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Abstract

Human can infer the 3D geometry of a scene from a

sketch instead of a realistic image, which indicates that the

spatial structure plays a fundamental role in understand-

ing the depth of scenes. We are the first to explore the

learning of a depth-specific structural representation, which

captures the essential feature for depth estimation and ig-

nores irrelevant style information. Our S2R-DepthNet (Syn-

thetic to Real DepthNet) can be well generalized to un-

seen real-world data directly even though it is only trained

on synthetic data. S2R-DepthNet consists of: a) a Struc-

ture Extraction (STE) module which extracts a domain-

invariant structural representation from an image by dis-

entangling the image into domain-invariant structure and

domain-specific style components, b) a Depth-specific At-

tention (DSA) module, which learns task-specific knowledge

to suppress depth-irrelevant structures for better depth esti-

mation and generalization, and c) a depth prediction mod-

ule (DP) to predict depth from the depth-specific representa-

tion. Without access of any real-world images, our method

even outperforms the state-of-the-art unsupervised domain

adaptation methods which use real-world images of the tar-

get domain for training. In addition, when using a small

amount of labeled real-world data, we achieve the state-of-

the-art performance under the semi-supervised setting.

1. Introduction

Monocular depth estimation is a long-standing challeng-

ing task, which aims to predict the continuous depth value

of each pixel from a single color image. This task has

a wide range of application in various fields, such as au-

tonomous driving [11, 14], 3D scene reconstruction [49, 21]

and robot navigation [44], etc. Recently, a wide vari-

ety of algorithms based on deep convolutional neural net-
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Research Asia.
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Figure 1. Visualization of our learnt structural representations. It

can be seen that even though the input color images from synthetic

dataset and real-world dataset are very different in appearance, our

structural representations share many similarities, such as layout

and object shapes, etc. Furthermore, our depth-specific structure

map suppresses the depth-irrelevant structures on the smooth sur-

face, e.g., lanes on the road and photos on the wall.

works (DCNNs) have achieved good performance with suf-

ficient amounts of annotated data [17, 3, 46, 8, 27, 7, 6].

However, obtaining depth annotations is costly and time-

consuming [11, 14, 1]. Some recent methods have investi-

gated self-supervised depth estimation from stereo images

pairs [11, 14] or video sequence [58, 15, 56] by view recon-

struction. But stereo pairs or video sequences may not al-

ways be available in existing datasets. Besides, these mod-

els are often limited to the training dataset domain, having

difficulty in scaling to various application scenes.

Some researchers switched to use synthetic images [9,

40] for training where depth annotations can be acquired

directly. However, there is usually a domain gap between

synthetic data and real-world data, which is caused by style

discrepancies across different domains. To address this

issue, some domain adaptation methods [55, 1, 25, 53]

try to align the feature space of synthetic and real-world

images [55, 25] or translate synthetic images to realistic-

looking ones [55, 1, 53]. However, these methods all re-

quire access to the real-world images of the target domain

during the training process, but it is impractical to collect

real-world images of various scenes.
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Given the above limitations, we consider a more practi-

cal domain generalization scenario. In our setting, we only

use a large amount of labeled synthetic data without access

of any real-world images of the target domain in the train-

ing stage. Compared to domain adaptation methods, this is

a more difficult task, because we do not even know the style

of the real-world images during the training process.

Aiming for better generalizable depth estimation, we

need to seek for the essential representation for this task.

Structure information is found to be very important for this

task [18, 53, 60, 3, 35], and some previous works explore

introducing heuristic structure information to network ar-

chitecture [3, 35] or loss design [53, 18, 60, 35]. We are the

first one to explore learning a depth-specific structural rep-

resentation for generalizable depth estimation. The image

representation can be decomposed into a domain-invariant

structure component and a domain-specific style compo-

nent [24, 19, 20]. The structure component can be fur-

ther divided into a depth-specific structure component and

a depth-irrelevant structure component. The depth-specific

structure component is the most essential for depth estima-

tion and can be effectively transferred from synthetic do-

main to real-world domain.

