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Abstract

Data augmentation has become a de facto component

for training high-performance deep image classifiers, but

its potential is under-explored for object detection. Not-

ing that most state-of-the-art object detectors benefit from

fine-tuning a pre-trained classifier, we first study how the

classifiers’ gains from various data augmentations trans-

fer to object detection. The results are discouraging; the

gains diminish after fine-tuning in terms of either accuracy

or robustness. This work instead augments the fine-tuning

stage for object detectors by exploring adversarial exam-

ples, which can be viewed as a model-dependent data aug-

mentation. Our method dynamically selects the stronger

adversarial images sourced from a detector’s classification

and localization branches and evolves with the detector to

ensure the augmentation policy stays current and relevant.

This model-dependent augmentation generalizes to different

object detectors better than AutoAugment, a model-agnostic

augmentation policy searched based on one particular de-

tector. Our approach boosts the performance of state-of-

the-art EfficientDets by +1.1 mAP on the COCO object de-

tection benchmark. It also improves the detectors’ robust-

ness against natural distortions by +3.8 mAP and against

domain shift by +1.3 mAP.

1. Introduction

Deep neural networks (DNNs) are powerful tools for vi-

sual representation learning. As the training data grows in

size and diversity, DNNs keep up the pace and achieve un-

precedented performance on a wide range of benchmarked

tasks [13, 31, 30, 24, 12, 29]. The learned representa-

tions also demonstrate good transferability to downstream

tasks for which there is often a small amount of curated

data. This pre-training and then fine-tuning paradigm is

one of the crucial enablers for state-of-the-art object de-

tectors [32, 11, 30, 20, 22]. In this paper, we aim to en-

hance this learning paradigm for training not only accurate

but also robust object detectors.

*Work done during an internship at Google.

Figure 1. Top: Det-AdvProp improves object detectors’ accuracy

on clean images. Our model correctly detects some objects (e.g.,

“spoon” and “knife”) missed by the vanilla detector trained with-

out Det-AdvProp. Middle: Det-AdvProp improves the detectors’

robustness against natural corruption. The vanilla detector misses

“bowl” and “oven” and produces a false positive for “person” af-

ter the image is corrupted by motion blur. Bottom: Det-AdvProp

improves robustness against cross-dataset domain shift. We can

successfully detect the “potted plants” behind the “cat” from an

image out of the dataset for training. (best viewed in color).

We first revisit the role of pre-training in object detec-

tion, given He et al.’s study [11] about vanilla ImageNet [5]

pre-training and yet the new advances in data-augmented

ImageNet pre-training [36, 34]. We examine both the ac-

curacy and robustness of the detectors. In the study with

the top-performing EfficientDet detectors [33], we find that

the performance gains for ImageNet classification, brought
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by advanced data augmentation methods in pre-training, di-

minish after fine-tuning regardless of the detectors’ accu-

racy or robustness. This observation motivates us instead to

investigate fine-tuning, the second stage in the paradigm for

training object detectors.

Our high-level idea is to reposition the recently devel-

oped data augmentations from the pre-training stage to fine-

tuning. We first study AutoAugment [43] in the object de-

tector fine-tuning because its policy is purposely searched

for augmenting object detectors’ training. However, exper-

iments reveal that AutoAugment fails to provide consistent

improvements to the detectors we studied, probably because

it was searched based on only one object detector and one

dataset, limiting its generalization ability.

In light of the lessons above, we switch to the model-

dependent data augmentation of AdvProp [34] for fine-

tuning object detectors. AdvProp uses adversarial exam-

ples to improve image classification models. It employs

separate batch normalization layers for the clean training

images and the adversarial examples to accommodate their

distinct statistics. Unlike AutoAugment or many other aug-

mentation methods, AdvProp can dynamically evolve with

the primary model during training to ensure the augmenta-

tion is up to date.

We improve AdvProp to fit it into the object detection

fine-tuning (denoted by Det-AdvProp). Previous works

show that detectors benefit from shape cues [8], and adver-

sarial examples help CNNs learn shape-related representa-

tions [40]. There are two sources to generate adversarial

examples using a detector: its classification head and its

localization head. We conduct a local comparison at each

training iteration to identify the source that is more “adver-

sarial” than the other, which is then selected to augment the

training data. We show that this local comparison is crucial.

Straightforwardly aggregating the two sources gives rise to

weak adversarial examples because some of the adversarial

gradients mutually conflict [38]. Another alternative, keep-

ing both and separating them to different batch normaliza-

tion layers, incurs a too strong regularization to the detector,

leading to low accuracy, albeit high robustness.

We report the following main findings in this paper. Al-

though the pre-training stage remains more effective for ob-

ject detection than random initialization under a reasonable

computing budget (we run the fine-tuning for up to 300

epochs on the COCO object detection dataset [21]), the

performance gain at the pre-training-stage diminishes after

fine-tuning, regardless of any strong data augmentations for

the pre-trained backbone. Instead, we demonstrate that it

is more promising to incorporate advanced data augmen-

tations into fine-tuning. Our Det-AdvProp boosts state-of-

the-art EfficientDets’ accuracy by 0.3–1.1 mAP, robustness

to natural corruption by 0.8–3.8 mAP, and robustness to do-

main shift by 0.2–1.3 mAP (illustrated in Figure 1). Fi-

nally, we see that our model-dependent Det-AdvProp sub-

stantially outperforms the model-agnostic AutoAugment in

object detection under various settings.

2. Related Work

Data Augmentation. By applying label-preserving trans-

formation to images, data augmentation has become a stan-

dard paradigm for training an image classifier [3, 4, 34, 37,

16, 19, 41, 18]. Most of them are model agnostic policy.

In comparison, AdvProp [34] augments the training data

by adversarial attack, its augmentation policy is unique to

model and data. For the downstream object detection task,

there are much fewer works specifically crafted for the fine-

tuning process [42, 43]. One representative work - Au-

toAugement [43] searches based on RetinaNet [20] and a

subset of COCO dataset [21], containing operations like ro-

tation and bbox-only-translation.

Attacks and Adversarial Training for Object Detectors.

Many effective attacks crafted for object detectors have

been proposed recently. Most of them generate adversar-

ial examples solely based on one individual loss (classifica-

tion or localization loss) of the detection task [35, 2, 7, 25].

