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Abstract

Attention has been an important mechanism for both

humans and computer vision systems. While state-of-the-

art models to predict attention focus on estimating a static

probabilistic saliency map with free-viewing behavior, real-

life scenarios are filled with tasks of varying types and com-

plexities, and visual exploration is a temporal process that

contributes to task performance. To bridge the gap, we con-

duct a first study to understand and predict the temporal se-

quences of eye fixations (a.k.a. scanpaths) during perform-

ing general tasks, and examine how scanpaths affect task

performance. We present a new deep reinforcement learn-

ing method to predict scanpaths leading to different perfor-

mances in visual question answering. Conditioned on a task

guidance map, the proposed model learns question-specific

attention patterns to generate scanpaths. It addresses the

exposure bias in scanpath prediction with self-critical se-

quence training and designs a Consistency-Divergence loss

to generate distinguishable scanpaths between correct and

incorrect answers. The proposed model not only accurately

predicts the spatio-temporal patterns of human behavior in

visual question answering, such as fixation position, dura-

tion, and order, but also generalizes to free-viewing and vi-

sual search tasks, achieving human-level performance in all

tasks and significantly outperforming the state of the art.

1. Introduction

Visual attention plays an essential role in everyday tasks.

While existing works focus on stimulus-driven attention

with free-viewing behavior, underlying daily tasks is an-

other form of attention, i.e., task-driven attention, that se-

lects task-relevant information to make a decision or to ac-

complish a task. Besides, beyond the static saliency map

that highlights the relative importance of a visual input, tem-

poral sequences of eye fixations encode a more comprehen-

sive and natural representation of attention. Understand-

ing and predicting visual scanpaths in general tasks will not

only shed light on the decision-making process but also be

a useful tool for a variety of computer vision applications.

Question:	Is	the	vase	the	same	color	as	the	scarf?

Correct	Answer:	no Incorrect	Answer:	failed

Image

Figure 1. Visual scanpaths of humans can reveal their decision-

making strategies and explain their performance. Those who pay

attention to relevant visual cues can achieve high levels of task per-

formance. This example compares the scanpaths of people who

succeed or fail to answer a question, where the dots represent fix-

ations. The number and radius indicate the fixation order and du-

ration, respectively. The blue and red dots indicate the beginning

and the end of the scanpath, respectively.

Task-driven visual scanpaths reflect the visual explo-

ration to accomplish the task, which also strongly correlates

with task performance. As an example (Fig. 1), to answer

the question “Is the vase the same color as the scarf?” while

exploring the scene, humans need to actively explore the

scene and search for the vase and the scarf. While looking

at the right places at the right time would usually lead to

correct answers (Fig. 1, middle), failing to do so may result

in incorrect answers (Fig. 1, right).

As a step toward understanding and modeling general

task-driven attention, we propose a novel deep reinforce-

ment learning method leveraging task guidance as an im-

portant modality to predict the visual exploration behav-

ior of humans performing general tasks. We first intro-

duce a task guidance map to specify task-relevant image

regions. The map is designed and demonstrated to gener-

alize across tasks. To address the exposure bias that arises

between training- and test-time contexts, we introduce a re-

inforcement learning method that directly optimizes non-

differentiable test-time evaluation metrics [14]. To differ-

entiate eye-movement patterns that lead to different perfor-
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mances, we further introduce a novel loss function to ac-

count for the consistency and divergence between correct

and incorrect scanpaths.

Our work has three distinctions from previous scanpath

prediction studies: (1) While state-of-the-art scanpath pre-

diction studies focus on free-viewing [4, 5, 13, 40] or well-

structured tasks such as visual search [52], this paper for

the first time studies the complex scanpath patterns in gen-

eral decision-making tasks, and investigates the correlation

of scanpaths and performances in this context. (2) Scanpath

prediction has not been as popular (compared with saliency

prediction) or achieved excellent performance (compared

with humans), partly due to the exposure bias – the discrep-

ancy between training-time and test-time contexts. Here

we close the gap using self-critical sequence training in

the reinforcement learning method, leading to significantly

boosted performance that is better than humans. (3) We go

beyond a single task and design a new mechanism to encode

general task-relevant information that is easily adaptable to

other tasks with varying nature and levels of complexity.

The proposed method has been demonstrated by three tasks

with human-level performance.