In order to obtain the depth-specific structural represen-

tation, we first extract a general domain-invariant structure

map from the image using a proposed Structure Extraction

(STE) module by decomposing the image into structure and

style components inspired by [20]. However, the structural

representation we thus obtain is a general and low-level

image structure, which contains a large amount of depth-

irrelevant structures, such as structures on a smooth surface

(e.g. lanes on the road or photos on the wall). Furthermore,

we propose a Depth-specific Attention (DSA) module to ex-

tract high-level semantic information from the input image

and help to suppress the depth-irrelevant structures. Since

only depth-specific structural information can pass the STE

and DSA modules to the depth prediction (DP) module, our

S2R-DepthNet trained on synthetic data can be well gener-

alized to unseen real-world images.

We visualise our learnt structural representation and

depth-specific structural representation in Figure 1. Even

though there is a distinct style difference between the im-

ages from synthetic and real-world image dataset, our learnt

structure maps and depth-specific structure maps share

many similarities. Furthermore, the depth-specific structure

map discards depth-irrelevant structures, e.g. lanes. The

highlighted sky is an important cue for vanishing point that

is helpful for depth estimation, which is similar to [18].

Main contributions: (i) We are the first to learn a

structural representation for generalizable depth estimation,

which captures essential structural information and discards

style information. S2R-DepthNet can be well generalized to

unseen real-world data when only trained on synthetic data.

(ii) We propose a two-stage structural representation learn-

ing pipeline: a general low-level Structure Extraction mod-

ule to discard style information and a Depth-specific At-

tention module to suppress depth-irrelevant structure with

depth-specific knowledge. (iii) We enable a more practical

scenario for the depth estimation task, where there is only

a large amount of synthetic data but it is hard to acquire

real-world data images or depth annotations.

We carry out extensive experiments to demonstrate the

effectiveness of our proposed domain-invariant structural

representations. Even though we do not use real-world im-

ages for training, our method still outperforms the state-of-

the-art domain adaptation methods that use real-world im-

ages of the target domain for training. Surprisingly, when

our method uses a small amount of labeled real-world data

for training, it also achieves the state-of-the-art performance

under the semi-supervised setting.

2. Related Work

Monocular Depth Estimation. The monocular depth es-

timation task aims to estimate depth from a single image.

Previous works explore the network structure [17, 27, 8,

47, 3, 45] or are jointly trained with other tasks, e.g., nor-

mal [34, 50], optical flow [51, 4] and segmentation [16, 42].

All these works are trained and tested on datasets of a spe-

cific domain without considering domain gaps. It is easy for

the method to overfit the specific training dataset and lose

the capability of generalization. However, obtaining various

depth annotations is costly and time-consuming. Some self-

supervised methods [15, 57, 43, 51] take video sequences

or stereo pairs as training data and use image warping and

reconstruction loss to replace explicit depth supervision.

However, dynamic objects and low-texture regions are still

a challenge for these methods. Our work is the first one to

explore another promising direction, which uses only syn-

thetic data for training and tests directly on real data.

Domain Adaptation and Generalization. The domain

adaptation [10, 30, 36] and generalization [31, 37] methods

deal with the domain gap between the training and testing

datasets. Domain adaptation methods transfer the model

trained on the source domain by seeing data in the target

domain while domain generalization only performs train-

ing on the source domain and tests on the unseen domain.

Inspired by the domain adaptation works, researchers try

to leverage synthetic data for training a depth estimation

model and transfer it to real data. These works can be

roughly divided into two categories: aligning the feature

space of synthetic and real images [55, 25, 1] and translat-

ing synthetic images to realistic-looking ones [55, 1, 53].

Those methods all need access to real images of the tar-

get domain, which means it is still necessary to collect real

images for training. Our method gets rid of this limitation
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Figure 2. An overview of S2R-DepthNet. Our overall architecture consists of a Structure Extraction (STE) module which extracts a

domain-invariant structure map, a Depth-specific Attention (DSA) module which suppresses depth-irrelevant structures by predicting an

attention map, and a Depth Prediction (DP) module to predict the final depth map from depth-specific structural representation. ⊗ denotes

element-wise multiplication.

since we do not use any real images for training and it holds

the potential for wider applications.