For instance, DAG [35] optimizes over a loss function that

misleads the detectors to produce incorrect classification re-

sults. Some other works [17, 23] simultaneously attacks

both the bounding box regression and classification to dis-

able their predictions. To defend those attacks, Zhang et

al. [38] extend adversarial training [26] to the scenario of

object detection by leveraging the attacks sourced from both

classification and localization domains. Our proposed Det-

AdvProp can largely outperform their adversarial training in

terms of both clean accuracy and robustness (Appendix B).

3. Motivation

Data augmentation is an effective way to improve im-

age classification models [3, 37, 4, 36]. For example, Ad-

vProp [34] uses adversarial images to boost the accuracy

of EfficientNets [32] by up to 0.6% on ImageNet [5] ac-

curacy, and Noisy Student [36] trained with noise and data

as augmentation surpasses the vanilla models by over 1%

on ImageNet. When it comes to object detection, which is

arguably more complex than image classification, there are

two natural choices to augment a detector: (i) Borrow an

already augmented model from the upstream classification

task and then fine-tune it for object detection. (ii) Directly

augment the detector during training.

We first examine the first choice (i). We follow the com-

mon practice to fine-tune pre-trained ImageNet classifiers

using the MS COCO object detection dataset [21]. Specifi-

cally, we initialize three sets of EfficientDets [33] (each set

contains a small-scale detector D2 and a large-scale detec-

tor D5) by three ImageNet models, which are respectively
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Figure 2. Results of EfficientDet-D2 and D5 on COCO and

COCO-C with vanilla, AdvProp [34], and Noisy Student [36] pre-

trained backbones. Fine-tuning substantially attenuates the effect

of these data augmentation methods applied to pre-training.

pre-trained with no strong augmentation, AdvProp [34], and

Noisy Student [36]. We fine-tune the networks up to 300

epochs to ensure they converge.

Figure 2 shows the comparison results on the valida-

tion sets of MS COCO [21] and COCO-C [27], respec-

tively. The COCO-C dataset provides natural corruption

to the COCO images aiming to test a detector’s robustness

to the real-world adversary. Although the checkpoints pro-

duced by AdvProp and Noisy Student surpass their vanilla

counterparts (e.g., for B5, AdvProp +0.6% accuracy on

ImageNet and -6.1% mean corruption error on ImageNet-

C [14]), their advantages do not transfer to the object de-

tection. The detectors built upon them perform similarly

and sometimes even worse on COCO than the detector fine-

tuned from the vanilla checkpoint. A similar observation

holds on COCO-C. Our study is in the same vein as [11],

but we examine the detectors’ robustness in addition to their

accuracy.

Since the fine-tuning attenuates the performance gains

by strong data augmentation in the upstream classification

task, we shift to the second option, augmenting during fine-

tuning for harvesting data augmentation to improve a detec-

tor’s accuracy and robustness. It is nontrivial to kill accu-

racy and robustness with one stone. Our first trial is with

AutoAugment [43], which is searched based on the Reti-

naNet object detector [20] over COCO. However, it does

not generalize well to other detectors (EfficientDets in this

work), albeit still on the same COCO dataset (see Tables 1,

3, 5 for the results).

In light of these challenges, we develop a model-

dependent augmentation for object detection via adversar-

ial learning, given AdvProp’s promising results [34]. Our

method enables a detector to model adversarial images

sourced from both object classification and localization, en-

forcing the detector to learn from its own weaknesses with-

out the need for policy search as in AutoAugment [43].

4. Approach

This section describes our main approach to improving

the object detectors’ robustness and accuracy. We start by

reviewing AdvProp for classification [34] and then tailor it

for object detection.

4.1. AdvProp for Classification Revisited

Prior works that jointly train with clean and adversarial

examples meet with performance degradation on clean im-

ages despite the improvement of robustness (e.g., against

adversarial attacks) [26, 15, 39]. Most recently, Xie et

al. manage to leverage the adversarial examples to im-

prove image classifiers’ accuracy, besides robustness, by a

new training paradigm named Adversarial Propagation (Ad-

vProp) [34]. Intuitively, they argue that the clean and ad-

versarial images are drawn from distinct distributions, mak-

ing it suboptimal to share the same statistical estimation in

batch normalization (batchnorm) layers. To disentangle the

two underlying distributions, AdvProp introduces auxiliary

running mean and running variance for the adversarial im-

ages, leaving the main batchnorm layers to serve solely for

the clean images. In particular, in every epoch, they first

generate adversarial images based on the auxiliary batch-

norm. Then they forward the clean and adversarial mini-

batches into the network, each with their exclusive batch-

norm, followed by standard backpropagation to optimize

the total loss.

Under such a training scheme, the separate batchnorms

take care of the distribution shift between clean and adver-

sarial examples, jointly giving rise to higher performance

than learning only with the clean images. Another bene-

fit is robustness. The models trained by AdvProp is more

robust against image distortions, probably because they are

immune to the adversarially distorted examples by training.

Inspired by their success in image classification, we pro-

pose Det-AdvProp to build accurate and robust detectors as

object detection plays a crucial role in many real-world ap-

plications such as autonomous driving.

4.2. Det-AdvProp

One-stage object detectors take an image x as input and

predict a set of objects {(ŷ, b̂)}, each includes a vector ŷ

representing the probabilities over all possible classes and

4-dimensional bounding box coordinates b̂. During train-

ing, the objective function is usually formulated as follows:

min
θ

Ex∼D;y,b∼B(x) Ldet(x, y, b; ✓), (1)

Ldet(x, y, b; ✓) =Lcls(x, y; ✓) + w · Lloc(x, b; ✓), (2)

where D is the set of training images, B(x) collects all the

class y and bounding box b labels of the objects in image x,

✓ is the model parameter, and w is the weight to balance the
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classification loss Lcls (e.g., focal loss [20]) and the local-

ization loss Lloc (e.g., Huber loss).

Equation (2) essentially defines a multi-task learning

problem, so possible attacks on object detectors can emerge

from two heterogeneous domains for classification and lo-

calization, respectively. In some sense, it is easier to at-

tack object detectors than image classifiers. Many existing

methods have successfully fooled popular object detectors

by attacking an individual loss in equation (2) [35, 2, 7].

It is a double-edged sword to have the adversarial exam-

ples of heterogeneous domains for object detectors. On the

one hand, they may be viewed as versatile augmentations

to the training data, potentially improving the detectors’ ac-

curacy on clean test data. On the other hand, the detectors

need to be enhanced against both domains of adversarial

examples to achieve robustness.