In sum, this work makes the following contributions:

1. We develop a deep reinforcement learning model to

understand and predict scanpaths in the general task-

driven context with visual question answering (VQA).

Task performance is for the first time taken into ac-

count to predict scanpaths.

2. We propose to explicitly integrate attention maps from

task-specific deep neural network models, allowing the

encoding of task-relevant information as well as pro-

viding an alternative to measure the interpretability of

task-specific models through analyzing model vs. hu-

man attention.

3. To address the discrepancy between training and test-

ing that may have limited the development of scanpath

prediction methods, we apply self-critical sequence

training to directly optimize non-differentiable evalu-

ation metrics. We further introduce a novel loss func-

tion to learn discriminative features and differentiate

correct and incorrect scanpaths.

4. The proposed method significantly outperforms the

state-of-the-art and shows human-level performance

on three tasks: VQA, free-viewing, and visual search,

demonstrating the generalizability of the method.

2. Related Work

Scanpath prediction. To precisely predict where humans

look is not trivial, as eye movements are governed by sev-

eral confounding factors [9]. Existing attention models ei-

ther generate a saliency map where fixations can be sam-

pled based on probability distribution and a winner-take-

all strategy [11, 24, 25, 26, 45], or predict a sequence

of fixations by modeling their spatio-temporal complex-

ity [4, 5, 8, 13, 22, 31, 34, 40, 41, 43, 46, 47, 49]. Our work

is mostly related to the recent studies of task-driven atten-

tion [52]. Instead of studying structured vision tasks such

as visual search [52], we aim to address a broader scope of

general tasks. We use VQA as an example due to its gener-

ality and complexity, while further demonstrating the gen-

eralizability and flexibility of our method by adapting it for

other tasks with various levels of complexity. To the best of

our knowledge, our method is the first scanpath prediction

method that successfully predicts human eye-movement be-

havior in the VQA task, and we further take the correctness

of answers into account. Our model not only approaches

human-level accuracy in the VQA task but is also highly

generalizable across different tasks and datasets.

Human and machine attention in VQA. A unique char-

acteristic of our work is the explicit integration of machine

attention in the prediction of human scanpaths. With the

rapid development of deep neural networks, the attention

mechanism has become an essential component for im-

proving the performance and explainability of VQA mod-

els [12, 28, 44]. However, due to their intrinsic differences,

machine attention disagrees with human attention in many

cases [44]. To study the relationship between human at-

tention and machine attention, Chen et al. [12] and Jiang et

al. [28] have developed datasets and computational methods

to measure, model, and comparatively analyze the attention

maps of humans and VQA models. While these analyses

focus on the spatial difference of attention between correct

and incorrect answers, our method generates individual fix-

ations to study how people maintain and shift their attention

which also encodes temporal information such as durations

and orders. With the explicit incorporation of machine at-

tention, our method also provides an alternative to measure

the interpretability of VQA models based on their effective-

ness in guiding scanpath prediction.

Reinforcement learning in attention prediction. A plau-

sible approach to human attention prediction is reinforce-

ment learning [27, 35, 36]. Early studies consider selec-

tive attention as a Markov decision process [6, 42] that can

be optimized using policy iteration and a predefined reward

function [27, 35, 36]. Recent scanpath prediction meth-

ods [33, 51, 52] adopt inverse reinforcement learning [1, 3]

to automatically learn the unknown reward function from

humans’ eye-movement behavior. Although these methods

are promising, there is still a significant performance gap

between scanpath prediction models and humans. We hy-

pothesize that the performance gap is mainly caused by the

exposure bias that commonly exists in sequence prediction

tasks [38]. Exposure bias indicates the contextual discrep-

ancy between the training and test settings. In scanpath

prediction studies, many evaluation metrics are based on

non-differentiable sequence comparison algorithms. Thus
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Figure 2. Overview of the proposed scanpath prediction network.

most computational methods are only able to use conven-

tional cross-entropy or saliency evaluation metrics for train-

ing, leading to the discrepancy between training-time and

test-time contexts. In this work, we adopt self-critical se-

quence training (SCST) [38] to address this bias by di-

rectly optimizing the non-differentiable test-time metrics.

Leveraging the effectiveness of SCST, we further introduce

a Consistency-Divergence loss to learn the differences be-

tween correct and incorrect scanpaths.

