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Abstract

Image super-resolution, which is often regarded as a pre-

processing procedure of scene text recognition, aims to re-

cover the realistic features from a low-resolution text im-

age. It has always been challenging due to large variations

in text shapes, fonts, backgrounds, etc. However, most exist-

ing methods employ generic super-resolution frameworks to

handle scene text images while ignoring text-specific prop-

erties such as text-level layouts and character-level details.

In this paper, we establish a text-focused super-resolution

framework, called Scene Text Telescope (STT). In terms of

text-level layouts, we propose a Transformer-Based Super-

Resolution Network (TBSRN) containing a Self-Attention

Module to extract sequential information, which is robust

to tackle the texts in arbitrary orientations. In terms of

character-level details, we propose a Position-Aware Mod-

ule and a Content-Aware Module to highlight the position

and the content of each character. By observing that some

characters look indistinguishable in low-resolution condi-

tions, we use a weighted cross-entropy loss to tackle this

problem. We conduct extensive experiments, including text

recognition with pre-trained recognizers and image qual-

ity evaluation, on TextZoom and several scene text recog-

nition benchmarks to assess the super-resolution images.

The experimental results show that our STT can indeed gen-

erate text-focused super-resolution images and outperform

the existing methods in terms of recognition accuracy.

1. Introduction

Scene text recognition (STR) has drawn much research

interest of the computer vision community due to its various

applications such as license plate recognition and ID card

recognition [17, 23, 39]. While STR has made a big step

forward with the development of deep learning, recognition

performance on low-resolution (LR) text images is still sub-

par [44]. LR text images exist in many situations, e.g., a
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Figure 1. The proposed STT generates a relatively clearer text im-

age and pays more attention to character details compared with

interpolation methods and generic SR methods. “SR” and “HR”

denote super-resolution and high-resolution, respectively.

photo taken with a low-focal camera or a document image

compressed to reduce disk usages. When handling LR text

images, existing recognition or spotting methods usually

employ interpolation methods, like bicubic and bilinear in-

terpolations, to upsample the original images [4, 27, 37, 38].

As shown in Figure 1, the image upsampled by the interpo-

lation method is still blurred, which indeed brings difficul-

ties to existing recognition models.

In recent years, several works employ generic super-

resolution methods for text image super-resolution. For ex-

ample, in [8], SRCNN [7] with a shallow network is used

as the backbone. In [42], a Laplacian-pyramid backbone is

employed to combine features from several middle layers to

upsample low-resolution images. However, these methods

are not suitable for processing text images [44] since they

see text images as general ones without taking text-specific

properties (e.g. text-level layouts and character-level de-

tails) into consideration. In contrast, there are few methods

that take a part of these properties into account. For exam-

ple, PlugNet [30] designs a multi-task framework, aiming

to recognize and upsample text images in one model. In

[44], a Text Super-Resolution Network (TSRN) containing

a horizontal and a vertical BLSTMs [11] is proposed to cap-

ture sequential information of text images. However, the

BLSTMs are not suitable for capturing sequential informa-

tion of inclined or curved text images.

12026



In this paper, we propose a text-focused super-resolution

framework, called Scene Text Telescope. To tackle

texts in arbitrary orientations, we propose a novel back-

bone, namely Transformer-Based Super-Resolution Net-

work (TBSRN) to capture sequential information. We no-

tice that the previous methods usually employ loss functions

that focus on every pixel of the image, which may suffer

great disturbances from backgrounds. According to Inat-

tentional Blindness [28, 29], when humans observe a text

image, they will naturally pay more attention to text regions

rather than backgrounds, i.e., there is no need to improve

the quality of the whole image in the super-resolution task.

Based on this fact, we put forward a Position-Aware Mod-

ule and a Content-Aware Module to focus on the position

and the content of each character. By observing that there

are some confusable characters in the low-resolution situa-

tion (e.g. in Figure 1, “c” and “e” look similar), we employ

a weighted cross-entropy loss in the Content-Aware Module

to address this problem. Since these two modules are only

used as text-specific guidance when training, they will not

bring additional time overhead in the test stage.