AdvProp over Ldet. Due to the multi-task nature of the

detectors, a straightforward application of AdvProp to ob-

ject detection, i.e., by attacking the total loss Ldet and ded-

icating two batchnorms, does not work well (see Table 8).

Its performance is about the same or worse than attacking

the single-task classification loss Lcls. We can further un-

derstand this observation following [38], which finds that

the two gradients, rxLcls and rxLloc which are generated

when we attack the overall detection loss Ldet, have dis-

tinct value ranges and inconsistent directions. They reduce

the augmentation effect of the resultant adversarial exam-

ples and even mutually cancel out.

AdvProp over Lcls and Lloc. Another plausible ap-

proach is to model the clean images and the attacks sourced

from classification and localization as three distinct do-

mains. To disentangle them, we use three batchnorms. One

reserved for clean images, another accounting for the ad-

versarial examples generated by attacking the classification

loss, and the last for the localization-sourced adversarial ex-

amples. However, this method hurts the detectors’ perfor-

mance on clean images though it yields the highest robust-

ness on corrupted images (see Table 8). We conjecture the

two auxiliary batchnorms are overly strong regularization

during training, leading to the detector’s under-fitting to the

clean training set.

Det-AdvProp. Learning from the two lessons above,

we develop the following training scheme named Det-

AdvProp. Similar to the AdvProp over Ldet, we still use

one, not two, auxiliary batchnorm to take account of the ad-

versarial examples. Similar to the AdvProp over Lcls and

Lloc, we generate two adversarial examples for each input

by attacking the two losses separately. However, we keep

only one of them to avoid the potential conflict between the

adversarial gradients of the classification loss and the local-

ization loss by a max-max rule first proposed in [38].

Algorithm 1: Det-AdvProp

Input: Object detection dataset D
Output: Learned network parameter ✓

1: for each training epoch do

2: Sample a random batch {xi, {yi, bi}} ⇠ D
3: Generate x̂

i
cls based on Lcls(x

i, yi) using

auxiliary batchnorm

4: Generate x̂
i
loc based on Lloc(x

i, bi) using

auxiliary batchnorm

5: Select x̂
i

based on Eq (5)

6: Compute Ldet(x
i, {yi, bi}) with main batchnorm

7: Compute Ldet(x̂
i
, {yi, bi}) with auxiliary

batchnorm

8: Perform a step of gradient descent w.r.t. ✓

min Ldet(x
i, yi, bi) + Ldet(x̂

i
, yi, bi)

9: end for

More concretely, we use the FGSM algorithm [10] with

non-targeted attack to explain Det-AdvProp without loss of

generality. Given an input image x and a bounding box b

over an object of class y, FGSM produces the adversarial

examples by a one-step projected gradient descent:

x̂cls = P(x + ✏ · sign(rxLcls(x, y; ✓))), (3)

x̂loc = P(x + ✏ · sign(rxLloc(x, b; ✓))), (4)

x̂ = argmax
x∈{x̂cls,x̂loc}

Ldet(x, y, b; ✓), (5)

where ✏ is the attack strength and P denotes the projection

onto the norm ball {x̂ | kx̂ � xk∞  ✏}. We first generate

two adversarial examples by maximizing the single task loss

and then choose the one that maximizes the total loss of the

detection task. Equation (5) is the max-max rule to keep the

adversarial example (out of two) that maximizes the total

detection loss Ldet. The inner “max” in the max-max rule

refers to the adversarial examples that maximize Lcls and

Lloc, respectively, and the outer “max” indicates we take

the one that maximizes the total detection loss Ldet. The

overall training objective is given below:

min
θ

Ex∼D;y,b∼B(x)Ldet(x, y, b; ✓) + Ldet(x̂, y, b; ✓). (6)

Intuitively, this max-max scheme lets the stronger one

survive between the two adversarial examples x̂cls and x̂loc.

By separately attacking the classification and localization

branches, we avoid the gradient misalignment problem.

Since we only produce one adversarial example per clean

image, coupled with one auxiliary batchnorm, the training

does not suffer from the excessive regularization problem

mentioned earlier.

Algorithm 1 describes Det-AdvProp in detail. Note that

we can safely discard the auxiliary batchnorm after training
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Model mAP AP50 AP75 APl APm APs

EfficientDet-D0 34.3 52.4 36.6 53.8 40.0 13.1

+ AutoAugment 34.4 (+0.1) 52.8 (+0.4) 36.7 (+0.1) 53.1 (-0.7) 40.2 (+0.2) 13.9 (+0.8)

+ Det-AdvProp (ours) 34.7 (+0.4) 52.9 (+0.5) 37.2 (+0.6) 54.1 (+0.3) 40.6 (+0.6) 13.9 (+0.8)

EfficientDet-D1 40.2 58.8 42.8 57.7 45.9 21.2

+ AutoAugment 40.1 (-0.1) 59.2 (+0.4) 43.2 (+0.4) 57.9 (+0.2) 45.7 (-0.2) 19.9 (-1.2)

+ Det-AdvProp (ours) 40.5 (+0.3) 59.2 (+0.4) 43.3 (+0.5) 58.8 (+1.1) 46.2 (+0.3) 20.6 (-0.6)

EfficientDet-D2 43.5 62.5 47.1 60.9 48.6 23.7

+ AutoAugment 43.5 (+0.0) 62.8 (+0.3) 46.6 (-0.5) 59.8 (-1.1) 48.7 (+0.1) 23.9 (+0.2)

+ Det-AdvProp (ours) 43.8 (+0.3) 62.6 (+0.1) 47.3 (+0.2) 61.0 (+0.1) 49.6 (+1.0) 25.6 (+1.9)

EfficientDet-D3 46.8 65.3 50.6 62.8 51.6 29.8

+ AutoAugment 47.0 (+0.2) 66.0 (+0.7) 50.8 (+0.2) 63.0 (+0.2) 51.7 (+0.1) 29.8 (+0.0)

+ Det-AdvProp (ours) 47.6 (+0.8) 66.3 (+1.0) 51.4 (+0.8) 64.0 (+1.2) 52.2 (+0.6) 30.2 (+0.4)

EfficientDet-D4 49.3 68.2 53.3 63.7 53.6 33.0

+ AutoAugment 49.5 (+0.2) 68.7 (+0.5) 53.7 (+0.4) 64.9 (+1.2) 54.0 (+0.4) 31.9 (-1.1)

