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Abstract

Determining which image regions to concentrate is crit-

ical for Human-Object Interaction (HOI) detection. Con-

ventional HOI detectors focus on either detected human and

object pairs or pre-defined interaction locations, which lim-

its learning of the effective features. In this paper, we refor-

mulate HOI detection as an adaptive set prediction prob-

lem, with this novel formulation, we propose an Adaptive

Set-based one-stage framework (AS-Net) with parallel in-

stance and interaction branches. To attain this, we map a

trainable interaction query set to an interaction prediction

set with transformer. Each query adaptively aggregates the

interaction-relevant features from global contexts through

multi-head co-attention. Besides, the training process is

supervised adaptively by matching each ground-truth with

the interaction prediction. Furthermore, we design an ef-

fective instance-aware attention module to introduce in-

structive features from the instance branch into the inter-

action branch. Our method outperforms previous state-

of-the-art methods without any extra human pose and lan-

guage features on three challenging HOI detection datasets.

Especially, we achieve over 31% relative improvement on

a large scale HICO-DET dataset. Code is available at

https://github.com/yoyomimi/AS-Net.

1. Introduction

Human-Object Interaction (HOI) detection aims to iden-

tify HOI triplets <human, verb, object> from a given im-

age, it is an important step toward the high-level semantic

understanding [8, 26, 46, 18, 17, 19, 6, 7, 44]. Conven-

tional HOI methods can be divided into two-stage meth-

ods [38, 3, 10, 25, 24, 14, 9, 35] and one-stage meth-

ods [20, 27]. Most two-stage methods detect instances (hu-

mans and objects), and match the detected humans and ob-

jects one by one to form pair-wise proposals in the first

stage. Next, in the second stage, such methods infer the

interactions based on the features of cropped human-object
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(a) Union boxes: verb "direct" in yellow, "drive" 
in purple, matched anchor in red.

(c) Our adaptive set prediction method: verb "drive" in purple, "direct" in yellow. Interaction vectors 
point from human centers to object centers. The features aggregated by queries are visualized at left.
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(b) Interaction midpoints: verb "direct" in yellow, 
"drive" in purple, matched point in red.
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Figure 1. Both the anchor-based (a) and point-based (b) one-stage

methods infer two different interactions “drive” and “direct” are at

similar location and concentrate on the similar features. Our set

prediction method (c) maps an interaction query set to an inter-

action prediction set by an interaction decoder. Then, interaction

predictions are adaptively matched with ground-truth. To attain

this, we first train a set of learnable embeddings as an interaction

query set. Next, each interaction query adaptively aggregates the

interaction-relevant features by co-attention. Finally, we match

each ground-truth with prediction for adaptive supervision. This

mechanism empowers our method to accurately predict two inter-

actions for “drive” and “direct”. Best viewed in color.

pair-wise proposals. Two-stage methods have made great

progress in HOI detection, however, their efficiency and ef-

fectiveness are limited by their serial architectures. With the

development of one-stage object detectors, one-stage HOI

detectors [20, 27] have raised a new fashion. Existing one-

stage HOI detectors formulate HOI detection as a parallel

detection problem, which detects the HOI triplets from an

image directly. One-stage methods have delivered great im-

provements in both efficiency and effectiveness.

Determining which regions to concentrate on is criti-

cal and challenging for HOI detectors. To obtain essen-

tial features for interaction prediction, conventional two-
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stage methods usually involve extra features, e.g., human

pose [38, 5, 24, 14] and language [43, 9, 30, 21]. However,

even with extra features, two-stage methods still focus on

the detected instances that might be inaccurate, which are

less adaptive and limited by the detected instances. One-

stage methods partially alleviate these issues by inferring

interactions directly from the whole image. Such meth-

ods intuitively define a location-relative medium to predict

interactions, and can be mainly divided into anchor-based

methods and point-based methods. Anchor-based meth-

ods [20] predict the interactions based on the union box of

each pair-wise human and object instances. While point-

based methods [27] infer the interaction midpoint of each

corresponding human-object pair. However, we argue that

it is sub-optimal to predict the interaction through a pre-

defined interaction location. Figure 1 illustrates an example.