Image Translation and Style Transfer. The image trans-

lation task translates images from one domain to an-

other [20, 12, 22]. The previous works [24, 19, 20] decom-

pose image representation into a domain-invariant structure

component and a domain-specific style component. Specif-

ically, Kazemi et al. [24] present the style and structure dis-

entangled GAN that learns to disentangle style and struc-

ture representations for image generation. Huang et al. [20]

disentangle image representation into structure and style

codes, and recombine its structure code with a random style

code sampled from the style space of the target domain to

translate an image to another domain. Targeting for trans-

lating images from one style to another, those works extract

a structural representation which is disentangled from do-

main styles. Our goal is to seek for the essential generaliz-

able structural representation for the depth estimation task

by getting rid of the influence of irrelevant factors.

3. Depth-specific Structural Learning

In this section, we first present an overview of our S2R-

DepthNet, then introduce its key modules, and finally pro-

vide the training procedure.

3.1. S2RDepthNet

Our S2R-DepthNet is a generalizable depth prediction

framework based on depth-specific structural representation

leaning. As shown in Figure 2, our framework consists of

Structure Extraction (STE) module S , Depth-specific At-

tention (DSA) module A and a Depth Prediction (DP) mod-

ule P . To capture the essential representation for depth

estimation, we design a two-stage learning pipeline: the

STE module to extract a domain-invariant structural repre-

sentation Ms by disentangling the image into structure and

style components, and the DSA module to suppress depth-

irrelevant structure with task-specific attention Ma, result-

ing in a depth-specific structure map Msa. Finally, we feed

Msa into the DP module P to predict the depth.

3.2. Structure Extraction Module

The STE module aims to extract domain-invariant struc-

ture information from images with different styles. The

STE module consists of an encoder Es to extract structure

information and a decoder Ds to decode the encoded struc-

ture information into a structure map as shown in Figure 2.

Inspired by the image translation work [20], we adopt

an image translation framework to train the encoder Es. In

order to make the Es generalizable to various style images,

we choose the Painter By Numbers (PBN) dataset1 with a

large style variation as the target domain for image transla-

tion and the images of a synthetic dataset as the source do-

main. We use a shared Es to extract structure for both the

source and target datasets. This is different from [20] which

uses different encoders for the source and target datasets.

Thus Es can see various styles of data and extract struc-

tural features that are not sensitive to any specific style. Af-

ter the training of Es, we can extract the structure informa-

tion from the synthetic images. The weights of Es are fixed

when training other modules to maintain its ability for gen-

eral structure extraction.

In order to restore the spatial structure of the encoded

information of Es, we choose to use a decoder Ds to recon-

struct a structure map Ms with the same spatial resolution as

the input image. Since there is no ground truth of this struc-

ture map, we feed the structure map to the DP module, and

use the ground truth depth to train Ds. We add a heuristic

regularization loss to the structure map by encouraging the

value of the structure map to be small wherever the depth

map is smooth. Given the input image I and corresponding

ground truth D, the loss for training Ds is

LS =
∑

p

||D̂(p)−D(p)||1+

λ
∑

p

||Ms(p)||1 · e
−β(|∇xD(p)+∇yD(p)|), (1)

where D̂ is the predicted depth map , p is the index of pixels,

∇x and ∇y are horizontal and vertical gradient operators

respectively, λ and β are the hyper parameters.

1https://www.kaggle.com/c/painter-by-numbers
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Figure 3. Visualization of intermediate results. The top and bottom two rows are respectively the generated results for synthetic images

and real-world images by our S2R-DepthNet trained on synthetic images.

3.3. Depthspecific Attention Module

Our goal is to learn essential structural representation for

generalizable depth estimation. Currently the structure map

from the STE module contains abundant low level struc-

tures including a large amount of depth-irrelevant struc-

tures, such as detailed texture structures on smooth surfaces.

The encoder of the STE module is designed to capture low-

level features with only 4 times downsampling. Besides,

there are a lot of Instance Normalization (IN) operations

in the encoder for better generalization, which leads to the

loss of discriminative features [19, 32, 23] and is harm-

ful for semantic feature extraction. In contrast, many re-

searchers have found that high-level semantic knowledge

[41, 18, 17, 3] is important for the depth estimation task.