We mainly evaluate our method on TextZoom [44],

which contains LR-HR pairs captured from digital cameras.

Furthermore, we conduct several experiments on scene text

recognition benchmarks to further verify the capabilities

of our STT as a preprocessor. In this work, we employ

some widely used recognition models (e.g. ASTER [38],

MORAN [26], and CRNN [37]) and image quality met-

rics, to evaluate the generated SR images. The experimen-

tal results show that the proposed STT can indeed generate

text-focused super-resolution images and outperform exist-

ing methods in terms of recognition accuracy. Contributions

of the proposed STT can be concluded in three-fold:

• We propose TBSRN to capture sequential information,

which is more robust on texts in arbitrary orientations.

• A Position-Aware Module and a Content-Aware Mod-

ule with a weighted cross-entropy loss are proposed to

highlight the position and content of characters with-

out bringing additional time overhead when testing.

• The proposed STT generates text-focused SR im-

ages and achieves higher recognition accuracy on pre-

trained recognizers than other existing methods.

2. Related Work

In this section, we first review the methods for scene

text recognition, then go down to the literature of applying

super-resolution to text images.

2.1. Scene Text Recognition

Scene text recognition (STR) has made great progress in

recent years. CRNN [37] first combines CNN and RNN

to obtain sequential features of text images, which are fur-

ther fed into a CTC decoder [10] to maximize the prob-

ability of paths that can reach the ground truth. ASTER

[38] employs a Spatial Transformer Network [14] to rectify

text images and uses the attention mechanism to focus on a

specific character at each time step. FAN [3] observes the

attention drift problem and proposes a focusing network to

rectify attention regions. Char-Net [24] rectifies text im-

ages at the character-level. However, these methods em-

ploy a 1-D feature map to encode text images, which is not

suitable for tackling curved texts. Therefore, SAR [21] em-

ploys a 2-D attention map and achieves better performance

on many STR benchmarks. In [22], a framework is pro-

posed to solve STR in a two-dimensional perspective. Be-

sides, several methods such as [36, 46] use Transformer in

STR and show competitive performance with the existing

methods. However, low-resolution text images still bring

difficulties to these methods. Therefore, the research on text

image super-resolution is of great significance.

2.2. Text Image SuperResolution

Text image SR methods can be divided into two classes:

traditional methods and deep learning-based methods. Tra-

ditional methods tend to employ traditional machine learn-

ing strategies. In [2], two estimators are proposed to

enhance text images, including a Maximum a posteriori

(MAP) estimator [9] based on a Huber prior and an esti-

mator regularized using the Total Variation norm. In [6],

a Bayesian framework is formulated to improve the visual

quality of fax documents or low-resolution scans. In [31],

a regularization method with bilateral Total Variation sta-

bilizer and bimodal penalty function is used to perform

SR. In recent years, plenty of text image super-resolution

methods are conducted with deep learning-based models.

In [8], SRCNN [7] is used as the backbone to perform

super-resolution. In [32], three SR frameworks are pro-

posed to perform SR on binary document images. In [42],

a Laplacian-pyramid backbone is employed to upsample

low-resolution images. These methods are not suitable

for handling scene text images [44] because they directly

use generic SR frameworks and ignore text-specific prop-

erties such as text-level layouts and character-level details.

There are few methods that take a part of these properties

into account. PlugNet [30] designs a multi-task framework

by performing recognition and super-resolution simultane-

ously. In [44], a Text Super-Resolution Network (TSRN)

containing a horizontal BLSTM and a vertical BLSTM [11]

is proposed to capture sequential information in text im-

ages. However, these methods focus on every pixel in

the image, which may suffer great disturbances from back-

grounds, thereby affecting the performance of upsampling

on text regions. Previous works show that the scene text

image super-resolution task is far from being resolved.
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Figure 2. The overall architecture of our STT consists of three parts, including a Pixel-Wise Supervision Module, a Position-Aware Module,

and a Content-Aware Module. “TBSRN-n” means n consecutive TBSRN blocks. Parameters in the pre-trained Transformer are frozen.