+ Det-AdvProp (ours) 49.8 (+0.5) 68.6 (+0.4) 54.2 (+0.9) 65.2 (+1.5) 54.2 (+0.6) 32.4 (-0.6)

EfficientDet-D5 51.3 70.1 55.8 65.1 55.1 35.9

+ AutoAugment 51.5 (+0.2) 70.4 (+0.3) 56.0 (+0.2) 65.2 (+0.1) 56.1 (+1.0) 35.4 (-0.5)

+ Det-AdvProp (ours) 51.8 (+0.5) 70.7 (+0.6) 56.3 (+0.5) 66.1 (+1.0) 56.2 (+1.1) 36.2 (+0.3)

Table 1. Comparison of vanilla training, AutoAugment [43], and Det-AdvProp on MS COCO [21]. Our proposed Det-AdvProp consistently

outperforms vanilla training for different detectors, and it performs better than AutoAugment on all object sizes.

and use the main batchnorm for inference. The object de-

tectors trained by Det-AdvProp have the same parameters

and latency as those obtained by vanilla training.

5. Experiments

5.1. Setups

We select EfficientDet [33] of various scales as

the default object detectors, including the lightweight

EfficientDet-D0 model with fewer than 4M parameters and

the large-scale EfficientDet-D5 detector that achieves over

50 mAP on COCO [21]. We train the detectors using the

COCO 2017 object detection dataset [21] for 300 epochs

and evaluate them on COCO’s validation set to obtain the

so called clean accuracy. We also test the detectors’ robust-

ness to natural corruptions on the COCO-C dataset [27],

including 15 types of corruption each with 5 severity levels.

Finally, we apply the detectors to the PASCAL VOC 2012

dataset [6] to evaluate robustness under domain shift. Please

refer to Appendix D for details and training complexity.

5.2. Det-AdvProp Improves Accuracy

Results on COCO. We train the EfficientDet detectors

with Det-AdvProp and compare them with the models out

of vanilla training and the AutoAugment searched for ob-

ject detection [43] in Table 1. As different scales of de-

tectors favor different attack manners (targeted vs. non-

targeted), which we ablate next, we first report the best

clean mAP here. See Appendix D for the corresponding

attack manners. Compared with the vanilla training base-

line, our method can consistently increase the mAP score

over all the detectors of various scales. The improvement

mainly comes from large and medium-sized objects. The

performance gain is especially notable for large-scale de-

tectors with high capacities. Det-AdvProp improves D0–

D2 by at most 0.4 mAP, but boosts D3—D5 by at least 0.5

mAP. On the contrary, AutoAugment cannot transfer well to

the EfficientDets. It even incurs performance drop for some

models (e.g., -0.1 mAP on D1). Det-AdvProp outperforms

AutoAugment not only for the overall results but also on all

the sizes of objects.

To push the limit of our method, we further combine the

two strategies by employing AutoAugment to fine-tune the

detectors obtained by Det-AdvProp. According to Figure

3a, the combined augmentation leads to even more accurate

detectors. Similar to the previous observations, the perfor-

mance gain is proportional to the model capacity. Detec-

tors larger than D3 all increase by at least 1.0 mAP. With

the combined augmentation strategy, D4 can achieve 50.4

mAP with just 21M parameters. As a comparison, Amoe-

baNet accompanied by NAS-FPN [9] and AutoAugment

[43] achieves 50.7 mAP but has 209M parameters, which

is 10x larger than D4. The analysis in Appendix C fur-

ther shows that we can achieve performance gain on most

classes and reduce various types of detection errors.

Model D0 D1 D2 D3 D4 D5

Vanilla 33.4 36.6 38.2 41.7 44.6 46.5

Det-AdvProp
33.9

(+0.5)

37.9

(+1.3)

40.0

(+1.8)

43.8

(+2.1)

46.2

(+1.6)

48.2

(+1.7)

Table 2. Performance comparison between Det-AdvProp and the

vanilla baseline without ImageNet pre-training. Det-AdvProp

gives rise to performance gains for all detectors.

Without Pre-training. In some real-world settings, the

ImageNet pre-trained backbone is not always accessible due

to various reasons. Previous work also shows that train-

ing object detectors from scratch can match the perfor-

mance with pre-training given sufficiently many training it-

erations [11]. Hence, we also report the improvement of our

method over the vanilla training baseline when Efficient-

Dets are initialized from scratch. The other training settings

are exactly the same as before. As illustrated in Table 2,
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(a) (b) (c)

Figure 3. Left: Combining Det-AdvProp with AutoAugment [43] can produce slightly better results than using Det-AdvProp alone.

EfficientDet-D4 achieves over 50 mAP with 21M parameters, which is 10x less than AmoebaNet+NAS with NAS-FPN [9] and AutoAug-

ment [43]. Middle: Performance gains of AutoAugment over vanilla training on COCO-C [27]. Right: Performance gains of Det-AdvProp

over vanilla training on COCO-C. The largest improvement is observed when the images are distorted by random noise and with strong

corruption strength. (best viewed in color).

the proposed Det-AdvProp’s effectiveness is magnified in

this scenario. The augmented models can be over 2.0 mAP

better than those trained via the vanilla baseline.

Single-class object detection. In certain applications,

there is only one object class of interest. They desire a de-

tector to localize that object out of the background, such as

face detection, pedestrian detection, etc. To simulate this

scenario, we choose three classes spanning different object

sizes and numbers of training instances from the COCO

dataset to test Det-AdvProp under the single-class object

detection setting. We follow exactly the same experiment

settings as before and always use the attack strength of

✏ = 1. Table 3 shows the results of EfficientDet-D3, where

AutoAugment again degrades the mAP for every class. Its

policy is searched based on 80 classes and fails to adapt

well to the single-class object detection. In contrast, Det-

AdvProp enhances the detector by automatically learning

from its own weakness and thus achieves consistent im-

provement. The performance gain tends to be larger when

there are fewer training images.

Class
Object

Size
# Images Vanilla

Auto-

Augment

Det-AdvProp

(ours)

Donut Small 1,585 25.4
23.9

(-1.5)

28.7

(+3.3)

Person Medium 66,808 58.2
58.0

(-0.2)

58.5

(+0.3)

Truck Large 6,377 28.1
25.5

(-2.6)

28.7

(+0.6)

Table 3. mAP of vanilla, AutoAugment [43], and Det-AdvProp

applied to EfficientDet-D3 under the single-class object detec-

tion setting. The AutoAugement strategy is searched based on 80

classes and fails to adapt to this setting. Det-AdvProp maintains

its effectiveness in part due to its model-dependent nature.