To extract more influential high-level semantic knowl-

edge for depth estimation, we design a DSA module to pre-

dict an attention map A from the raw input image. This at-

tention map helps to suppress depth-irrelevant structures by

leveraging high-level semantic information extracted from

the raw images. We construct the encoder part of the DSA

module using the dilated residual network [52], which uti-

lizes dilated convolutions to increase the receptive field

while preserving local detailed information. Then we use

a decoder to upsample the encoded features to the original

resolution and add a sigmoid layer behind it to generate the

attention map. Finally, the obtained attention map is used to

weight the general structure map to produce the final depth-

specific structure map as:

Msa = Ms ⊗Ma, (2)

where ⊗ denotes element-wise multiplication.

Since we multiply the attention map and the structure

map, extra depth-irrelevant information can hardly pass

through this bottleneck and the DP module is forced to es-

timate depth from this concise and comprehensive depth-

specific structure representation.

We fix the parameters of the previously trained STE

module, and train the DSA module to suppress depth-

irrelevant structures to get the depth-specific structure map.

Meanwhile, the DP module is trained to predict depth from

the depth-specific structure map. The loss function for train-

ing the DSA and DP modules is:

LA =
∑

p

||D̂(p)−D(p)||1. (3)

3.4. Training Procedure

In summary, our framework consists of the following

modules: STE module S which consists of its encoder Es
and decoder Ds, DSA module A and DP module P . In-

stead of training the whole network end-to-end, we design a

multi-step training procedure. 1) Train Es with the synthetic

dataset [9] and PBN dataset. The detailed network sturcu-

ture and loss are presented in the supplementary. Then Fix

Es in the following steps. 2) Leave out A, train Ds and P
with the loss defined in Eq. 1 on the synthetic dataset. Fix

Ds in the following steps. 3) Involving A, train A and P
with the loss defined in Eq. 3 on the synthetic dataset. After

this training process, we get the whole S2R-DepthNet for

tesing real-world images.

4. Experiments

In this section, we first introduce the implementation de-

tails and datasets in Section 4.1. We then conduct experi-

ments on synthetic to real-world generalization task for both

the outdoor and indoor scenarios. Finally, we provide the

ablation studies to analyze the contribution and effective-

ness of each module of our framework.

4.1. Implementation Details

Network Details. Our S2R-DepthNet consists of three

modules: STE, DSA and DP. STE module is a standard

encoder-decoder architecture. The encoder Es is the same

as [20]. The decoder Ds includes two up-projection layers
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Figure 4. Qualitative comparison of the depth map on the KITTI dataset. The baseline is the DP module only trained on vKITTI dataset.

Compared with the approach T2Net[55] and Baseline, our method can restore clear object boundaries, such as cars and trees.

Table 1. Performance on KITTI. All results on KITTI dataset use the Eigen split [7]. K represents KITTI dataset, V is vKITTI dataset,

cap means different gt/predicted depth range. For the supervision or not, Yes represents supervised learning, SSL: self-supervised learning,

DG: Domain generalization and UDA: the unsupervised domain adaptation. The best results on each metric are marked in bold.

Higher is better Lower is better
Method Dataset Supervision cap

δ < 1.25 δ < 1.252 δ < 1.253 Abs Rel Squa Rel RMSE RMSElog

Eigen et al. [7] K Yes 0∼80m 0.692 0.899 0.967 0.215 1.515 7.156 0.270

Zhou et al. [58] K (Video) SSL 0∼80m 0.678 0.885 0.957 0.208 1.768 6.856 0.283

Godard et al. [14] K (Stereo) SSL 0∼80m 0.803 0.922 0.964 0.148 1.344 5.927 0.247

DP only (synthetic) V DG 0∼80m 0.642 0.861 0.944 0.236 2.171 7.063 0.315

DP only (real-world) K Yes 0∼80m 0.804 0.935 0.977 0.141 0.980 5.224 0.217

Kundu et al. [25] V UDA 0∼80m 0.665 0.882 0.950 0.214 1.932 7.157 0.295

T2Net [55] V UDA 0∼80m 0.757 0.918 0.969 0.171 1.351 5.944 0.247

Ours V DG 0∼80m 0.781 0.931 0.972 0.165 1.351 5.695 0.236

Zhou et al. [58] K (Video) SSL 0∼50m 0.735 0.915 0.968 0.190 1.436 4.975 0.258

Godard et al. [14] K (Stereo) SSL 0∼50m 0.818 0.931 0.969 0.140 0.976 4.471 0.232

