Li et al. [17] proposed a semi-supervised dehaz-

ing model trained on both synthetic data and real-world

images. Shao et al. [34] suggested a domain adaptation

framework to reduce the gap between synthetic and real do-

mains. These methods demonstrate the great potential of

domain adaptation in improving the performance for real-

world dehazing tasks. However, there is still room for fur-

ther improvement, and principled frameworks dedicated for

the problem of dehazing generalization remain a lack.

In this paper, we propose a Principled Synthetic-to-real

Dehazing (PSD) framework, which is applicable to general-

ize most of the existing dehazing models to the real domain.

PSD includes two phases: supervised pre-training and unsu-

pervised fine-tuning. For pre-training, we modify a chosen

dehazing model backbone into a physics-based network and

train this network with synthetic data. Taking advantage of

the well-designed backbone, we could obtain a pre-trained

model with solid dehazing performance on the synthetic

domain. For fine-tuning, we exploit real hazy images to

train the model in an unsupervised manner. We investigate

the strong physics background of dehazing tasks and elab-

orately select three physical priors to constitute a loss com-

mittee that guides the unsupervised training. The key idea

of this fine-tuning process is the intuition that good dehaz-

ing results shall share some common properties/statistical

priors. We leverage this intuition, treating the loss commit-

tee as a task-specific proxy guidance to help generalize our

model to the real domain. As shown in Fig. 1, PSD produces

a better dehazing result when compared with the backbone

model. PSD also outperforms the state-of-art domain adap-

tation dehazing (DAD) [34].

We summarize the contributions of our work as follows.

• We re-formulate the real-world dehazing task as a

synthetic-to-real generalization framework: starting

from a dehazing model backbone pre-trained on syn-

thetic paired data, real hazy images will be subse-

quently exploited to fine-tune the model in an unsu-

pervised fashion. PSD is principled, easy-to-use, and

can take most deep dehazing models as its backbone1.

• Due to the absence of clean ground-truth image as su-

pervision, we leverage several popular, well-grounded

physical priors to guide the fine-tuning. We combine

them into a prior loss committee as the task-specific

proxy guidance, which constitutes the core of PSD.

We show that these priors are complementary and their

combination boosts PSD dehazing the most.

• Our framework is compared with a number of com-

petitive methods via comprehensive experiments. Re-

sults are evaluated in terms of visual quality assessed

by both no-reference quality metrics and subjective

1Some models are subject to light modifications, see Section 3.2.

evaluation, and downstream task performance indica-

tor. Consistently and substantially, PSD establishes the

new state-of-the-art real-world dehazing performance.

2. Related Work

2.1. Single Image Dehazing

Prior-based methods. Dehazing methods based on pri-

ors [1, 8, 9, 11, 37, 43] estimate transmission maps by ex-

ploiting statistical properties of clean images, and then ob-

tain dehazed results using the scattering model. In [37],

Tan proposed a haze removal method by maximizing the

local contrast of hazy images. He et al. [11] achieved im-

pressive dehazing results using dark channel prior (DCP),

which assumes that there exists at least one channel for ev-

ery pixel whose value is close to zero. Zhu et al. [43] pro-

posed a color attenuation prior to remove haze by estimating

the scene depth. Fattal [9] introduced a color-line prior by

the observation that pixels of small image patches typically

exhibit a one-dimensional distribution in RGB color space.

Berman et al. [1] proposed a dehazing algorithm based on

the assumption that colors of a haze-free image are well

approximated by a few hundred distinct colors. Although

these methods have been shown effective for image dehaz-

ing, their performances are usually limited because these

hand-crafted priors do not always hold for different hazy

images.

Learning-based methods. With the availability of

large-scale paired data and powerful CNNs, learning-based

dehazing methods have become popular in recent years.