3. Methodology

The overall architecture of the proposed STT is shown

in Figure 2. In the Pixel-Wise Supervision Module (green

dotted frame), a low-resolution text image is first rectified

by a Spatial Transformer Network (STN) [14] to tackle the

misalignment problem, which is mentioned in [44]. Se-

quentially, the rectified image goes down to a series of

Transformer-Based Super-Resolution Networks (TBSRN),

then upsamples to a super-resolution text image by pixel

shuffling. In the Position-Aware Module (red dotted frame),

by taking the corresponding HR image as a reference, the at-

tention maps of the HR image and the SR image are super-

vised by an L1 loss. The Content-Aware Module (blue dot-

ted frame) provides clues about the content and employs a

weighted cross-entropy loss to distinguish confusable char-

acters. Details are introduced in the following.

3.1. PixelWise Supervision Module

Most super-resolution methods often employ variants of

Fully Convolutional Network [25] as backbones [7, 40, 41].

To capture sequential information in text images, TSRN

[44] appends a horizontal BLSTM and a vertical BLSTM

[11] in the backbone. However, texts in natural scenes

can be inclined or curved, which brings difficulties to the

BLSTMs. Inspired by the 2-D attention in STR [21, 22], we

propose a Transformer-Based Super-Resolution Network

(TBSRN), which mainly contains a Self-Attention Module

and a Position-Wise Feed-Forward Module. As the Self-

Attention Module can correlate any pixel pairs in feature

maps, it is robust to handle text images in arbitrary orienta-

tions. Each TBSRN unit is demonstrated in Figure 3. Af-

ter rectified by STN, the image is fed into two consecutive

CNNs to extract a feature map, which is further sent to the

Self-Attention Module to capture sequential information.

Unlike those RNN-based models which can implicitly attain

positional clues according to time steps, the Self-Attention

Module is not aware of spatial positional information since

CNN x 2

Flatten

Self-Attention

Postion-Wise
Feed-Forward

Reshape

Concatenate
with 2-D PE

Figure 3. The illustration of the proposed TBSRN. The detailed

configuration is shown in the supplementary material.

the input is processed in parallel [43]. Under this circum-

stance, we concatenate a 2-D positional encoding (PE) with

the feature map. In practice, we set the dimension of PE for

both x-axis (height) and y-axis (width) to dPE. For a grid

(m,n) in the image, we calculate its positional encoding

for each axis as follows:

Px[m,n, 2i] = sin(m/100002i/dPE)
Px[m,n, 2i+ 1] = cos(m/100002i/dPE)
Py[m,n, 2i] = sin(n/100002i/dPE)
Py[m,n, 2i+ 1] = cos(n/100002i/dPE)

(1)

where Px ∈ R
H×W×dPE and Py ∈ R

H×W×dPE . For

example, Px[m,n, 2i] means the 2i-th element in the PE

of x-axis at the grid (m,n). Then the feature map is

concatenated with Px and Py and flattened to a 1-D se-

quence, sequentially sent to the Self-Attention Module and

the Position-Wise Feed-Forward Module. Specifically, the

size of the generated feature map is reshaped to the same

size as the input image. Finally, the SR image is gener-

ated by pixel shuffling following [44]. In this module, we

employ an L2 loss to constrain these two images: LPSM =
||IHR−ISR||

2

2
, where IHR and ISR denote the high-resolution

image and the super-resolution image, respectively.
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3.2. PositionAware Module

Generally, we mainly focus on the character regions in

the text image super-resolution task while paying less atten-

tion to backgrounds. However, most existing methods sim-

ply employ an L1 loss or an L2 loss focusing on each pixel

in the images [30, 44]. In fact, texts in natural scenes are

often in company with complicated backgrounds, which are

great disturbances to the super-resolution model. Therefore,

we employ a Position-Aware Module to highlight character

regions with the reference of high-resolution images.

To achieve this aim, we first pre-train a Transformer-

based recognition model using synthetic text datasets in-

cluding Syn90k [13] and SynthText [12], then leveraging

its attending regions at each time step as positional clues.