DP only (synthetic) V DG 0∼50m 0.654 0.872 0.950 0.229 1.726 5.539 0.301

DP only (real-world) K Yes 0∼50m 0.819 0.944 0.980 0.136 0.787 3.978 0.205

Kundu et al. [25] V UDA 0∼50m 0.687 0.899 0.958 0.203 1.734 6.251 0.284

T2Net [55] V UDA 0∼50m 0.773 0.928 0.974 0.164 1.019 4.469 0.231

Ours V DG 0∼50m 0.793 0.939 0.976 0.158 1.000 4.321 0.223

[27] to restore the encoded structural features to the origi-

nal image resolution and a convolutional layer to reduce the

feature maps into one-channel map. DSA module is also an

encoder-decoder structure where we use a dilated residual

network [52] as the encoder and three up-projection layers

[27] followed by a sigmoid layer as decoder. For DP mod-

ule, we follow the depth estimation network architecture of

previous works [53, 55].

Training Details. We implement our method based on

Pytorch [33]. We follow the same parameters as [20] to train

STE module encoder Es. For training the decoder Ds of

STE module and joint training DSA module and DP mod-

ule, we use a step learning rate decay policy with Adam

optimizer with an initial learning rate of 10−4. We re-

duce the learning rate by 50% every 10 epochs. We set

β1 = 0.9, β2 = 0.999, weight decay as 10−4 and the to-

tal number of epochs is 60. The hyper parmameters λ and

β in Eq. 1 are set to 1 and 0.001, respectively.

Datasets. For outdoor scenes, we use synthetic Virtual

KITTI (vKITTI) [9] as the source domain dataset. We use

the KITTI dataset [13] as the real-world dataset for evalua-

tion. For indoor scenes, we use a synthetic dataset SUNCG

as the source domain dataset. We follow [55] to choose

image-depth pairs for training. We use the real-world in-

door scene dataset, i.e. NYU Depth v2 [38] for evaluation

following the same setting with previous works [55, 25, 17].

We follow the previous work [7, 8, 27, 58] and use standard

evaluation metrics. All results are reported using median

scaling as in [25, 58], expect that real-world data is used for

semi-supervised training.

4.2. Experimental results

Our settings are similar to the typical unsupervised do-

main adaptation setting, except that we do not access any

real-world images. Therefore, we mainly compare with

some state-of-the-art domain adaptation methods on depth

estimation [25, 55]. We do not compare with [53] be-

cause it is designed for training with real-world stereo pairs.

We compare two challenging tasks separately: vKITTI [9]

to KITTI [13] and SUNCG [40] to NYU Depth v2 [38].

To better demonstrate the generalizability of our method,

we conduct experiments on more auto-driving datasets:

Cityscapes [5], DrivingStereo [48] and nuSenses [2]. In

addition, when using a small amount of labeled real-world

data, we also compare with state-of-the-art methods under

the same semi-supervised setting.
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Table 2. Performance on KITTI for semi-supervised setting. All results on KITTI dataset use the Eigen split [7]. K represents KITTI

dataset,V is vKITTI dataset, cap means different gt/predicted depth range. The best results on each metric are marked in bold.

Higher is better Lower is better
Method Dataset cap

δ < 1.25 δ < 1.25
2

δ < 1.25
3 Abs Rel Squa Rel RMSE RMSElog

Kundu et al. [25] V+K(Small) 0∼80m 0.771 0.922 0.971 0.167 1.257 5.578 0.237

Zhao et al. [54] V+K(Small) 0∼80m 0.796 0.922 0.968 0.143 0.927 4.694 0.252

Ours-DG V 0∼80m 0.781 0.931 0.972 0.165 1.351 5.695 0.236

Ours-S V+K(Small) 0∼80m 0.858 0.955 0.984 0.116 0.766 4.409 0.185

Kuznietsov et al. [26] K+Stereo 0∼80m 0.862 0.960 0.986 0.113 0.741 4.621 0.189

Kundu et al. [25] V+K(Small) 0∼50m 0.784 0.930 0.974 0.162 1.041 4.344 0.225

Ours-DG V 0∼50m 0.793 0.939 0.976 0.158 1.000 4.321 0.223

Ours-S V+K(Small) 0∼50m 0.870 0.959 0.986 0.111 0.642 3.463 0.176

Kuznietsov et al. [26] K+Stereo 0∼50m 0.861 0.964 0.989 0.117 0.597 3.531 0.183

Input Image Structure Map Attention Map Depth-specific                                                                                          

Structure Map

Input Image Structure Map Attention Map Depth-specific         

Structure Map

Figure 5. Visualization of the structure maps on SUNCG (left) and NYU Depth v2 (right) datasets. Our depth-specific representations

focus on the layout, junctions and object boundaries of indoor scenes.