3. Method

We develop a deep reinforcement learning model to

study and predict complex scanpath patterns in general

decision-making tasks, while taking the task performance

into account. This section presents the architecture of the

proposed network and the machine learning methods to

train the network with correct and incorrect scanpaths. Key

technical novelties include the creation of a task guidance

map to dynamically guide the prediction of fixation posi-

tions and durations, a reinforcement learning method with

self-critical sequence training to address the exposure bias,

and a novel Consistency-Divergence loss to learn the differ-

ences between correct and incorrect scanpaths.

3.1. Network Architecture

Where humans look during the VQA task is largely de-

pendent on the input question. Existing task-driven atten-

tion models use a one-hot vector [52] or language embed-

dings [28] to encode the task input. These encoding meth-

ods provide semantic guidance to the model, to generate

task-dependent outputs, but do not spatially align the task

semantics with the visual contents. Differently, we com-

pute a general task guidance map to highlight task-relevant

image regions. This task guidance map is designed to be

easily adaptable for other tasks. For example, it can be an

all-zero matrix for predicting scanpaths in the free-viewing

task, or object detection masks can be used to provide task

guidance in visual search. In this section, we summarize

our method with the general VQA task.

As shown in Fig. 2, we design a neural network model

to dynamically generate a sequence of fixation positions

and durations. A memory module and an attention mech-

anism are developed to selectively memorize and recall

task-relevant visual information. Specifically, given an im-

age and a question, our goal is to generate a sequence

of fixations positions y = {y1, y2, · · · , yT } and durations

T = {τ1, τ2, · · · , τT }. At each step t, the fixation position

yt is sampled from a predicted action map mt, and the fix-

ation duration τt is sampled from a log-normal distribution

with two predicted parameters (µt, σ
2
t ). Besides, a scalar

output et indicates the end of the scanpath. The specific

network design is as follows:

Inputs and task guidance. On the input side, we adopt a

CNN-based visual encoder [21] to extract visual features X

from the image. The influence of the question is represented

as a task guidance map highlighting task-relevant image re-

gions. Trained on large VQA datasets, machine attention

can better bridge the task semantics and visual contents by

highlighting task-relevant spatial regions that are important

for answering the question. Therefore, we guide the predic-

tion of eye fixations using the machine attention of an ex-

ternally trained VQA model [2, 12, 29, 37]. We preprocess

the VQA model’s attention into a 2D task guidance map Z

with its values normalized within the range of [0, 1].
Memory and attention. Answering complex questions re-

quires dynamically updated memory and attention mecha-

nisms to trace the reasoning process over time [12, 28]. The

memory is denoted as Mt = {m0,m1, · · · ,mt−1}, which

explicitly maintains all previously computed action maps,

as well as the task guidance map m0 = Z. This memory as

a whole can be seen as a spatio-temporal attention volume.

By applying it to the visual features X , we can obtain the

memorized features Xt = Mt ◦ X , where ◦ indicates the

Hadamard product. The attention module recalls the most

relevant information from the memory, denoted as

Rt = fatt(Xt; θatt), (1)

where the θatt indicates learnable parameters. It computes
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a temporal attention vector indicating the dynamic impor-

tance of each historical time step [28], to determine what

to recall from the memory for the prediction of the current

fixation.

ConvLSTM and outputs. We design a ConvLSTM net-

work to simultaneously predict the distributions of fixation

positions and durations. The image features X and the re-

called features Rt are fed into a ConvLSTM layer to encode

the spatio-temporal patterns of scanpaths. With its current

hidden state ht, the outputs are computed as

pat (at|a1:t−1) = softmax(fa(ht; θa)), (2)

[µt, σ
2
t ] = fτ (ht; θτ ), (3)

where fa and fτ indicate the output layers and θa and θτ are

learnable parameters. We use [mt, et] = pat (at|a1:t−1) to

represent the distribution of the actions including the action

maps mt and the end-of-scanpath indicator et. Finally, we

sample the fixation point yt following the discrete probabil-

ity values in the action map mt, and sample the fixation du-

ration following the parametric function τt ∼ pτt (τ |µt, σ
2
t ).

We model the duration distribution pτt as a log-normal func-

tion following previous experimental studies [19, 32].

3.2. Objective

Scanpath prediction is a typical sequential learning task.

To address the discrepancy between training and testing

contexts in sequential learning, we propose to apply self-

critical sequence training (SCST) [38] to directly optimize

the non-differentiable evaluation metrics. We further intro-

duce a novel loss function to help differentiate correct and

incorrect scanpaths.