The configuration of the pre-trained Transformer is shown

in the supplementary material. Given an HR text image,

the Transformer outputs a list of attention maps AHR =
(a1,a2, ...,al), where ai denotes the attention map at the

i-th time step and l is the length of its text label. Taking

advantage of HR images that often have clear gaps between

characters, we utilize their attention maps as the label of

character regions. The generated SR image is also fed to the

Transformer to obtain another list ASR, the length of which

is the same as AHR. We employ an L1 loss to supervise two

attention maps as follows:

LPOS = ||AHR −ASR||1 (2)

3.3. ContentAware Module

Clear super-resolution text images can be well identified

by recognition models. Given the super-resolution images,

we employ a pre-trained Transformer (the same as the one

used in the Position-Aware Module) to predict a text se-

quence. Generally, we can simply leverage a cross-entropy

loss to supervise text predictions following [3, 4, 37]. Since

the parameters in the pre-trained Transformer are frozen,

the Content-Aware Module will guide the super-resolution

model to generate a more distinguishable text image by

backpropagation.

However, we notice that there are some character pairs

that look similar in low-resolution condition (e.g. “c” and

“e” in Figure 1), which is hard for the super-resolution pro-

cedure. To tackle this problem, we first train a Variational

Autoencoder (VAE) [19] using EMNIST [5] to obtain each

character’s 2-D latent representation. Details of VAE are

introduced in the supplementary material. As demonstrated

in Figure 4, positions of similar characters are usually close

in the latent space. We denote the alphabet as A, the length

of the alphabet as |A|, and the i-th character as Ai. Given

this 2-D latent space representation, the Euclidean distance

between character Ai and Aj is denoted as dij . And we set

their confusable coefficient cij as 1

dij
provided that i 6= j.

Otherwise, we set cij to 1 when i = j.

Figure 4. Latent variable clustering over all digits and letters.

Some confusable characters are close in the latent space (e.g.

{“C”,“c”,“e”} and {“2”,“z”,“Z”}). Each label is placed in the cen-

ter of the corresponding class.

As shown in Figure 5, assume that at the time step t,
the pre-trained Transformer generates an output vector o =
{o1, o2, ..., o|A|}. For each oi ∈ R, the larger the value,

the more likely the recognition model is to predict the i-th
character at the current time step. If the ground truth is Aj ,

we calculate its weighted activation aj as follows:

aj =
eoj

∑|A|
i=1

cijeoi
(3)

The content loss LCON for all time steps is computed by:

LCON = −
∑

t
ln ayt

, where yt denotes the ground truth at

the t-th time step. Note that when each confusable coeffi-

cient is constrained to 1, LCON is equal to the vanilla cross-

entropy loss. In the following, we will prove its effective-

ness. According to Figure 5, the last few layers of the recog-

nition model can be concluded as three layers, including a

hidden layer, an output layer, and a softmax layer. At time

step t, if the prediction is Ai while the ground truth is Aj ,

the gradient is computed as follows:

∂LCON

∂wki
=

∂LCON

∂aj

∂aj
∂oi

∂oi
∂wki

= −
1

aj

−cijeoieoj

(
∑|A|

m=1
cjmeom)2

hk

=
cijeoi

∑|A|
m=1

cjmeom
hk

(4)

If Ai and Aj look similar, cij will be a high value (i.e.

much greater than 1), which results in a numerically higher
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Figure 5. The last few layers of generic recognition models.

gradient for backpropagation (i.e. get more punishment).

Compared with vanilla cross-entropy loss, the weighted

cross-entropy loss will pay more attention to those confus-

able characters.

3.4. Overall Loss Function

The overall loss function L can be calculated as follows:

L = LPSM + λPOSLPOS + λCONLCON (5)

where λPOS and λCON are hyperparameters to balance three

terms. See the supplementary material about the discussion

on choices between the L1 and L2 loss for LPSM and LPOS.

4. Experiments

In this section, we conduct experiments to verify: 1) The

effectiveness of each component in STT. 2) STT’s perfor-

mance on TextZoom and its ability as a preprocessor on

STR benchmarks. At last, we display some failure cases.