5.3. Det-AdvProp Improves Robustness

Results on distorted COCO-C. We further evaluate the

robustness of the detectors trained by Det-AdvProp un-

der various corruptions on COCO-C [27]. Detecting ob-

jects from COCO-C is much more difficult than that from

clean images. The popular Faster-RCNN [31] model with

ResNet50 [13] backbone achieves 36.3 mAP on clean

COCO images, while its mAP reduces to only 18.2 on

COCO-C. As shown in Table 4, Det-AdvProp can achieve

more significant improvement on distorted images than on

the clean images over the baseline. For instance, Det-

AdvProp can improve EfficientDet-D4 by 2.7 mAP on

COCO-C, which is over 5x of the improvement on clean

COCO. Compared with AutoAugment, we can consistently

double its robustness improvement on various scales of Ef-

ficientDets. To further break down the improvement into

different corruptions and severities, we visualize the per-

formance gain achieved by AutoAugment [43] and the pro-

posed Det-AdvProp in Figures 3b and 3c. Models trained

by Det-AdvProp outperform the vanilla models on all 15

corruptions, and we observe the largest improvement when

the images are distorted by random noise (e.g., +4.36 mAP

under Gaussian noise and +4.08 mAP under shot noise).

Another interesting finding is that the performance gains

tend to become larger when the corruption strengths are

stronger. Although AutoAugment can also help the models

generalize to COCO-C, it is less effective than ours against

every type of corruptions. The results of combined Det-

AdvProp and AutoAugment is shown in Appendix A, where

we achieve the largest improvement of +3.8 mAP.

Model Vanilla AutoAugment Det-AdvProp (ours)

EfficientDet-D0 21.4 21.8 (+0.4) 22.2 (+0.8)

EfficientDet-D1 24.4 25.1 (+0.7) 25.6 (+1.2)

EfficientDet-D2 26.7 27.1 (+0.4) 27.6 (+0.9)

EfficientDet-D3 28.8 29.6 (+0.8) 30.8 (+2.0)

EfficientDet-D4 30.1 31.5 (+1.4) 32.8 (+2.7)

EfficientDet-D5 31.4 32.6 (+1.2) 33.7 (+2.3)

Table 4. Comparison of augmentation strategies and vanilla train-

ing on COCO-C [27]. Det-AdvProp can double the improvement

achieved by AutoAugment [43].

Results on cross-dataset generalization. Another mani-

fest of the model robustness is whether it can retain strong

16627



performance against domain shift. PASCAL VOC 2012 [6]

only contains 20 classes, which are much smaller than the

80 labeled classes in COCO. The underlying distributions of

the two datasets are also different in the image content or the

bounding box sizes and locations. We use the trained detec-

tors to run inference directly on the VOC dataset to test their

transferibility. We maintain the COCO evaluation metrics

in this experiment. According to Table 5, the Det-AdvProp

trained detectors always outperform those by vanilla and

AutoAugment training under every model scale and every

evaluation metric. The models obtained by AutoAugment

even substantially underperform the vanilla models. For in-

stance, AutoAugment lowers D2’s mAP by 0.6 compared

to the vanilla training baseline. We also show the results

of Det-AdvProp + AutoAugment in Appendix A, where the

largest improvement is +1.3 mAP on EfficientDet-D5.

Model mAP AP50 AP75

EfficientDet-D0 55.6 77.6 61.4

+ AutoAugment 55.7 (+0.1) 77.7 (+0.1) 61.8 (+0.4)

+ Det-AdvProp (ours) 55.9 (+0.3) 77.9 (+0.3) 62.0 (+0.6)

EfficientDet-D1 60.8 82.0 66.7

+ AutoAugment 61.0 (+0.2) 82.2 (+0.2) 67.2 (+0.5)

+ Det-AdvProp (ours) 61.2 (+0.4) 82.3 (+0.3) 67.4 (+0.7)

EfficientDet-D2 63.3 83.6 69.3

+ AutoAugment 62.7 (-0.6) 83.3 (-0.3) 69.2 (-0.1)

+ Det-AdvProp (ours) 63.5 (+0.2) 83.8 (+0.2) 69.7 (+0.4)

EfficientDet-D3 65.7 85.3 71.8

+ AutoAugment 65.2 (-0.5) 85.1 (-0.2) 71.3 (-0.5)

+ Det-AdvProp (ours) 66.2 (+0.5) 85.9 (+0.6) 72.5 (+0.7)

EfficientDet-D4 67.0 86.0 73.0

+ AutoAugment 67.0 (+0.0) 86.3 (+0.3) 73.5 (+0.5)

+ Det-AdvProp (ours) 67.5 (+0.5) 86.6 (+0.6) 74.0 (+1.0)

EfficientDet-D5 67.4 86.9 73.8

+ AutoAugment 67.6 (+0.2) 87.2 (+0.3) 74.2 (+0.4)

+ Det-AdvProp (ours) 68.2 (+0.8) 87.6 (+0.7) 74.7 (+0.9)

Table 5. Results on PASCAL VOC 2012. The proposed Det-

AdvProp gives the highest score on every model and metric. It

largely outperforms AutoAugment [43] when facing domain shift.

5.4. Ablation Study

Det-AdvProp with targeted and non-targeted attacks.

Targeted attack aims to fool a model to recognize an image

incorrectly as a specified target label, while non-targeted at-

tack is conducted by maximizing the training loss on the

true label. We first carry out targeted attack with Det-

AdvProp. As previous works report performance improve-

ment if the object and background are treated differently

[43], we consider the following two ways to generate ran-

dom targets: (i) Randomly generate target labels for all the

predefined anchors in the detector; (ii) Only perturb the

ground-truth label for the anchors that cover objects, omit-

ting those background anchors. We find that (ii) performs

almost the same as vanilla training even when the attack

strength is very large (✏ = 5). It is probably because the ad-

versarial images which fool models to misidentify the back-

ground as objects contain valuable features, and the number

of object-covering anchors is considerably smaller than the

background anchors. Hence, for the targeted attack men-

tioned below, we refer to generating adversarial labels for

all anchors if not specified otherwise. For the non-targeted

attack, we simply maximize the training loss for both clas-

sification and localization branches and use the same attack

strength (✏ = 1) as the targeted attack for a fair comparison.