Supervised learning. It is widely used in sequential learn-

ing to minimize a maximum-likelihood loss at each step. In

our context, the objective is to jointly optimize the fixation

action at and the duration τt:

L(θ) = −

T+1
∑

t=1

log pat (a
∗
t |a

∗
1:t−1; θ)−λ

T
∑

t=1

log pτt (τ
∗
t |µt, σ

2
t ),

(4)

where T is the length of the ground-truth fixations, a∗t and

τ∗t are the ground-truth action (one-hot vector indicating the

fixation position or end of the scanpath) and fixation dura-

tion, respectively. The hyperparameter λ balances the con-

tributions of the two loss terms. With this loss function,

we simultaneously train two networks with the correct and

incorrect scanpaths. They share most of their parameters,

except for the memory and output layers.

However, this objective function does not always pro-

duce the best results on the non-differentiable metrics for

scanpath evaluation. This discrepancy between training and

testing contexts has been observed in similar sequence gen-

eration tasks [2, 38]. To address this issue, we propose to

use SCST in scanpath prediction and optimize the network

based on test-time evaluation metrics.

Reinforcement learning with SCST. Specifically, in the

context of scanpath prediction, the objective is to minimize

the negative expected reward:

Lr(θ) = −Ey,T [r(y, T )], (5)

where r(·, ·) is a reward function (i.e., ScanMatch [14]),

while y and T indicate the sampled fixation positions and

durations, respectively. The main idea of SCST is to base-

line the REINFORCE algorithm with the reward achieved

by the current model under the corresponding evaluation

metric used at the test time [38]. To reduce the variance

of the gradient estimate and accelerate the training, for each

network, we compute the average rewards of k scanpaths

and use their mean reward as the corresponding baseline.

We denote their corresponding loss functions as L+
r (θ) and

L−
r (θ), respectively. Without loss of generality, in this pa-

per, we use the superscripts + and − to distinguish the no-

tations for correct and incorrect scanpaths, respectively.

Consistency-Divergence loss. The level of difference be-

tween correct and incorrect scanpaths is image-specific, so

it is difficult to distinguish them by directly learning from

the data. We combine the SCST objective with a novel

Consistency-Divergence loss (CDL) to explicitly quantify

the consistency and divergence of human scanpaths and

force the model predictions to resemble such statistics.

Specifically, given the correct and incorrect ground-truth

scanpaths, we first compute their within-group similarity

r∗+within, r∗−within, and the between-group similarity r∗between, by

averaging the pair-wise evaluation scores within and be-

tween the correct and incorrect groups. The differences

∆r∗+ = r∗+within−r∗between and ∆r∗− = r∗−within−r∗between mea-

sure the consistency of scanpaths within each group com-

pared with the diversity between the two groups. Intuitively,

high within-group similarity and low between-group simi-

larity suggest that the differences between correct and in-

correct scanpaths are more distinguishable. Similarly, we

can evaluate the predicted scanpaths in the same way to

obtain ∆r+(y, T ) and ∆r−(y, T ). The objective of the

proposed CDL is to let ∆r+(y, T ) approximate ∆r∗+ and

∆r−(y, T ) approximate ∆r∗−, so that the differences be-

tween the predicted scanpaths are similar to those of the

ground-truth. Therefore, the CDL is computed as

LCD(θ) = Ey,T

[

|△r+(y, T )−△r∗+|
]

+ Ey,T

[

|∆r−(y, T )−∆r∗−|
]

,
(6)

Finally, we define the total loss as a linear combination

of the negative expected reward and the CDL (6):

L′(θ) = L+
r (θ) + L−

r (θ) + γLCD(θ). (7)

The hyperparameter γ balances the contribution of the loss

terms in the policy gradient update stage [48].
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4. Experiments

We evaluate the proposed method with extensive exper-

iments. Our quantitative and qualitative results demon-

strate the performance and generalizability of the proposed

method, sheding light on some interesting research ques-

tions about scanpath prediction.

4.1. Experiment Settings

Dataset. We conduct our experiments mainly on the AiR

dataset [12]. It consists of images and questions selected

from the balanced validation set of GQA [23] and provides

the eye-tracking data collected from 20 participants who an-

swer the questions. Each question is answered by 10 dif-

ferent participants, and their eye-tracking data are associ-

ated with their answers. The numbers of fixations in the

recorded scanpaths are similar between the correct answers

(10.12 ± 0.99) and the incorrect answers (10.27 ± 1.54).