Introduction of TextZoom. The images in TextZoom [44]

originate from two single image super-resolution datasets,

including RealSR [1] and SR-RAW [48]. These datasets

contain LR-HR pairs which are taken by digital cameras in

real scenes. TextZoom contains 17, 367 LR-HR pairs for

training and 4, 373 pairs for testing. According to differ-

ent focal lengths of digital cameras, the test set is divided

into three subsets, including 1, 619 pairs for the easy sub-

set, 1, 411 pairs for the medium subset, and 1, 343 pairs for

the hard subset. LR images are resized to 16 × 64 and HR

images are resized to 32× 128. The examples of three sub-

sets are demonstrated in Figure 6.

Evaluation Metrics. To calculate the recognition accuracy,

we remove all punctuations and convert uppercase letters to

lowercase letters, which follows the same setting of [44] for

a fair comparison. Peak Signal-to-Noise Ratio (PSNR) and

Structural Similarity Index Measure (SSIM) [45] are used

to evaluate the quality of SR images.

While the vanilla PSNR and SSIM consider all pixels in

the image, we mainly focus on text regions in this text im-

age super-resolution task. Therefore, we propose two novel

metrics, including Text Region PSNR (TR-PSNR) and Text

Region SSIM (TR-SSIM). When calculating these two met-

Figure 6. Examples of the three subsets in TextZoom. LR images

are upsampled to the same size as HR images using the bicubic

interpolation. The text becomes more blurred when the difficulty

increases, which are hard to recognize even for human eyes.

Figure 7. Examples of masks generated by the segmentation model

based on U-Net. Masks can roughly represent text regions.

rics, we only take the pixels in the text region into consider-

ation. Benefiting from the text-level bounding box labels in

SynthText [12], we can obtain rough text regions (refer to

white pixels in Figure 7) by training a segmentation model

based on U-Net [35]. The details of the segmentation model

are shown in the supplementary material.

Implementation Details. Our method is implemented in

PyTorch. All experiments are conducted on four NVIDIA

TITAN Xp GPUs with 12GB memory. The model is trained

using the Adam [18] optimizer. The batch size is set to 80.

The learning rate is set to 0.0001. dPE is set to 32. Through

ablation studies, we set the trade-off weight of λPOS as 10

and λCON as 0.0005. The parameters in the pre-trained

Transformer are frozen. We use official PyTorch code and

released pre-trained models of CRNN [37]1, ASTER [38]2

, and MORAN [26]3.

4.1. Ablation Study

In this section, we will evaluate the effectiveness of each

component, including the backbone, the Position-Aware

Module, the Content-Aware Module, and LPSM. Ablation

studies are conducted on TextZoom and recognition accu-

racy is computed by the pre-trained CRNN [37].

Ablation Study on Backbone. We compare the TBSRN

with other super-resolution backbones, including SRCNN

[7], SRResNet [20], as well as TSRN [44]. As shown in Ta-

ble 1, benefiting from the 2-D attention map, TBSRN-5 out-

performs TSRN [44] by 1.8% on average accuracy. More-

1https://github.com/meijieru/crnn.pytorch
2https://github.com/ayumiymk/aster.pytorch
3https://github.com/Canjie-Luo/MORAN v2
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Backbone Easy Medium Hard Average

BICUBIC 36.4% 21.1% 21.1% 26.8%

SRCNN [7] 41.1% 22.3% 22.0% 29.2%

SRResNet [20] 45.2% 32.6% 25.5% 35.1%

TSRN [44] 52.5% 38.2% 31.4% 41.4%

TBSRN-1 51.5% 35.5% 30.2% 39.8%

TBSRN-2 54.2% 37.4% 30.2% 41.4%

TBSRN-3 55.0% 37.9% 31.0% 42.1%

TBSRN-4 53.8% 37.8% 31.3% 41.7%

TBSRN-5 54.2% 40.6% 32.7% 43.2%

TBSRN-6 53.8% 39.4% 31.4% 42.3%

TBSRN-5 w/o PE 50.0% 33.4% 28.2% 37.9%

Table 1. Ablation study on the backbone. “BICUBIC” means LR

images are directly upsampled by the bicubic interpolation.