The results are shown in Table 6. On clean COCO im-

ages, the adversarial examples obtained by targeted attack

consistently improve the models’ mAP, but non-targeted

attack can hurt the performance of lightweight detectors

(D0-D2), implying possibly too strong regularization. In

contrast, when it comes to larger models (D3-D5), Det-

AdvProp works better with the relatively stronger non-

targeted attack. On the COCO-C dataset, both attack meth-

ods can improve the detectors’ robustness, but the improve-

ment achieved by non-targeted attack is much larger, and

the gap is wider for the models of higher capacities. The

relative robustness achieved by non-targeted attack is also

the highest for all the detectors. Intuitively, Det-AdvProp

with non-targeted attack learns from the worse-case adver-

sarial examples than the targeted attack within the ✏ norm

ball and therefore provides stronger regularization and ro-

bustness to the detectors.

Model
COCO

mAP

COCO-C

mAP

Relative

rPC (%)

EfficientDet-D0 34.3 21.4 62.4

+ Det-AdvProp (TG) 34.7 (+0.4) 22.2 (+0.8) 64.0 (+1.6)

+ Det-AdvProp (NTG) 34.0 (-0.3) 22.1 (+0.7) 65.0 (+2.6)

EfficientDet-D1 40.2 24.4 60.7

+ Det-AdvProp (TG) 40.5 (+0.3) 25.6 (+1.2) 63.2 (+2.5)

+ Det-AdvProp (NTG) 40.1 (-0.1) 26.1 (+1.7) 65.1 (+4.4)

EfficientDet-D2 43.5 26.7 61.4

+ Det-AdvProp (TG) 43.8 (+0.3) 27.6 (+0.9) 63.0 (+1.6)

+ Det-AdvProp (NTG) 43.4 (-0.1) 28.0 (+1.3) 64.5 (+3.1)

EfficientDet-D3 46.8 28.8 61.5

+ Det-AdvProp (TG) 47.2 (+0.4) 30.1 (+1.3) 63.8 (+2.3)

+ Det-AdvProp (NTG) 47.6 (+0.8) 30.8 (+2.0) 64.7 (+3.2)

EfficientDet-D4 49.3 30.1 61.1

+ Det-AdvProp (TG) 49.6 (+0.3) 31.8 (+1.7) 64.1 (+3.0)

+ Det-AdvProp (NTG) 49.8 (+0.5) 32.8 (+2.7) 65.9 (+4.8)

EfficientDet-D5 51.3 31.4 61.2

+ Det-AdvProp (TG) 51.5 (+0.2) 32.4 (+1.0) 62.9 (+1.7)

+ Det-AdvProp (NTG) 51.8 (+0.5) 33.7 (+2.3) 65.1 (+3.9)

Table 6. Impact of targeted (TG) and non-targeted (NTG) attacks.

All attacks are performed with strength ✏ = 1. Det-AdvProp with

non-targeted attack works better on large-scale detectors and can

produce more robust models against distortions. rPC denotes the

relative performance under corruption.

Det-AdvProp with different attack strengths. Here we

ablate the effects of attack strengths represented by the ra-

dius ✏ of the perturbation norm ball. In Table 7, we vary ✏

from 1 to 3 and report the corresponding mAP scores on the

COCO validation set. The attacker is set as targeted since

the non-targeted attack decreases the mAP of lightweight

models (D0-D2) even when ✏ is small as mentioned above.

Aligning with the findings in image classification [34], large

perturbation size degrades the performance of small mod-

els. EfficientDets D0-D2 work the best with ✏ = 1, and

stronger attack can cause performance degradation. On

the contrary, EfficientDets D3-D5 work the best with rel-

atively large perturbation ✏ = 2. The clean performance of
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EfficientDet-D5 is boosted by 0.2 mAP by increasing the ✏

from 1 to 2. It is reasonable to conclude that stronger at-

tack strengths are desired for Det-AdvProp to better boost

the detectors with higher capacities.

✏ D0 D1 D2 D3 D4 D5

0 34.3 40.2 43.5 46.8 49.3 51.3

1 34.7 40.5 43.8 47.2 49.6 51.5

2 34.2 40.0 43.5 47.2 49.7 51.7

3 34.1 40.0 43.4 47.1 49.5 51.6

Table 7. Impact of attack strengths. All attacks are conducted in

the targeted manner. ✏ = 0 means vanilla training. Larger attack

strengths work better with larger model capacities.

Variants of Det-AdvProp. Different from image classi-

fiers, object detectors need to identify objects by their class

labels and box coordinates. They take the form of an in-

herent multi-task learning, preventing a direct application

of AdvProp to the detectors. A straightforward idea would

be generating adversarial examples by maximizing the total

training losses Ldet. Another approach is to generate two

adversarial examples per clean image based on Lcls and

Lloc separately, assuming the adversarial images sourced

from classification and localization have distinct distribu-

tions. We call the last method 3BN since it constructs three

batchnorms during training. Besides, we also ablate the

methods that attack the detectors based on an individual loss

(either Lcls or Lloc). We choose non-targeted attack for this

ablation study. According to the comparison in Table 8, we

have the following observations:

• When attacking an individual task loss, choosing clas-

sification or localization does not make a big differ-

ence on clean COCO images. However, attacking Lcls

performs much better than attacking Lloc on COCO-

C, implying that the performance degradation caused

by corruptions may mainly come from the classifica-

tion branch. When attacking the total loss Ldet, the re-

sulting detectors’ performance is in between, verifying

that the adversarial gradients sourced from classifica-

tion and localization may mutually conflict [38].

• 3BN explicitly augments the detectors with both clas-

sification and localization branches, leading to the

highest relative performance on corrupted images.

However, the detectors fail to achieve high mAP on

clean images probably because the adversarial features

act as overly strong regularization. Indeed, the two

auxiliary batchnorms in 3BN may dominate the opti-

mization procedure, making the detectors under-fitting

the clean training images.

• The proposed Det-AdvProp is the best method among

all variants by consistently achieving the highest mAP

on both COCO and COCO-C for the detectors of vari-

ous scales. It uses only one auxiliary batchnorm during

training to prevent excessive regularization and sepa-

rately attacks the two branches to avoid the misalign-

ment between adversarial examples.