MSCNN [31] is one of the first studies to solve haze re-

moval problem via CNN, where the network is trained to es-

timate transmission map of the hazy input in a coarse-to-fine

manner. Cai et al. [3] proposed an end-to-end network to

generate transmission estimates. Zhang and Patel [42] em-

bedded the physical scattering model into a network, which

allows the network to estimate the transmission map, atmo-

spheric light and dehazed image jointly. In addition, some

other methods [6, 14, 18, 21, 28, 29, 32] have been proposed

to directly recover the clean images. Li et al. [14] designed

an AOD-Net to produce recovered images by reformulating

the physical scattering model, and the same idea was later

extended to video dehazing [15]. Ren et al. [32] introduced

an gated fusion network which leverages the derived inputs

from an original hazy image. Qu et al. [29] reformed the de-

hazing task into an image-to-image translation problem and

proposed an enhanced pix2pix network to solve it. Dong et

al. [6] incorporated a boosting strategy into the network to

progressively restore clean image. All these methods have

shown outstanding performances on dehazing.

However, the domain gap between synthetic and real

data could cause a significant performance drop when these

methods are generalized to real hazy images, since most of
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Figure 2. Overview of the proposed PSD framework. Our model consists of a backbone, a physics-compatible head, and an atmospheric

light estimation network (A-net). We pre-train the model with synthetic images, then fine-tune the model with both synthetic and real hazy

images, guided by a proxy loss committee derived from several physical priors.

them are only trained on synthetic data. To address this, we

propose PSD, a principled synthetic-to-real dehazing gen-

eralization framework, intending to adapt synthetic data-

based models to the real domain.

2.2. Unsupervised Domain Adaptation

Unsupervised domain adaptation aims to tackle domain

shift between source and target domains, while images in

the target domain are unlabeled. One major idea is to in-

duce alignment between the source and target domains in

feature space by optimizing for some measurements of dis-

tributional discrepancy [23, 35, 38]. Hoffman et al. [12]

reduced the domain gap by using both generative image

space alignment and latent representation space alignment.

Zou et al. [44] proposed an unsupervised domain adapta-

tion framework based on an iterative self-training proce-

dure, where the loss of the latent variable is minimized.

Specifically, in dehazing and deraining tasks, there have

been a few studies to solve the domain shift problem be-

tween synthetic and real domains [39,41]. Li et al. [17] pro-

posed a semi-supervised learning (SSL) dehazing method,

utilizing both synthetic and real images to learn features

from both domains. Shao et al. [34] introduced a domain

adaptation framework, which consists of an image transla-

tion module and two dehazing modules, one for the syn-

thetic domain and the other for the real domain. Both meth-

ods show remarkable generalization performances. How-

ever, they do not make full use of the powerful prior knowl-

edge in dehazing tasks and a performance gap between the

two domains still exists. For this reason, we explore a large

variety of physical priors and build up a loss committee as

our proxy guidance for the training with real hazy images.

3. Proposed Method

3.1. Framework Overview

This section describes how PSD works. As shown in

Fig. 2, PSD is a two-stage framework consisting of pre-

training and fine-tuning.

Pre-training. We start by adopting one of the state-of-

the-art dehazing models as our backbone, since these mod-

els achieve impressive performances on synthetic datasets

and could implicitly provide the domain knowledge of hazy

images. We then modify the backbone into a physics-based

network that simultaneously generates the clean image J̃ ,
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transmission map t̃, and atmospheric light Ã from a single

hazy input I . To jointly optimize the three components, we

incorporate a reconstruction loss, which guides the network

outputs to obey the physical scattering model (1).

In this phase, we only use the labeled synthetic data for

training, and eventually obtain a model pre-trained on the

synthetic domain.

Fine-tuning. For fine-tuning, we utilize unlabeled real

data to generalize the pre-trained model from synthetic to

real domain. Inspired by the strong physics background

of dehazing, we believe that a high-quality haze-free image

should obey some specific statistical rules, which can be de-

rived from image priors. Furthermore, the physical knowl-

edge provided by a single prior is not always reliable, so we

aim to find a combination of multiple priors, hoping they

can complement each other. Motivated by this, we design

a prior loss committee as a task-specific proxy guidance for

the training of unlabeled real data.