λPOS Easy Medium Hard Average

0 54.2% 40.6% 32.7% 43.2%

0.1 53.6% 39.3% 31.7% 42.3%

1 55.8% 41.0% 33.0% 44.0%

10 57.7% 43.0% 33.6% 45.6%

100 57.0% 42.3% 33.4% 45.0%

Table 2. Ablation study on the Position-Aware Module.

over, the performance degrades by 0.9% on average when

using more blocks. We also observe that the model in the

absence of a 2-D PE degrades severely (drop 5.3% on aver-

age accuracy), which reflects the significance of positional

clues in the backbone. Therefore, we utilize TBSRN-5 to

conduct the following ablation studies.

Ablation Study on Position-Aware Module. To verify

the effectiveness of this module, we explore λPOS from

{0, 0.1, 1, 10, 100}. Specifically, when λPOS = 0, there

does not exist any supervision on attention maps. The

results are shown in Table 2. Compared with the base-

line (λPOS = 0), the average accuracy on CRNN increases

by 2.4% when λPOS = 10, which shows its superiority as

position-level guidance. We set λPOS to 10 in the following

experiments. More visual results of this modules are shown

in the supplementary material.

Ablation Study on Content-Aware Module. We explore

λCON from {0, 0.0001, 0.0005, 0.001, 0.01} and the results

are shown in Table 3. When λCON = 0.0005, the model

outperforms all its counterparts. Compared with the base-

line (λCON = 0), the average accuracy increases by 1.5%.

Furthermore, we observe that the model with a weighted

cross-entropy loss boosts the accuracy by 1.0%, indicating

the weights can indeed help pave the way for distinguishing

confusable characters. We set λCON to 0.0005 in the follow-

ing experiments. More visual results of this modules are

shown in the supplementary material.

Ablation Study on LPSM. Since we have employed LPOS

and LCON to help the model focus on character regions, we

λCON WCE Easy Medium Hard Average

0 - 57.7% 43.0% 33.6% 45.6%

0.0001
- 58.3% 44.2% 35.0% 46.6%

X 58.6% 46.6% 35.2% 47.5%

0.0005
- 59.1% 44.7% 35.0% 47.1%

X 59.6% 47.1% 35.3% 48.1%

0.001
- 58.3% 44.4% 33.4% 46.2%

X 59.0% 45.6% 34.7% 47.2%

0.01
- 58.1% 44.4% 33.4% 46.1%

X 58.5% 44.5% 33.4% 46.3%

Table 3. Ablation study on the Content-Aware Module. “WCE”

denotes the weighted cross-entropy loss.

LPSM LPOS LCON Easy Medium Hard Average

X
X X

59.6% 47.1% 35.3% 48.1%

- 44.7% 35.2% 28.3% 36.6%

LPSM LPOS LCON PSNR TR-PSNR SSIM TR-SSIM

X
X X

23.82 24.60 0.8660 0.9003

- 4.97 6.31 0.1968 0.3399

Table 4. Ablation study on LPSM with respect to recognition accu-

racy (top) and image quality (below).

also investigate whether LPSM is necessary for the super-

resolution task. We conduct an ablation study on LPSM and

the results are shown in Table 4. Interestingly, the model

without LPSM degrades severely on recognition accuracy

and quality metrics. Several examples are shown in the

supplementary material. Through the visualization, we ob-

serve that LPSM provides the supervision about color and

pixel-level character outlines. Moreover, the model tends to

generate green-toned text images in the absence of LPSM,

which are not friendly to human eyes. Although the model

generates some images that can be successfully identified

by CRNN, there is a huge gap between SR images and HR

images in terms of appearance. Therefore, LPSM plays an

important part in the super-resolution task.

4.2. Experimental Results

In this section, we assess STT’s performance on

TextZoom and conduct experiments on scene text recogni-

tion benchmarks to verify STT’s ability as a preprocessor.

Results on TextZoom. We compare our model with other

existing super-resolution models on three recognition mod-

els, including CRNN [37], ASTER [38], and MORAN [26]

(see Table 5(a)). Our model outperforms its counterparts on

every recognizer. Compared with vanilla TSRN (without

LPOS and LCON) [44], our model boosts average accuracy by

1.8% on ASTER, 3.0% on MORAN, and 6.7% on CRNN.