Table 3. Performance on NYU Depth v2.

Method Abs Rel RMSE log 10 δ < 1.25 δ < 1.252 δ < 1.253

Li et al. [28] 0.232 0.821 0.094 0.621 0.886 0.968

Eigen et al. [7] 0.215 0.907 - 0.611 0.887 0.971

T2Net [55] 0.203 0.738 - 0.670 0.891 0.966

Baseline 0.278 0.899 0.111 0.557 0.826 0.940

+ STE 0.225 0.756 0.093 0.643 0.880 0.962

+ STE + DSA 0.196 0.662 0.082 0.695 0.910 0.972

vKITTI → KITTI. We report experimental results of the

proposed method in Table 1. We use the Eigen split [7] in

the KITTI dataset, which is the same as previous methods

[7, 29, 58, 14, 25, 55]. The spatial resolutions are also kept

the same. We take the DP module trained on vKITTI and

tested on KITTI as the baseline denoted as DP only (syn-

thetic). We also provide the result of DP module trained and

tested on KITTI for reference (denoted as DP only (real-

world)), which can be regarded as the upper bound. We

choose previous state-of-the-art unsupervised domain adap-

tation methods on depth estimation [25, 55] that are most

similar to our setting for comparison. We also compare to

some supervised and self-supervised methods for reference.

However, it is worth noting that even though our method

does not use any real-world images for training, it still out-

performs the current state-of-the-art unsupervised domain

adaptation methods on the depth estimation task. Results

from T2Net [55] are recomputed using median scaling with

the official pretrained model for fair comparison. Specifi-

cally, compared with T2Net [55], our method improves on

δ < 1.25 by 3.17% at cap of 80m and 2.59% at cap of

50m. The Abs-Rel is reduced by 3.51% at cap of 80m and

3.66% at cap of 50m. RMSE is reduced by 4.19% at cap of

80m and 3.31% at cap of 50m. Even though we do not see

the style of real-world images of testing dataset, our pro-

posed method still outperforms the state-of-the-art domain

adaptation methods that use real-world image for training.

These significant improvements in all the metrics demon-

strate that our proposed structural representation has strong

generalization capability on unseen scenes.

In order to further verify the effectiveness of our method,

we consider another practical scenario in which there is

a small amount of real-world ground-truth data available

during training [54, 25]. It can be referred to as a semi-

supervised setting. For a fair comparison, we follow the pre-

vious works [54, 25] and choose the first 1000 (4.42% of the

total dataset) frames in KITTI as the small amount of real-

world labeled data used for training. The semi-supervised

version of our method is fine-tuned with these 1000 frames

of labeled real-world data based on the domain generaliza-

tion model. The quantitative results are reported in Table 2.

Our method achieves the best performance on all the met-

rics at both 80m and 50m caps compared with previous

methods under the same semi-supervised setting [54, 25].

Specifically, compared with Zhao et al. [54], our method

reduces Abs-Rel by 18.9%, RMSE by 6.1% and improves

δ < 1.25 by 7.79% at cap of 80m. When compared with

Kundu et al. [25], the Abs-Rel is decreased by 31.5%,

RMSE is decreased by 20.3% and δ < 1.25 is increased

by 11.0% at cap of 50m. It is worth noting that even though
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Table 4. Results on more datasets.
Higher is better Lower is better