Besides, we implement a learning without forgetting

(LwF) method [20], which forces our model to memorize

the synthetic domain knowledge by forwarding the training

data of the original task (i.e. synthetic hazy images) through

the network together with real hazy data.

3.2. PhysicsBased Network

Physical priors are usually related to the three compo-

nents J , t, and A of the scattering model (1). As most deep

dehazing models only estimate restored images directly, a

modification on them is required. We propose to add two

new modules.

Physics-compatible head. This module is composed

of two branches, each of which contains two convolutional

layers. We assume that the selected dehazing backbone is

an effective feature extractor for both the transmission map

t and the clean image J , and simple convolutional layers

are enough to generate the two components from the feature

maps. Therefore, we forward the backbone outputs through

this physics-compatible head to produce a transmission map

and a haze-free image separately, as shown in Fig. 2.

Atmospheric light estimation network (A-Net). A-Net

is employed from DCPDN [42] and acts as an independent

part of our model, which estimates the atmospheric light di-

rectly from a hazy input. We establish a connection between

the backbone and this sub-network by a reconstruction loss,

see Section 3.3 for details.

3.3. Model Pretraining

For the training of our modified network, we take the

same parameter settings and the loss function Lo from the

original backbone model. Since a single Lo loss is not able

to update parameters of the two added modules, we include

a reconstruction loss LRec into training to jointly optimize

the entire model. Specifically, we aggregate the network

outputs J̃ , t̃, and Ã to reconstruct the original input by

the physical scattering model: Ĩ = J̃ ⊙ t̃ + Ã ⊙ (1 − t̃),
where ⊙ indicates element-wise multiplication. Then the

reconstruction loss LRec is formulated as:

LRec = ‖I − Ĩ‖1 (2)

where I denotes the hazy input image.

The two losses Lo and LRec are combined for pre-

training of the new physics-based network. Thanks to the

well-designed backbone, our pre-trained model produces

satisfactory dehazing results on synthetic hazy data.

3.4. Prior Loss Committee

We explore various dehazing priors, from which we se-

lect three effective and well-grounded ones. They provide

us with the prior knowledge of real images. We combine the

three priors into a loss committee as the task-specific proxy

guidance for the unsupervised fine-tuning phase. The three

members of this committee are described below in detail.

Dark Channel Prior (DCP) Loss. Dark Channel Prior

(DCP) [11] is the most famous and effective prior for image

dehazing. To implement DCP as a member of our prior

loss committee, we follow the method proposed by [10] to

reformulate this prior as an energy function:

LDCP = E(t, t̃) = tTLt+ λ(t− t̃)T (t− t̃) (3)

where t and t̃ denote the transmission estimates from DCP

and our network, respectively. L is a Laplacian-like matrix.

The first term promotes successful image matting, and the

second, fidelity to the dark channel solution. λ acts as a

hyper-parameter.

Although LDCP greatly advances the model perfor-

mance on real hazy images, it generates side effects: the

dehazing results are usually darker than expected. Thus, we

integrate a bright channel prior loss into our committee as

the second member.

Bright Channel Prior (BCP) Loss. Bright Channel

Prior (BCP) is widely applied to solve dehazing and image

enhancement problems. It helps make the resulting images

brighter and with enhanced contrast. We implement BCP as

the following loss function:

LBCP =
∥

∥t− t̃
∥

∥

1
(4)

where t and t̃ represent the transmission estimates from

BCP and our network, respectively.