Furthermore, we add the Position-Aware Module and the

Content-Aware Module to other backbones and observe that

the two newly added modules also boost the performance.

For example, SRResNet [20] armed with these two mod-

ules boosts average accuracy by 6% on CRNN. As shown
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(a) Comparison of the recognition accuracy.

Backbone LPOS LCON
ASTER [38] MORAN [26] CRNN [37]

Easy Medium Hard Average Easy Medium Hard Average Easy Medium Hard Average

BICUBIC - - 64.7% 42.4% 31.2% 47.2% 60.6% 37.9% 30.8% 44.1% 36.4% 21.1% 21.1% 26.8%

SRCNN [7]

- - 70.6% 44.0% 31.5% 50.0% 63.9% 40.0% 29.4% 45.6% 41.1% 22.3% 22.0% 29.2%

X - 69.0% 46.9% 32.8% 50.8% 64.5% 42.7% 31.1% 47.2% 40.6% 24.7% 22.6% 29.9%

X X 70.2% 49.4% 32.5% 51.9% 66.2% 44.4% 31.3% 48.4% 41.7% 25.4% 23.1% 30.7%

SRResNet [20]

- - 69.4% 50.5% 35.7% 53.0% 66.0% 47.1% 33.4% 49.9% 45.2% 32.6% 25.5% 35.1%

X - 74.8% 56.2% 38.6% 57.7% 70.2% 53.4% 37.0% 54.6% 47.7% 35.6% 27.1% 37.5%

X X 74.2% 57.3% 38.5% 57.8% 71.1% 54.4% 37.0% 55.2% 52.3% 39.6% 29.3% 41.1%

TSRN [44]

- - 75.1% 56.3% 40.1% 58.3% 70.1% 55.3% 37.9% 55.4% 52.5% 38.2% 31.4% 41.4%

X - 74.2% 57.7% 40.0% 58.4% 71.5% 55.5% 38.4% 56.2% 53.9% 39.6% 31.7% 42.5%

X X 74.3% 59.7% 39.6% 58.9% 72.3% 55.6% 39.8% 56.9% 54.3% 40.4% 31.7% 42.9%

TBSRN

- - 75.2% 56.7% 40.2% 58.5% 71.1% 55.2% 39.5% 56.3% 54.2% 40.6% 32.7% 43.2%

X - 76.1% 58.9% 41.6% 60.0% 73.8% 56.2% 40.9% 58.0% 57.7% 43.0% 33.6% 45.6%

X X 75.7% 59.9% 41.6% 60.1% 74.1% 57.0% 40.8% 58.4% 59.6% 47.1% 35.3% 48.1%

(b) Comparison of the image quality.

Backbone LPOS LCON
PSNR TR-PSNR SSIM TR-SSIM

Easy Medium Hard Easy Medium Hard Easy Medium Hard Easy Medium Hard

BICUBIC - - 22.35 18.98 19.39 23.58 20.25 19.62 0.7884 0.6254 0.6592 0.8474 0.7139 0.7433

SRCNN [7]

- - 23.13 19.57 19.56 23.83 20.26 20.44 0.8152 0.6425 0.6833 0.8613 0.7208 0.7554

X - 22.49 19.62 19.55 23.24 20.40 20.43 0.7962 0.6231 0.6668 0.8480 0.7099 0.7451

X X 22.51 19.66 19.44 23.25 20.41 20.34 0.7952 0.6288 0.6694 0.8475 0.7131 0.7463

SRResNet [20]

- - 20.65 18.90 19.53 21.62 19.58 20.36 0.8176 0.6324 0.7060 0.8597 0.7089 0.7710

X - 23.03 19.36 19.71 23.89 20.06 20.60 0.8188 0.6248 0.6873 0.8663 0.7090 0.7613

X X 23.16 19.25 19.94 24.05 19.93 20.80 0.8311 0.6314 0.6999 0.8758 0.7122 0.7700

TSRN [44]