The interaction “direct” (in yellow) and “drive” (in purple)

are quite different and thus require different visual features

for interaction prediction. However, their union boxes are

considerably overlapped (Figure 1 (a)), and their interaction

midpoints are very close (Figure 1 (b)). Therefore, these

one-stage methods concentrate on similar visual features for

the two different interactions.

To further address the limitation of interaction location

in one-stage methods, we reformulate interaction detection

as a set-based prediction problem. We define an interac-

tion query set with several learnable embeddings, and an

interaction prediction set. Each embedding in the query

set is mapped by a transformer based interaction decoder

to an interaction prediction set. By feeding the interac-

tion query set into a multi-head co-attention module, we are

able to adaptively aggregate features from global contexts.

Our proposed method matches each ground-truth with the

resembling interaction prediction for adaptive supervision.

Therefore, our proposed method adaptively concentrates on

the most suitable features for each prediction, free from the

location limitation of conventional one-stage methods. As

demonstrated in Figure 1 (c), our method aggregates arm

features of the left person and pose features of the right per-

son to make two different interaction predictions. The pre-

dictions are then matched with the ground-truth interaction

“direct” and “drive” respectively.

To this end, we propose a novel Adaptive Set-based one-

stage framework, namely AS-Net. Our AS-Net consists of

two parallel branches: an instance branch and an interac-

tion branch. Both branches leverage a transformer encoder-

decoder structure, which utilize global features to perform

set predictions. The instance branch predicts location and

category for each instance, while the interaction branch pre-

dicts interaction vectors and their corresponding categories.

The interaction vectors point from the centers of the human

instances to the centers of the object instances. We obtain

the predicted interaction triplets by matching each interac-

tion vector from the interaction branch with the detected

instances from the instance branch. Besides, we exploit an

instance-aware attention module in a co-attention manner

to perform branch aggregation. Specifically, this module

aggregates information in the instance branch and intro-

duces the aggregated features into the interaction branch.

We also utilize semantic embeddings to perform more ac-

curate human-object matching.

We test our proposed AS-Net on three datasets, i.e.,

HICO-Det [34], V-COCO [13], and HOI-A [27]. Our pro-

posed AS-Net outperforms all the other algorithms among

all datasets. In specific, our proposed AS-Net has gained

31% relative improvement comparing to the previous state-

of-the-art one-stage method [27] on HICO-DET.

Our contributions can be concluded in the following

three aspects:

• We formulate HOI detection as a set prediction prob-

lem, which breaks the instance-centric limitation and

location limitation of the existing methods. Thereby,

our method can adaptively concentrate on the most

suitable features to improve the predicting accuracy.

• We propose a novel one-stage transformer-based HOI

detection framework, namely AS-Net. We also design

an instance-aware attention module to introduce the in-

formation in the instance branch into the interaction

branch.

• Without introducing any extra features, our method

outperforms all the previous state-of-the-art methods,

achieving 31% relative improvement over the second

best one-stage method on the HICO-DET dataset.

2. Related Work

Two-stage Methods. Most conventional HOI detectors are

in a two-stage manner. In the first stage, an object de-

tector [11, 36, 4] is applied to detect the instances. In

the second stage, the cropped instance features are classi-

fied to obtain the interaction categories. In addition to the

cropped instance features, previous methods leverage com-

bined spatial features [3, 12, 10, 14, 9, 16, 47], union box

features [34, 40], or context features [10, 41, 30] to improve

the accuracy of HOI detection. In order to concentrate on

more interaction-relevant features, some methods utilize ex-

tra features, such as human pose [38, 5, 24, 14], human

parts [48, 40, 23] and language features [43, 9, 30, 21].

However, the serial architectures of such two-stage meth-

ods impair the efficiency of HOI detection. Moreover, the

prediction accuracy is usually limited by the results of in-

stance detection.

One-stage Methods. Recently, one-stage HOI detection

methods with higher efficiency [20, 27] have attracted in-

creasing attention. Most one-stage methods extract fea-

tures with a bottom-up structure[32, 45], and detect the
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Figure 2. Overview of the proposed framework. First, a CNN and a transformer encoder are applied to extract the feature sequence with

global contexts. Then two branches are built on the transformer decoder layers: a) the instance branch transforms a set of learnable

instance queries to an instance prediction set one by one b) the interaction branch utilizes an interaction query set to estimate an interaction

prediction set. The instance-aware attention module is designed to introduce the interaction-relevant instance features from the instance

branch to the interaction branch. At the end, the detected instances are matched with the interaction predictions to infer the HOI triplets.