LBCP compensates the drawbacks caused by LDCP

through dramatically improving the global illumination of

restored images and recovering more details. However, a

committee with only two losses usually fails to maintain a

stable fine-tuning process. In other words, it is not easy

to achieve a balance between LDCP and LBCP . There-

fore, we enroll a new member into our prior loss committee,

namely CLAHE reconstruction loss.
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CLAHE Reconstruction Loss. Contrast Limited Adap-

tive Histogram Equalization (CLAHE) is a traditional con-

trast enhancement method, and it is also effective for image

dehazing. Although we can restore hazy images directly us-

ing CLAHE, it is not advisable to treat its results as super-

vision, since it may bring the inherent flaws of this method

into our network. Thus, we implement this prior in an in-

direct way. Specifically, we take two network outputs t̃, Ã,

and the dehazing result of CLAHE JCLAHE to reconstruct

the original input via the scattering model (1) and then de-

fine the loss function by:

LCLAHE = ‖I − ICLAHE‖1 (5)

where I is the original hazy input, ICLAHE is the recon-

struction result by JCLAHE , t̃, and Ã. LCLAHE signifi-

cantly improves the stability of our committee-guided un-

supervised training process.

Finally, with all the three members, the prior loss com-

mittee provide a loss function defined as

Lcom = λdLDCP + λbLBCP + λcLCLAHE (6)

where λd, λb, and λc are trade-off weights.

3.5. SynthetictoReal Generalization

With a pre-trained physics-based model M and a prior

loss committee, we could step into the generalization phase,

from synthetic to real. Starting from the model M, we

incorporate unlabeled real data into the training of M in

an unsupervised fashion, by minimizing the loss function

Lcom provided by our prior loss committee. To avoid

catastrophic forgetting, we also implement a learning with-

out forgetting (LwF) loss Llwf , which helps our model

memorize the previous dehazing task on synthetic datasets.

Specifically, while updating the model M with real images,

we keep a copy of the original model Mo which is frozen

during the generalization process. We forward both syn-

thetic and real images through Mo and minimize the differ-

ence between the output feature maps of M and Mo. The

loss function is formulated as:

Llwf = ‖Fs − Fos‖1 + ‖Fr − For‖1 (7)

where Fs and Fos represent feature maps of M and Mo

on synthetic data, Fr and For represent those on real data,

respectively.

Besides, physical priors typically fail to correctly handle

the sky in images, resulting in artifacts and color shifting.

To address this issue, we roughly estimate the sky region

of an input image by the dark channel prior and retain the

original pixel values in the sky region as possible during

fine-tuning, by the following loss function:

Lsky = ‖Msky ⊙ (J − Jo)‖1 (8)

where Msky is a binary mask indicating the sky region, J

and Jo are the restored images from M and Mo. More

details are provided in the supplementary material.

The reconstruction loss LRec mentioned in Section 3.3 is

also incorporated to integrate all the modules of the network

and optimize them simultaneously.

Eventually, the overall loss function L in this phase is

defined as

L = Lcom + Llwf + Lsky + LRec (9)

4. Experiments

4.1. Implementation Details

We choose OTS (Outdoor Training Set) and URHI

(Unannotated Real Hazy Images) from the RESIDE dataset

[16] for training, where synthetic images from OTS are

for pre-training and real hazy images from URHI for fine-

tuning. All the images are randomly cropped to patches of

size 256×256, with normalized pixel values from −1 to 1.

By default, the experiments of PSD are conducted on

MSBDN [6] backbone, as this model provides state-of-the-

art dehazing performance on synthetic images and is ob-

served quite suitable for our framework. In pre-training,

the backbone is modified and trained for 100 epochs by the

Adam optimizer, with β1 = 0.9 and β2 = 0.999. The initial

learning rate is set to 10−4 with a decay rate of 0.75 for ev-

ery 10 epochs. In fine-tuning, we train the network for 20

epochs, with an initial learning rate set to 10−4 and decayed

by 0.5 for every two epochs. The trade-off weights in loss

function are set to λd = 10−3, λb = 0.05, and λc = 1.

4.2. Comparison With StateoftheArt Methods

We compare the performance of PSD with several state-

of-the-art dehazing methods. A list of experiments are con-

ducted, including visual quality comparison, human sub-

jective survey, no-reference image quality assessment, and

downstream task performance evaluation.