Model
COCO

mAP

COCO-C

mAP

Relative

rPC (%)

EfficientDet-D3 46.8 28.8 61.5

+ Det-AdvProp (LOC) 47.1 (+0.3) 30.0 (+1.2) 63.7 (+2.2)

+ Det-AdvProp (CLS) 47.2 (+0.4) 30.5 (+1.7) 64.6 (+3.1)

+ Det-AdvProp (DET) 47.1 (+0.3) 30.4 (+1.6) 64.5 (+3.0)

+ Det-AdvProp (3BN) 46.7 (-0.1) 30.6 (+1.8) 65.5 (+4.0)

+ Det-AdvProp 47.6 (+0.8) 30.8 (+2.0) 64.7 (+3.2)

EfficientDet-D4 49.3 30.1 61.1

+ Det-AdvProp (LOC) 49.6 (+0.3) 31.7 (+1.6) 63.9 (+2.8)

+ Det-AdvProp (CLS) 49.6 (+0.3) 32.6 (+2.5) 65.7 (+4.6)

+ Det-AdvProp (DET) 49.6 (+0.3) 32.7 (+2.6) 65.9 (+4.8)

+ Det-AdvProp (3BN) 49.2 (-0.1) 32.5 (+2.4) 66.1 (+5.0)

+ Det-AdvProp 49.8 (+0.5) 32.8 (+2.8) 65.9 (+4.8)

EfficientDet-D5 51.3 31.4 61.2

+ Det-AdvProp (LOC) 51.6 (+0.3) 33.1 (+1.7) 64.1 (+2.9)

+ Det-AdvProp (CLS) 51.7 (+0.4) 33.6 (+2.2) 65.0 (+3.8)

+ Det-AdvProp (DET) 51.6 (+0.3) 33.4 (+2.0) 64.7 (+3.5)

+ Det-AdvProp (3BN) 51.3 (+0.0) 33.5 (+2.1) 65.3 (+4.1)

+ Det-AdvProp 51.8 (+0.5) 33.7 (+2.3) 65.1 (+3.9)

Table 8. Comparison of several variants of Det-AdvProp. LOC,

CLS, and DET generate the adversarial images based on Lloc,

Lcls, and Ldet respectively. 3BN denotes the variant that gener-

ates two adversarial examples per clean image and employs three

batchnorms during training. Det-AdvProp achieves the largest per-

formance gains on both clean and corrupted images.

RetinaNet results. Apart from the state-of-the-art Effi-

cientDets, we also test Det-AdvProp on the RetinaNet ob-

ject detector [20] with a ResNet50 backbone [13]. We asso-

ciate Det-AdvProp with non-targeted attack and the attack

strength of ✏ = 1. The other settings are the same as the

baseline method. Det-AdvProp improves the mAP of Reti-

naNet from 35.6 to 36.1 on COCO and from 17.8 to 19.7 on

COCO-C. We anticipate bigger improvements if we base

RetinaNets on the backbones of higher capacities.

6. Conclusion

In this paper, we systematically examine the data aug-

mentation strategies for object detectors. We discover that

the performance gains on ImageNet classification including

both accuracy and robustness, cannot be preserved after the

object detection fine-tuning process. Instead, the proposed

Det-AdvProp is specifically crafted for the fine-tuning pro-

cess. Det-AdvProp dynamically learns from the stronger

attack emerged from the classification and localization do-

mains, which enables its policy to evolve during fine-tuning.

This model-and-data-dependent manner is more effective

than previous model-agnostic augmentation strategies. Ex-

tensive experiments show that our methods can consistently

and substantially outperform the vanilla training and Au-

toAugment under various settings. The obtained detector

is not only more accurate, but also more robust to image

distortions and domain shift.

Acknowledgement: We would like to thank Yingwei Li for valuable dis-

cussions. CX is supported by a gift grant from Open Philanthropy. CJH is

supported in part by Army Research Laboratory under agreement number

W911NF-20-2-0158, and by NSF under IIS-2008173, IIS-2048280.

16629



References

[1] Daniel Bolya, Sean Foley, James Hays, and Judy Hoffman.

Tide: A general toolbox for identifying object detection er-

rors. In ECCV, 2020.

[2] Shang-Tse Chen, Cory Cornelius, Jason Martin, and

Duen Horng Chau. Shapeshifter: Robust physical adversar-

ial attack on faster r-cnn object detector. Lecture Notes in

Computer Science, page 52–68, 2019.

[3] Ekin D Cubuk, Barret Zoph, Dandelion Mane, Vijay Vasude-

van, and Quoc V Le. Autoaugment: Learning augmentation

strategies from data. In Computer Vision and Pattern Recog-

nition, 2019.

[4] Ekin D Cubuk, Barret Zoph, Jonathon Shlens, and Quoc V

Le. Practical automated data augmentation with a reduced

search space. In Advances in Neural Information Processing

Systems, 2020.

[5] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,

and Li Fei-Fei. Imagenet: A large-scale hierarchical im-

age database. In Computer Vision and Pattern Recognition,

2009.

[6] Mark Everingham, Luc Van Gool, Christopher KI Williams,

John Winn, and Andrew Zisserman. The Pascal Visual Ob-

ject Classes (VOC) Challenge. International Journal of

Computer Vision, 2010.

[7] Kevin Eykholt, Ivan Evtimov, Earlence Fernandes, Bo Li,

Amir Rahmati, Florian Tramer, Atul Prakash, Tadayoshi

Kohno, and Dawn Song. Physical adversarial examples for

object detectors. In USENIX Conference on Offensive Tech-

nologies, 2018.

[8] Robert Geirhos, Patricia Rubisch, Claudio Michaelis,

Matthias Bethge, Felix A. Wichmann, and Wieland Brendel.

Imagenet-trained CNNs are biased towards texture; increas-

ing shape bias improves accuracy and robustness. In Inter-

national Conference on Learning Representations, 2019.

[9] Golnaz Ghiasi, Tsung-Yi Lin, and Quoc V. Le. NAS-FPN:

learning scalable feature pyramid architecture for object de-

tection. In Computer Vision and Pattern Recognition, 2019.

[10] Ian Goodfellow, Jonathon Shlens, and Christian Szegedy.

Explaining and harnessing adversarial examples. In Inter-

national Conference on Learning Representations, 2015.

[11] Kaiming He, Ross Girshick, and Piotr Dollár. Rethinking

imagenet pre-training. In International Conference on Com-

puter Vision, 2019.

[12] Kaiming He, Georgia Gkioxari, Piotr Dollar, and Ross Gir-

shick. Mask r-cnn. In International Conference on Computer

Vision, 2017.