Settings
δ < 1.25 δ < 1.25

2
δ < 1.25

3 Abs Rel Squa Rel RMSE RMSElog

Baseline(vKITTI→Cityscapes) 0.516 0.747 0.854 0.297 5.077 13.938 0.452

T2Net(vKITTI→Cityscapes) 0.528 0.760 0.868 0.294 4.639 13.922 0.425

Ours(vKITTI→Cityscapes) 0.663 0.860 0.941 0.208 2.944 11.164 0.314

Baseline(vKITTI→DrivingStereo) 0.408 0.715 0.878 0.374 8.619 15.822 0.440

T2Net(vKITTI→DrivingStereo) 0.546 0.787 0.900 0.302 5.689 12.892 0.377

Ours(vKITTI→DrivingStereo) 0.737 0.917 0.971 0.186 2.710 9.166 0.246

Baseline(vKITTI→nuScenes) 0.543 0.787 0.892 0.289 3.921 11.587 0.406

T2Net(vKITTI→nuScenes) 0.575 0.799 0.895 0.267 3.389 10.809 0.395

Ours(vKITTI→nuScenes) 0.601 0.815 0.908 0.249 2.841 10.200 0.366

we do not use any real-world data, our domain generaliza-

tion (DG) version still outperforms Kundu et al. [25]’s semi-

supervised version at cap of 80m and 50m. Kuznietsov et

al. [26] use the 7346 (32.5% of total dataset) image-depth

pairs and 12600 stereo pairs for training. We still achieve

comparable performance with much less real-world data.

As Figure 3 shows, it is obvious that the learned struc-

ture maps preserve the fine scene structures. However,

these structures contain a lot of depth-irrelevant structures

highlighted with red boxes, such as lane lines, textures on

houses, etc. The attention maps focus on the object region

with geometric structures (such as cars), layout (house sil-

houette and road guardrail, etc.). In the depth-specific struc-

tural maps, many depth-irrelevant structures (lanes on the

road and logos on the sign) are suppressed. Another inter-

esting observation is the stronger response in the sky region.

The sky with farthest depth value indicates vanishing point,

which is an important cue for depth estimation and can be

regarded as a kind of strong depth-specific information.

We also provide qualitative comparisons in Figure 4. Our

predicted depth map can restore clear object boundaries,

such as cars, trees, and even the structure of tiny objects,

which further demonstrates that our structural representa-

tions carry essential information for depth prediction.

SUNCG → NYU Depth v2. Compared with outdoor

scenes, indoor scenes have more various spatial structures

and more diverse object categories. We compare with a

depth estimation method based on domain adaptation [55].

We also list some deep learning based supervised depth esti-

mation methods [7, 28] for reference, which use 120K real-

world image-depth pairs to train the models. As Table 3

shows, our method significantly outperforms the domain

adaptation method [55] which uses real images of NYU

Depth v2 for training.

We also visualize the representations in Figure 5. Inter-

estingly, our depth-specific representations focus on the lay-

out, junctions and object boundaries of indoor scenes. It is

worth noting that the boundaries here are not edge maps but

some important boundaries that can clearly reflect the geo-

metric structure of the object. Compared with the structure

map, the depth-specific structure map suppresses a large

Input Image          Ground Truth            Baseline            Zheng et al.[55]              Ours

Figure 6. Qualitative comparison of the depth maps on the NYU

Depth v2 dataset. Our method restores clear object boundaries,

e.g., sofas and tables.

Input Image Baseline Ours Ground Truth

Figure 7. Qualitative results on the cross-datasets. From top to

bottom: Cityscapes/DrivingStereo/nuScenes.

number of structures that are not related to depth informa-

tion, such as photos on the wall and the texture structure of

the floor, etc. Similar characteristics are observed for NYU

Depth v2. This also validates that the structural represen-

tations reflect the most essential information of depth esti-

mation, which can be effectively transfered between various

domains. In Figure 6, we provide qualitative comparisons

showing that our results are visually better that other meth-

ods. For example, the tables in the first and third rows and

the sofas in the second and fourth rows maintain the finer

geometric structure and object boundaries.

Generalization Results on More Datasets Here we fur-

ther verify our method on the cross-dataset tasks, i.e.,

vKITTI → Cityscapes/DrivingStereo/nuScenes. These

three target datasets are auto-driving scenes, but the domain

gap is larger compared to vKITTI → KITTI due to the va-

riety of camera, location, whether and so on. We follow

the same setting as vKITTI → KITTI. As shown in Ta-

ble 4 and Figure 7, even though the domain gap is larger,

our method consistently achieves significantly better gener-
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Table 5. Comparison of the contribution of each module with best results marked in bold.