Visual Quality. We first evaluate the visual quality of

PSD on real hazy images from RTTS, which is a subset of

the RESIDE dataset [16]. We compare results of PSD with

the following state-of-the-art methods: NLD [1], AOD-Net

[14], FFANet [28], MSBDN [6], SSLD [17], EPDN [29],

and DAD [34]. The results are shown in Fig. 3. Except for

images from RESIDE, we also evaluate PSD on other real

hazy images to further illustrate its superior generalization

ability. These images are released by authors of previous

studies [8, 9, 11]. The results are shown in Fig. 4.

From Figs. 3 and 4, we can observe that NLD [1] some-

times fails to handle the sky region, which leads to se-

vere color shifting. Images restored by AOD-Net [14] and

MSBDN [6] remain a bit hazy, especially in distant areas.

SSLD [17] and EPDN [29] tend to darken the images, as
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(a) Hazy images (b) NLD [1] (c) AOD-Net [14] (d) MSBDN [6] (e) SSLD [17] (f) EPDN [29] (g) DAD [34] (h) PSD

Figure 3. Comparison of dehazing results on real hazy images from RTTS.

shown in Fig. 3 (e) and Fig. 4 (f). The dehazing results of

DAD [34] are pretty good, but still suffer from color distor-

tion in some cases. Compared with all these methods, PSD

generates high-quality haze-free images, with brighter de-

tails and sharper edges. More dehazing results are shown in

the supplementary material.

Human Subjective Evaluation. We conduct a human

subjective study to evaluate the performance of PSD against

other methods. We take 10 real-world hazy images from

HSTS, a subset in RESIDE dedicated to subjective evalua-

tion. We adopt PSD and the other two domain adaptation

dehazing methods, SSLD [17] and DAD [34], to generate

three dehazed images for each input. Following the proto-

col set by EnlightenGAN [13], we ask ten subjects to in-

dependently compare the results of the three methods in a

pairwise manner. To be specific, each time a human subject

is displayed with a pair of restored images randomly picked

from the three results and is asked to choose an image that

is more clean and visually pleasing, with high-quality de-

tails and no color shifting. As with EnlightenGAN, we fit

a Bradley-Terry model [2] to estimate subjective scores of

the methods. A rank in 1, 2, 3 is then assigned to the three

methods on every image, according to the scores. Fig. 5

shows the evaluation results. PSD gets the highest score on

9 out of the 10 images, which indicates its superior general-

ization performance.

No-Reference Image Quality Assessment. For quanti-

tative comparison, we use the Fog Aware Density Evalua-
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(a) Hazy images (b) NLD [1] (c) AOD-Net [14] (d) MSBDN [6] (e) SSLD [17] (f) EPDN [29] (g) DAD [34] (h) PSD

Figure 4. Comparison of dehazing results on some real hazy images that were released by authors of previous methods.

(a) PSD (b) DAD [34] (c) SSLD [17]

Figure 5. Subjective evaluation results of three dehazing methods.

In each histogram, x-axis denotes the rank (1–3, 1 represents the

highest), and y-axis denotes the number of images of each rank.

Our method scores the highest among 9 out of the 10 tested im-

ages.

Table 1. Quantitative results using NR-IQA metrics on RTTS. Red

and blue indicate the best and the second-best, respectively.

Method FADE↓ NIQE↓ BRISQUE↓ NIMA↑
Hazy 2.484 3.583 37.011 4.3250

MSBDN 1.363 3.154 28.743 4.1401

SSLD 0.867 3.489 32.428 4.2132

DAD 1.130 3.672 32.727 4.0055

PSD 0.920 3.077 25.239 4.3459

tor (FADE) [5] to assess the haze density of images. Also,

we employ three well-known no-reference image quality

assessment indicators: BRISQUE [25], NIQE [26], and

NIMA [36]. All these metrics are evaluated on RTTS

dataset. We compare PSD with SSLD, DAD, and MS-

BDN (the backbone). Results are reported in Table 1. Both

BRISQUE and NIQE are blind image quality evaluators.