Their spatial priors are also highly similar. These similari-

ties ensure that models do not differentiate between correct

scanpaths and incorrect scanpaths based on their prior dis-

tributions. We randomly split this dataset into a training set

of 1137 questions, a validation set of 142 questions, and a

test set of 143 questions. The proportion of correct answers

are balanced among these subsets.

Evaluation metrics. To evaluate the models, we generate

10 correct/incorrect scanpaths with each model and com-

pare them with the corresponding ground-truth scanpaths

using a combination of four evaluation metrics: The Scan-

Match [14, 39] measures scanpath similarity based on the

Needleman-Wunsch algorithm [7]. It has been commonly

used to evaluate scanpath prediction models due to its ro-

bustness to the substantial noise inherent in the scanpaths.

The MultiMatch [17] is a multidimensional evaluation met-

ric, composed of five similarity measures regarding shape,

direction, length, position, and duration. The String-Edit

Distance (SED) [10, 20] is a dissimilarity measure that con-

verts scanpaths into strings by associating each image re-

gion with a character. The Scaled Time-Delay Embedding

(STDE) [46] measures the average of the minimum Eu-

clidean distances of each sub-sequence of the compared

scanpaths. For SED and STDE, we report the mean and

best evaluation scores. While the mean scores are the av-

erages of all subjects, the best scores are computed based

on the most similar human scanpath [18]. These comple-

mentary evaluation metrics provide a comprehensive view

of the prediction results.

Implementation details. We use ResNet-50 [21] to encode

the visual features and use AiR [12] VQA model to compute

the task guidance maps. The object-based attention weights

are converted to spatial maps by computing a weighted aver-

age of their bounding box masks [12]. The resolution of the

input image is 240× 320. We discrete the fixation position

into a 30× 40 action map. In supervised learning, we train

our model using the Adam [30] optimizer with learning rate

10−4 and weight decay 5 × 10−5. To avoid the divergence

of loss, we also adopt the warmup strategy [53] followed

by a linear decay of the learning rates. In reinforcement

learning, we also use the Adam [30] optimizer with linearly

decayed learning rates starting at 5×10−5 and weight decay

5 × 10−5. In SCST, we sample k = 5 different scanpaths

for the correct and incorrect answers, respectively. The re-

ward function is defined as the harmonic average of the two

ScanMatch scores, one with duration and the other with-

out. Our implementation of the ScanMatch metric in train-

ing and evaluation follows [14, 39].The hyperparameters λ

and γ are empirically set to 1.0 and 2.0, respectively, based

on the validation set performance.

4.2. Are the predicted scanpaths plausible?

We first evaluate how well the predicted scanpaths simu-

late human behavior. Since we are the first to predict scan-

paths in the VQA task, for a fair comparison, we customize

the most relevant deep-learning-based scanpath prediction

models (i.e., SaltiNet [5], PathGAN [4], and IOR-ROI [40]),

by combining the BERT embedding [16] of the question

with the visual features and jointly predicting the correct

and incorrect scanpaths. Following [40, 52], we measure

human performance by computing the inter-observer agree-

ments within the correct and incorrect groups, respectively.

For each image, we measure the similarity of every pair of

human scanpaths from the same group and compute their

mean values.

Tab. 1 reports the quantitative results of the compared

methods. Our method significantly improves the prediction

of both fixation positions and durations. It outperforms the

other methods on 9.5/11 metrics by a substantial margin.

For example, its ScanMatch scores are over 84% (correct)

and 69% (incorrect) higher than the state-of-the-art meth-

ods. It even outperforms humans on 6.5/11 metrics.

Fig. 3 presents qualitative examples of the predicted

scanpaths. While the state-of-the-art models look at salient

objects in general, our predicted scanpaths align better with

task-related objects and the human eye-movement behav-

ior regarding fixation positions, durations, and orders. Note

that subtle differences of scanpaths can determine the cor-

rectness of answers: the incorrect scanpaths consistently

miss important objects (i.e., phone and knives).