HOI triplets in parallel from an image directly. Specifically,

the one-stage methods can be divided into anchor-based

methods [20] and point-based methods [27] according to

the manners of their interaction prediction. The anchor-

based methods predict the interactions based on each union

box. The point-based methods perform inference at each

interaction key point, such as the midpoint of each cor-

responding human-object pair. Though breaking the lim-

itation from instance detection, such methods which pre-

assign each ground-truth interaction to the predictions, are

still non-adaptive and limited by the interaction locations.

3. Methods

HOI detection aims to predict the triplet of <human,

verb, object>, which contains a pair of bounding-boxes for

a human and an object, and a corresponding verb category.

In this paper, we reformulate HOI detection as a set predic-

tion problem, and propose an Adaptive Set-based one-stage

Network (AS-Net).

Our AS-Net builds on a transformer encoder-decoder

architecture and makes parallel set-based predictions for

the HOI triplets. As illustrated in Figure 2, our proposed

AS-Net consists of four parts. We first utilize a back-

bone (Section 3.1) to extract the visual feature sequence

with global contexts. The instance (Section 3.2) and inter-

action branches (Section 3.3) following the backbone paral-

lelly detect an instance and interaction prediction set from

the feature sequence respectively. In order to intensify the

instance features that are valuable for interaction inference,

we design an instance-aware attention module (Section 3.4)

to perform branch aggregation. Specifically, we introduce

semantic embeddings (Section 3.5) in instance and interac-

tion branches for more accurate triplet prediction. At the

end, we match detected instances and interactions to obtain

the final HOI triplets (Section 3.6).

3.1. Backbone

We define the backbone by combining a CNN and a

transformer encoder to extract the image features. The en-

coder is in a multi-layer manner, where each layer com-

prises a multi-head self-attention module and a two-layer

Feed-Forward Network (FFN). For a given image, we first

extract a visual feature map I ∈ R
W×H×C using the CNN.

Then we utilize a 1×1 convolution to reduce the channel di-

mension of the visual feature map from C to d, and reshape

such feature map as a feature sequence Is ∈ R
WH×d. Next,

we feed the feature sequence to the encoder which refines

the feature sequence by introducing global contexts into the

output feature sequence I ′
s ∈ R

WH×d.

3.2. Instance Branch

The instance branch is designed to localize and clas-

sify the instances. Following the detector DETR [2], our

instance branch consists of a multi-layer transformer de-

coder and several FFN heads. Each layer of the decoder

is comprised of a self-attention module, and a multi-head

co-attention module. The input of each decoder layer is the

summation of a learnable positional embedding sequence

Qd ∈ R
Nd×d and the output of last layer. Except for the

first layer where there is no output of last layer, we added

zeros to the learnable positional embedding sequence. We

first feed the input into the self-attention module. Then

the multi-head co-attention module adaptively aggregates

the key contents from I ′
s to Fd ∈ R

Nd×d, where we take

Qd with the output of self-attention as queries, and I ′
s with

the corresponding fixed positional encodings [33] as keys.

There is an FFN head on top of each decoder layer to decode

a set of instance predictions from Fd. The FFN head com-

prises three independent sub-branches. One to predict the
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normalized bounding-box in (cx, cy, w, h) format for each

detected instance. Another to infer a (Ld + 1)-dimensional

scores for Ld categories, where the last dimension refers to

the no-object (∅) category. The other to generate a distinc-

tive semantic embedding ε ∈ R
K for each instance, which

will be explained in Section 3.5. Each sub-branch consti-

tutes of one or several perception layers. The FFN head of

each decoder layer shares the same weights.

Training. For the set-based training process, we first find a

one-to-one bipartite matching between the detected instance

set ŷ and the ground-truth y (padded with no-instance ∅

to a set of size Nd). To this end, we deploy a matching

loss, which is the summation of bounding-box loss and cat-

egory semantic distance between instance and all ground-

truth bounding-boxes. Following [2], the bounding-box loss

is composed of a l1 loss and a GIoU loss [37]. The category

semantic distance is the negative of summation of the pre-

dicted scores for each ground-truth category.