They assess overall quality of images and PSD achieves the

best. NIMA predicts aesthetic qualities of images, and PSD

wins the first place again, which shows that the dehazing

results of PSD are clean and visually pleasing. In FADE

results, PSD comes the second. This is because FADE only

focuses on the density of haze and ignores the degraded

image details and color. The results of SSLD, as shown

in Fig. 3 (e), are darker than others and hence look less

hazy, which explains why it is preferred by FADE. How-

ever, SSLD removes many details and textures from the in-

put images, while PSD achieves a better balance between

dehazing cleanness and authenticity. In total, we win three

of the four metrics, that further endorses the superiority of

PSD on real-world dehazing tasks.

Task-Driven Evaluation. As pointed out by several re-

cent studies [19,33,40], the performance of high-level com-

puter vision tasks, such as object detection and recognition,

will severely deteriorate in the presence of environmen-

tal degradations. Image dehazing could be used as a pre-

processing step for these high-level tasks, and the resulting

task performance could in turn become a downstream task

performance indicator, as [13, 16, 19] suggested. We take

RTTS as our test set, which consists of 4,322 real-world

hazy images annotated with object categories and bound-

ing boxes. We use YOLOv3 [30] for the object detection

task and compute the mean Average Precision (mAP). All

the dehazing models only serve as pre-processing modules

to improve the quality of input images before the detec-

tion task, and no domain adaptation or joint learning pro-

cesses are performed. The mAP just indicates the dehazing

quality indirectly. Results are reported in Table 2. YOLO

achieves the highest accuracy on the images processed by

PSD, which provides a side evidence that PSD produces
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(a) Hazy image (b) Without CLAHE loss (c) Without DCP loss (d) Without BCP loss (e) PSD

Figure 6. Results of the ablation study on the proxy loss committee.

(a) Hazy & DAD [34] (b) FFANet [28] (c) GridDehazeNet [21] (d) MSBDN [6]

Figure 7. Our PSD framework can choose different backbones. The first column shows the hazy image and its dehazing result using

DAD [34]. Each column of (b, c, d) shows the dehazing result of one backbone and PSD upon that backbone.

Table 2. Object detection results on RTTS [16].

Hazy MSBDN SSLD DAD PSD

mAP (%) 63.32 65.16 56.98 65.02 65.84

Gain – +1.84 -6.34 +1.70 +2.52

cleaner results and better preserves details.

4.3. Ablation Study

In order to demonstrate the effectiveness of our prior loss

committee, we conduct an ablation study involving the fol-

lowing three control groups: 1) without DCP loss, 2) with-

out BCP loss, 3) without CLAHE reconstruction loss. The

visual results are shown in Fig. 6. In Fig. 6 (b), a com-

mittee without CLAHE reconstruction loss results in poor

light uniformity of the restored image. In Fig. 6 (c), without

DCP Loss, the image remains hazy, some image details are

also blurred. Fig. 6 (d) shows that the absence of BCP Loss

makes the dehazing result darker than expected. Finally,

we can observe that a committee with all the three mem-

bers generates the cleanest and most visually pleasing re-

sult, which indicates that the three priors complement each

other.

4.4. Framework Generalization

We test two new backbones apart from the default MS-

BDN, namely FFANet [28] and GridDehazeNet [21], to

show that PSD is generally applicable as a plug-and-play

framework. We compare the backbones with their corre-

sponding PSD models. In Fig. 7, PSD greatly improves the

generalization of all the three backbones and achieves bet-

ter results as compared to the latest domain adaptation de-

hazing (DAD) [34]. More images and the implementation

details of new backbones are in the supplementary material.

5. Conclusion

We have presented a Principled Synthetic-to-real Dehaz-

ing (PSD) framework that is effective and easy to use. Start-

ing from a backbone pre-trained on synthetic data, we use

unlabeled real hazy images to fine-tune the network in an

unsupervised fashion. This fine-tuning process is guided

by a prior loss committee consisting of several popular

and well-grounded physical priors. Extensive experiments

demonstrate that PSD outperforms the state-of-the-art de-

hazing methods for real-world dehazing.
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