Note that besides our significant performance boost in

predicting correct scanpaths, our method is also effective in

predicting scanpaths that lead to incorrect answers thus to

be avoided. We find that incorrect scanpaths are less con-

sistent compared with correct ones (also corroborated with

Human scores), possibly due to the variety of factors that

may lead to an incorrect decision. Yet with the task guid-

ance and the novel CDL loss, our method can capture the

subtle differences between the correct and incorrect scan-
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Method
ScanMatch ↑ MultiMatch ↑ SED ↓ STDE ↑

w/o Dur. w/ Dur. Vector Direction Length Position Duration Mean Best Mean Best

Human
0.421 0.391 0.945 0.747 0.938 0.879 0.522 7.836 4.804 0.867 0.918

0.375 0.358 0.938 0.734 0.929 0.851 0.526 8.611 6.406 0.841 0.895

SaltiNet [5]
0.112 0.130 0.933 0.676 0.930 0.696 0.504 10.620 9.264 0.729 0.765

0.120 0.138 0.930 0.676 0.926 0.696 0.506 10.650 9.750 0.734 0.754

PathGAN [4]
0.210 0.212 0.940 0.637 0.937 0.806 0.589 8.658 6.535 0.832 0.862

0.221 0.218 0.937 0.637 0.927 0.821 0.612 9.071 7.750 0.844 0.861

IOR-ROI [40]
0.171 0.202 0.918 0.724 0.908 0.782 0.570 9.210 7.332 0.791 0.818

0.198 0.216 0.917 0.737 0.905 0.793 0.590 9.177 7.945 0.801 0.817

Ours
0.394 0.391 0.950 0.717 0.933 0.879 0.615 7.523 5.701 0.869 0.893

0.365 0.368 0.946 0.705 0.930 0.864 0.632 7.955 6.772 0.856 0.877

Table 1. Scanpath prediction results on the AiR dataset (VQA). In each panel, the first row indicates the correct scanpaths and the second

row indicates the incorrect scanpaths. The best results are highlighted in bold. Underlines indicate scores above human performance.

paths, and learn discriminative features relevant to answer

correctness to successfully predict both correct and incor-

rect scanpaths.

4.3. What contributes to the model’s performance?

Our proposed method has three major technical con-

tributions: VQA model attention as the task guidance

(TG), SCST to address the exposure gap, and the novel

Consistency-Divergence loss (CDL). To demonstrate the

contribution of each component, we incrementally apply

Ours

Human

Question: What is the 

device on top of the 

nightstand made of wood?

Answer: phone

Question: Are there 

both knives and 

spoons in the picture?

Answer: yes

PathGAN

SaltiNet

Correct Incorrect IncorrectCorrect

IOR-ROI

Figure 3. Examples of the predicted scanpaths. Each column com-

pares the prediction results and human scanpaths given specific

answer correctness. The number and radius indicate the fixation

order and duration, respectively. The blue and red dots indicate

the beginning and the end of the scanpath, respectively.

them to a baseline (i.e., a task-ignorant supervised-learning

variant of our method). As shown in Tab. 2, each compo-

nent helps predict both correct and incorrect scanpaths. In

particular, though TG results in relatively minor improve-

ments by itself (under supervised learning), it plays a more

important role in reinforcement learning with SCST. This

observation suggests that SCST can help the model to make

better use of the task input to fixate task-relevant regions.

Finally, using the new CDL loss together with SCST opti-

mizes the within-group and between-group consistencies of

the correct and incorrect scanpaths, thus further increasing

the model performance.

4.4. What do the predicted scanpaths fixate?

To investigate how the predicted scanpaths fixate differ-

ent objects, we align the fixation positions with the ground-

truth object annotations provided by the GQA dataset [23].

We segment each image into three regions: 1) Region of

Interest (ROI) is composed of all the objects in the ques-

tions and answers; 2) Non-ROI is composed of the other

annotated objects that are not included in the ROI; 3) Back-

ground is the empty regions without object annotations. For

each compared model, we compute the percentage of fixa-

tions in each region. As shown in Tab. 3, in general, higher-

performance models generate more fixations in the ROI.