Higher is better Lower is better
Method

δ < 1.25 δ < 1.25
2

δ < 1.25
3 Abs Rel Squa Rel RMSE RMSElog

Baseline 0.642 0.861 0.944 0.236 2.171 7.063 0.315

+STE 0.730 0.903 0.958 0.201 1.989 6.606 0.273

+STE + DSA (Add) 0.751 0.915 0.968 0.185 1.715 6.214 0.257

+STE + DSA (Concat) 0.753 0.919 0.970 0.179 1.487 5.975 0.252

+STE + DSA (⊗) 0.781 0.931 0.972 0.165 1.351 5.695 0.236

Edge + Baseline 0.688 0.887 0.957 0.217 1.970 6.674 0.285

Segmentation Map + Baseline 0.689 0.901 0.965 0.204 1.645 6.240 0.274

alizabilty than the Baseline and UDA method T2Net. The

improvements vary depending on the structural domain gap.

4.3. Ablation Study

For the outdoor datasets, we use the DP module with

raw image input as our baseline. We present the results

of vKITTI→KITTI in Table 5. The performance is gradu-

ally improved by incorporating STE module and DSA mod-

ule. More specifically, after adding STE module, all the

metrics are improved by a large margin from the baseline,

where δ < 1.25 is increased by 13.7%, Abs-Rel is re-

duced by 14.8% and RMSE is reduced by 6.47%, which

shows that removing the style information in the original

images can effectively improve the generalization ability of

the depth estimation task. After adding DSA module, the

performance in all metrics has been further improved, i.e.,

δ < 1.25 is increased by 6.99%, Abs-Rel is reduced by

17.9% and RMSE is reduced by 13.8%, which shows that

the removal of depth-irrelevant structures can further im-

prove the generalization ability of the model.

We study two more combinations of structure map and

attention map: addtion (+STE + DRA (Add) ) and concate-

nation (+STE + DRA (Concat)). As Table 5 shows, our

element-wise multiplication model (+STE + DRA (⊗)) is

more effective, because we use the predicted attention map

to weight the general structure, which can be regarded as

a bottleneck, suppressing depth-irrelevant information and

enhancing depth-specific information, while the addtion or

concatenation operations introduce redundancy and can not

act as the bottleneck effectively.

Intuitively, edge map and the semantic segmentation

map can also be regarded as structural representations. For

the edge map, we apply the Sobel operator [39] to acquire

the edge maps corresponding to the vKITTI and KITTI im-

ages. For the semantic segmentation map, vKITTI dataset

provides semantic labels, and we use one of the state-of-the-

art semantic segmentation methods [59] to predict seman-

tic segmentation maps for KITTI. As illustrated in Table

5, edge maps and semantic segmentation maps can indeed

improve the generalization ability of the network. Since our

depth-specific representations only contains the most essen-

tial information for depth estimation, they have greater ad-

vantages over edge maps and semantic segmentation maps

In addition, we provide ablation study of our method in

indoor scenes on SUNCG [40] and NYU Depth v2 [38]

datasets in Table 3. We observe similar trends as reported in

the outdoor scenario. Specifically, by adding STE module,

the performance of our method has been greatly improved.

After adding DSA module, the performance has been fur-

ther improved. It is worth noting that the encoder part of our

STE module uses the parameters trained on vKITTI (out-

door scenes) and PBN dataset. Although the indoor and out-

door scenes are very different, STE module can still work

well in indoor scenes and learn the corresponding structure

map of the indoor scenes.

5. Conclusion

In this paper, we present a novel structural representation

for generalizable depth estimation. Our learnt representa-

tion can be well generalized to unseen real-world images

when trained on synthetic data, though there is an obvi-

ous style gap. The key is to extract structure information

which is disentangled from various domain styles. Since

the extracted structure map only contains low-level gen-

eral structures including a large amount of depth-irrelevant

ones, we further propose the DSA module to extract com-

plementary high-level semantic information from image to

suppress depth-irrelevant content. The depth-specific struc-

ture map works as an information bottleneck and forces the

network to infer depth from these essential representations

rather than raw images. We even achieve better perfor-

mance on unseen real-world images than the state-of-the-

art domain adaptation methods which uses the real images

from target domain for training. As for the limitation, we

still need the scenarios (e.g. indoor or outdoor) to be sim-

ilar between the synthetic and real-world images. This can

be addressed by using a general synthetic dataset with vari-

ous scenarios.
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