[13] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In Computer

Vision and Pattern Recognition, 2016.

[14] Dan Hendrycks and Thomas Dietterich. Benchmarking neu-

ral network robustness to common corruptions and perturba-

tions. In International Conference on Learning Representa-

tions, 2019.

[15] Alexey Kurakin, Ian Goodfellow, and S Bengio. Adversarial

machine learning at scale. In International Conference on

Learning Representations, 2017.

[16] Joseph Lemley, Shabab Bazrafkan, and Peter Corcoran.

Smart augmentation learning an optimal data augmentation

strategy. IEEE Access, 2017.

[17] Yuezun Li, Xiao Bian, Ming-Ching Chang, and Siwei Lyu.

Exploring the vulnerability of single shot module in ob-

ject detectors via imperceptible background patches. arXiv

preprint arXiv:1809.05966, 2018.

[18] Yingwei Li, Qihang Yu, Mingxing Tan, Jieru Mei, Peng

Tang, Wei Shen, Alan Yuille, and Cihang Xie. Shape-

texture debiased neural network training. arXiv preprint

arXiv:2010.05981, 2020.

[19] Sungbin Lim, Ildoo Kim, Taesup Kim, Chiheon Kim, and

Sungwoong Kim. Fast autoaugment. In Advances in Neural

Information Processing Systems, 2019.

[20] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and

Piotr Dollar. Focal loss for dense object detection. In Inter-

national Conference on Computer Vision, 2017.

[21] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,

Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence

Zitnick. Microsoft coco: Common objects in context. In

European Conference on Computer Vision. 2014.

[22] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian

Szegedy, Scott Reed, Cheng-Yang Fu, and Alexander C

Berg. Ssd: Single shot multibox detector. In European con-

ference on computer vision, 2016.

[23] Xin Liu, Huanrui Yang, Ziwei Liu, Linghao Song, Hai Li,

and Yiran Chen. Dpatch: An adversarial patch attack on

object detectors. In AAAI Workshop on Artificial Intelligence

Safety, 2019.

[24] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully

convolutional networks for semantic segmentation. In Com-

puter Vision and Pattern Recognition, 2015.

[25] Jiajun Lu, Hussein Sibai, and Evan Fabry. Adversarial ex-

amples that fool detectors. arXiv preprint arXiv:1712.02494,

2017.

[26] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt,

Dimitris Tsipras, and Adrian Vladu. Towards deep learn-

ing models resistant to adversarial attacks. In International

Conference on Learning Representations, 2018.

[27] Claudio Michaelis, Benjamin Mitzkus, Robert Geirhos,

Evgenia Rusak, Oliver Bringmann, Alexander S Ecker,

Matthias Bethge, and Wieland Brendel. Benchmarking ro-

bustness in object detection: Autonomous driving when win-

ter is coming. arXiv preprint arXiv:1907.07484, 2019.

[28] Chao Peng, Tete Xiao, Zeming Li, Yuning Jiang, Xiangyu

Zhang, Kai Jia, Gang Yu, and Jian Sun. Megdet: A large

mini-batch object detector. In Computer Vision and Pattern

Recognition, 2018.

[29] Charles R Qi, Wei Liu, Chenxia Wu, Hao Su, and Leonidas J

Guibas. Frustum pointnets for 3d object detection from rgb-d

data. In Computer Vision and Pattern Recognition, 2018.

[30] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali

Farhadi. You only look once: Unified, real-time object de-

tection. In Computer Vision and Pattern Recognition, 2016.

[31] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.

Faster r-cnn: Towards real-time object detection with region

proposal networks. In Advances in Neural Information Pro-

cessing Systems, 2017.

16630



[32] Mingxing Tan and Quoc Le. Efficientnet: Rethinking model

scaling for convolutional neural networks. In International

Conference on Machine Learning, 2019.

[33] Mingxing Tan, Ruoming Pang, and Quoc V. Le. Efficientdet:

Scalable and efficient object detection. In Computer Vision

and Pattern Recognition, 2020.

[34] Cihang Xie, Mingxing Tan, Boqing Gong, Jiang Wang,

Alan L. Yuille, and Quoc V. Le. Adversarial examples im-

prove image recognition. In Computer Vision and Pattern

Recognition, 2020.

[35] Cihang Xie, Jianyu Wang, Zhishuai Zhang, Yuyin Zhou,

Lingxi Xie, and Alan Yuille. Adversarial examples for se-

mantic segmentation and object detection. In International

Conference on Computer Vision, 2017.

[36] Qizhe Xie, Minh-Thang Luong, Eduard Hovy, and Quoc V

Le. Self-training with noisy student improves imagenet clas-

sification. In Computer Vision and Pattern Recognition,

2020.

[37] Hongyi Zhang, Moustapha Cisse, Yann N. Dauphin, and

David Lopez-Paz. mixup: Beyond empirical risk minimiza-

tion. In International Conference on Learning Representa-

tions, 2018.

[38] Haichao Zhang and Jianyu Wang. Towards adversarially ro-

bust object detection. In International Conference on Com-

puter Vision, 2019.

[39] Hongyang Zhang, Yaodong Yu, Jiantao Jiao, Eric P Xing,

Laurent El Ghaoui, and Michael I Jordan. Theoretically prin-

cipled trade-off between robustness and accuracy. In Inter-

national Conference on Machine Learning, 2019.

[40] Tianyuan Zhang and Zhanxing Zhu. Interpreting adversar-

ially trained convolutional neural networks. In Kamalika

Chaudhuri and Ruslan Salakhutdinov, editors, Proceedings

of the 36th International Conference on Machine Learning,

volume 97 of Proceedings of Machine Learning Research,

pages 7502–7511. PMLR, 09–15 Jun 2019.

[41] Xinyu Zhang, Qiang Wang, Jian Zhang, and Zhao Zhong.

Adversarial autoaugment. In International Conference on

Learning Representations, 2020.

[42] Zhi Zhang, Tong He, Hang Zhang, Zhongyue Zhang, Jun-

yuan Xie, and Mu Li. Bag of freebies for training object de-

tection neural networks. arXiv preprint arXiv:1902.04103,

2019.

[43] Barret Zoph, Ekin D Cubuk, Golnaz Ghiasi, Tsung-Yi Lin,

Jonathon Shlens, and Quoc V Le. Learning data aug-

mentation strategies for object detection. arXiv preprint

arXiv:1906.11172, 2019.

16631