Our proposed techniques (i.e., TG, SCST, CDL) improve

the accuracy of fixating task-relevant objects, allowing our

method to perform significantly better than the state-of-the-

art methods [4, 5, 40]. The percentage of fixations to ROI

of our full model is similar to that of humans. Besides, hu-

mans’ correct scanpaths fixate the ROI more frequently than

the incorrect ones, showing the correlation between their at-

tention allocation and task performance. Our method repli-

cates this correlation, while the compared methods fail to

do so. The proposed techniques allow our model to learn

10881



Method ScanMatch ↑ MultiMatch ↑ SED ↓ STDE ↑

TG SCST CDL w/o Dur. w/ Dur. Vector Direction Length Position Duration Mean Best Mean Best

0.290 0.323 0.927 0.719 0.914 0.845 0.537 8.539 6.829 0.838 0.858

0.280 0.310 0.920 0.713 0.909 0.831 0.544 8.797 7.667 0.827 0.845

X
0.296 0.329 0.927 0.719 0.914 0.849 0.533 8.438 6.733 0.841 0.862

0.288 0.317 0.922 0.717 0.910 0.837 0.546 8.749 7.682 0.831 0.850

X
0.360 0.363 0.948 0.705 0.930 0.865 0.612 7.752 5.961 0.860 0.885

0.350 0.350 0.943 0.704 0.925 0.852 0.627 8.013 6.818 0.850 0.871

X X
0.369 0.370 0.949 0.713 0.933 0.869 0.605 7.741 5.982 0.860 0.883

0.350 0.352 0.944 0.716 0.927 0.856 0.616 8.066 6.946 0.849 0.870

X X
0.385 0.383 0.949 0.714 0.932 0.876 0.614 7.569 5.736 0.867 0.891

0.348 0.354 0.945 0.703 0.928 0.855 0.620 8.011 6.796 0.849 0.873

X X X
0.394 0.391 0.950 0.717 0.933 0.879 0.615 7.523 5.701 0.869 0.893

0.365 0.368 0.946 0.705 0.930 0.864 0.632 7.955 6.772 0.856 0.877

Table 2. Ablation study of TG, SCST and CDL on the AiR dataset. In each panel, the first row indicates the correct scanpaths and the

second row indicates the incorrect scanpaths. The best results are highlighted in bold.

Method
Fixations Position %

ROI ↑ Non-ROI ↓ Background ↓

Human
26.43 67.48 6.09

21.60 71.92 6.48

SaltiNet [5]
4.17 77.88 17.95

3.96 78.49 17.55

PathGAN [4]
7.82 84.34 7.83

7.17 86.10 6.73

IOR-ROI [40]
9.14 82.99 7.87

9.79 82.53 7.67

Ours
25.04 69.70 5.26

22.33 72.27 5.40

Table 3. Percentage of fixations in ROI, non-ROI, and background.

In each panel, the first row indicates the correct scanpaths and the

second row indicates the incorrect scanpaths.

more discriminative features and better distinguish correct

and incorrect scanpaths.

4.5. Which VQA model is the most effective?

The explicit use of VQA models in our method allows us

to evaluate and visualize VQA models from a human atten-

tion’s perspective, which has not been explored before. We

evaluate the effectiveness of four VQA models: AiR [12],

UpDown [2], HAN [37] and MLB [29]. Fig. 4 compares

their VQA accuracy on the GQA (test-dev) dataset, ma-

chine attention accuracy (AiR-E [12]), and the scanpath

prediction performance (ScanMatch w/ duration). As can

be seen, both the machine attention accuracy and VQA ac-

curacy are positively correlated with the scanpath predic-
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Figure 4. Comparison of VQA models’ answer accuracy, scanpath

accuracy, and machine attention accuracy (bubble size).

tion performance. Object-based attention maps tend to be

more accurate and provide better task guidance: AiR [12]

achieves the best performance, thanks to its explicit atten-

tion supervision with the ground-truth object annotations.

UpDown [2] computes implicitly supervised object-based

attention, achieving lower performances in scanpath pre-

diction. HAN [37] relies on attention ground-truth from

a specific group of questions [15], which leads to lower

performances and difficulties to generalize. MLB [29] is

based on image features, so its spatial attention maps may

not highlight objects, leading to the lowest performances.

In sum, our method suggests that a well-designed machine

attention mechanism not only improves the performance of

VQA models but also benefits human attention prediction.