The universal index permutation set of Nd predictions is

denoted as SNd
. We consider σ̂d ∈ SNd

that minimizes

the summation of all the matching cost Lmatch(ŷσd(i), yi)
as the optimal index permutation of the detected instance

set, which we adopt the Hungarian algorithm [22] to calcu-

late. The i-th element of the index permutation σd ∈ SNd

is defined as σd(i), and the σ̂d is formulated as:

σ̂d = argmin
σd∈SNd

Nd∑

i=1

✶yi 6=∅Lmatch(ŷσd(i), yi). (1)

For the instance prediction with index permutation σ̂d(i),
the predicted bounding-box and category are represented

as b̂σ̂d(i) and p̂σ̂d(i) respectively. We follow the DETR de-

tector [2] to construct the set-based instance detection loss

Lins:

Lins =

Nd∑

i=1

[− log p̂σ̂d(i)(ci) + ✶{ci 6=∅}Lbox(bi, b̂σ̂d(i))], (2)

where bi and ci denotes the bounding-box and category of

the matched ground-truth instance respectively, p̂σ̂d(i)(ci) is

the confidence score for category ci.

3.3. Interaction Branch

The interaction branch predicts the interaction vectors

and categories for each interaction. Its architecture is sim-

ilar to the instance branch, which constitutes a multi-layer

transformer decoder and several FFN heads. Each decoder

layer utilizes several interaction query set Qr to aggre-

gate the corresponding key contents Fr ∈ R
Nr×d from the

shared feature sequence I ′
s. Each decoder layer is equipped

with a FFN head as the instance branch. Each FFN head is

also split into three sub-branches. For each interaction pre-

diction, we predict a 4-dimensional interaction vector with

categories, and two semantic embeddings, i.e., εh ∈ R
K

and εo ∈ R
K for the corresponding human and object

instances respectively. The interaction vector points from

the normalized human center (xh
ct, y

h
ct) to the object center

(xo
ct, y

o
ct). Considering there might exist multiple interac-

tions for the same human-object pair, we use a multi-label

classifier to predict a score for each verb category respec-

tively.

Training. We denote the ground-truth interaction as t =
(v, z), where v is the interaction vector of t, and z indicates

the L ground-truth interaction categories of t. We compute

the matching loss between t and each predicted interaction

t̂ = (v̂, ẑ), where v̂ refers to the predicted interaction vector

and ẑ indicates the confidence scores of the interaction cat-

egories. The matching cost Lmatch(t̂σr(i), ti) can be com-

puted by:

Lmatch(t̂σr(i), ti) = ‖vi−v̂σr(i)‖1+
L∑

l=1

− 1

1 + e−ẑσr(i)(zl)
,

(3)

where ẑσr(i)(zl) refers to the score for the l-th ground-truth

interaction category zl of t. Similar to the set-based training

process for the instance branch, we utilize the Hungarian

algorithm [22] to find the optimal index assignment σ̂r for

the predicted interaction set w.r.t. the ground-truth.

For the interaction prediction with index σ̂r(i), we de-

fine the predicted interaction vector and categories as v̂σ̂r(i)

and ẑσ̂r(i) respectively, and the matched target interaction

vector and categories are vi and zi respectively. To balance

the ratio between the positive and negative samples for each

classifier, we apply Focal loss [28], denoted as Lcls, for the

training of interaction classification. Besides, we adopt l1
loss, denoted as Lreg, for the regression of interaction vec-

tors. The interaction loss Lint is calculated as:

Lint =

Nr∑

i=1

[λclsLcls(zi, ẑσ̂r(i))

+ ✶{zi 6=∅}λregLreg(vi, v̂σ̂r(i))],

(4)

where λcls and λreg are the weight coefficients of Lcls and

Lreg respectively.

Analysis. Adaptation is involved in the interaction predic-

tion from two aspects. First, for each interaction query,

we apply multi-head co-attention to aggregate informa-

tion from each element in the feature sequence. Hence,

each query can adaptively aggregate the interaction-relevant

visual features. Second, instead of pre-assigning each

ground-truth to the corresponding prediction, we consider

both the predicted interaction vectors and categories to

match each ground-truth interaction with the resembling

prediction. Therefore, each interaction prediction can be su-

pervised by the most suitable ground-truth more adaptively.

3.4. Instance­aware Attention

We construct an instance-aware attention module be-

tween each instance and interaction layer to emphasize rel-

9007