It also enables further correlational studies between human

and machine attention mechanisms.
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Method
ScanMatch ↑ MultiMatch ↑ SED ↓ STDE ↑

w/o Dur. w/ Dur. Vector Direction Length Position Duration Mean Best Mean Best

Human 0.390 0.386 0.941 0.695 0.931 0.851 0.621 7.486 5.001 0.844 0.906

Itti et al. [26] 0.211 0.088 0.824 0.653 0.763 0.685 0.415 8.701 6.529 0.714 0.757

SGC [41] 0.211 – 0.906 0.658 0.870 0.717 – 8.422 6.194 0.771 0.837

Wang et al. [46] 0.151 – 0.857 0.641 0.801 0.625 – 9.051 7.129 0.682 0.739

Le Meur et al. [34] 0.228 – 0.864 0.657 0.831 0.701 – 8.573 6.536 0.739 0.788

STAR-FC [49] 0.204 – 0.920 0.662 0.900 0.668 – 8.393 6.314 0.751 0.828

SaltiNet [5] 0.169 0.142 0.868 0.647 0.840 0.655 0.566 8.948 7.001 0.706 0.763

PathGAN [4] 0.077 0.079 0.919 0.572 0.905 0.511 0.678 9.414 7.677 0.611 0.691

IOR-ROI [40] 0.267 0.265 0.891 0.709 0.860 0.759 0.634 8.180 6.003 0.789 0.844

Ours 0.383 0.377 0.943 0.651 0.924 0.847 0.684 7.155 4.579 0.852 0.905

Table 4. Performances on the OSIE dataset (free-viewing). The best results are highlighted in bold. Underlines indicate scores above

human performance.

Method
ScanMatch ↑ MultiMatch ↑ SED ↓ STDE ↑

w/o Dur. w/ Dur. Vector Direction Length Position Duration Mean Best Mean Best

Human 0.526 0.490 0.944 0.755 0.934 0.913 0.685 2.181 0.359 0.920 0.974

SaltiNet [5] 0.199 0.127 0.909 0.546 0.907 0.740 0.551 4.037 2.742 0.759 0.829

PathGAN [4] 0.277 0.198 0.930 0.561 0.926 0.839 0.604 2.820 1.694 0.847 0.901

IOR-ROI [40] 0.316 0.274 0.919 0.665 0.907 0.834 0.586 4.384 2.595 0.846 0.896

IRL [52] 0.403 – 0.904 0.630 0.887 0.825 – 2.734 1.002 0.898 0.952

Ours 0.554 0.510 0.941 0.706 0.927 0.914 0.721 1.852 0.484 0.923 0.965

Table 5. Performances on the COCO-Search18 dataset (visual search). The best results are highlighted in bold. Underlines indicate scores

above human performance.

4.6. Does the proposed method generalize?

Our method can generalize across tasks with different

complexities. Similar to what we observe in the VQA task,

results in the free-viewing and visual search tasks also show

a significant performance boost, achieving a human-level

performance. First, for the free-viewing task (i.e., task guid-

ance and CDL are not applicable), we conduct experiments

on the OSIE dataset [50] following the settings of Sun et

al. [40]. Tab. 4 shows that our method significantly out-

performs the state-of-the-art methods [4, 5, 26, 34, 40, 41,

46, 49] on 10/11 metrics with over 42% higher ScanMatch

scores. Next, we conduct experiments on COCO-Search18,

a visual search dataset [52], using a CenterNet [54] detec-

tor to detect the search targets and generate the task guid-

ance maps. As shown in Tab. 5, our method outperforms

the state-of-the-art approaches [4, 5, 40, 52] by a large mar-

gin and reaches human-level performance on 6/11 metrics.

Particularly, our ScanMatch scores are over 37% better than

the state-of-the-art [52] and over 5.3% better than humans.

These overwhelming performances demonstrate the robust-

ness and generalizability of our method in different task set-

tings.

5. Conclusion

We propose the first model for predicting human scan-

paths during visual question answering. By explicitly inte-

grating a task guidance map, the model learns to predict a

sequence of task-driven scanpaths that lead to correct or in-

correct answers. To address the exposure bias, we propose

an SCST approach that optimizes the model based on scan-

path evaluation metrics and a Consistency-Divergence loss

to distinguish between correct and incorrect scanpaths. Our

method significantly outperforms the state-of-the-art meth-

ods on multiple datasets and tasks. Our experiments suggest

that our model can predict human-like scanpaths and reveal

the critical fixation patterns that determine the task perfor-

mance. The improved performance of human scanpath pre-

diction will push forward the research on task-driven atten-

tion and advance a wide range of applications in the devel-

opment of intelligent robots, automatic design and advertis-

ing systems, human-computer interaction systems, and di-

agnostic tools for mental healthcare.
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