- - 22.95 19.26 19.76 23.80 19.88 20.62 0.8562 0.6596 0.7285 0.8895 0.7274 0.7854

X - 23.26 19.01 19.75 24.00 19.89 20.77 0.8441 0.6578 0.7103 0.8875 0.7196 0.7860

X X 23.34 19.16 19.81 24.22 19.84 20.70 0.8466 0.6379 0.7023 0.8867 0.7157 0.7710

TBSRN

- - 24.13 19.08 20.09 24.99 19.72 20.90 0.8729 0.6455 0.7452 0.9031 0.7113 0.7995

X - 23.46 18.86 19.85 24.31 19.55 20.72 0.8612 0.6639 0.7252 0.8953 0.7299 0.7870

X X 23.82 19.17 19.68 24.60 19.73 20.65 0.8660 0.6533 0.7490 0.9003 0.7234 0.7995

Table 5. Comparison with the existing methods in terms of the recognition accuracy and the image quality on TextZoom.

in Table 5(b), our model shows comparable performance on

four image quality metrics with other existing methods. Al-

though the performance does not reach the best, it is not so

important compared to accuracy in this task. We visualize

several examples in Figure 8. Compared with other meth-

ods, our method pays more attention to the character-level

details. Furthermore, the model is robust to the inclined or

curved text images (see the last three columns). The exper-

imental results on more recognizers, including NRTR [36],

SEED [33] as well as AutoSTR [47], are shown in the sup-

plementary material. The computational cost is also dis-

cussed in the supplementary material.

Results on Scene Text Recognition Benchmarks. In this

section, we validate the ability of our model as a preproces-

sor on scene text recognition benchmarks. Specifically, we

prepare LR images in two settings: 1) Manually downsam-

ple and degrade all original images. 2) Pick low-resolution

images from existing benchmarks.

For the first setting, we choose all images in IC13 [16],

IC15 [15], as well as CT80 [34] to conduct experiments.

Since image styles and distribution of labels in these bench-

marks are quite different from those in TextZoom, there ex-

ists a domain shift problem that is challenging for the pro-

posed STT. The introduction of these benchmarks is shown

in the supplementary material. We first resized the images

to 16 × 64 and sequentially employ Gaussian blur kernels

with different radii to blur these images (see Figure 9), and

use official CRNN [37] to evaluate recognition accuracy.

The results are shown in Table 6. If preprocessing the LR

images, we employ STT pre-trained on TextZoom to up-

sample it to 32 ×128. Otherwise, images are directly up-

sampled with the bilinear interpolation. The effect of STT

becomes more powerful when we manually blur the input

images. For example, the accuracy increases by 7.8% on

IC13, 3.2% on IC15, and 7.3% on CT80 when the radius

reaches 3, which shows its superiority as a preprocessor.

For the second setting, we choose two robust text recog-

nizers including NRTR [36]4 and SEED [33]5. Compared

with IC15, other benchmarks have relatively higher resolu-

tion, so we only test LR text images in IC15. To validate

the ability of the proposed STT, we first pick all text im-

ages with low resolution (smaller than 16 × 64) in IC15 and

resize them to 16 × 64, resulting in 352 samples. Sequen-

tially, we utilize the proposed STT pre-trained on TextZoom

to upsample them to 32 × 128. After the pre-processing, the

accuracy on the 352 text images increases by 5.7% (65.6%

4https://github.com/Belval/NRTR
5https://github.com/Pay20Y/SEED
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Figure 8. Examples of the generated images in TextZoom. The SR images generated from STT are clearer than other methods in terms of

character-level details. Moreover, our model is robust on inclined or curved text images (refer to the last three columns).

Figure 9. Images processed by Gaussian blur kernels.

R P IC13 [16] IC15 [15] CT80 [34] Average

0
- 76.4% 53.7% 47.0% 60.9%

X 75.8% 56.8% 47.2% 62.4%

1
- 71.2% 38.5% 46.5% 50.4%

X 72.4% 49.4% 48.0% 57.2%

2
- 56.7% 13.4% 36.5% 30.3%

X 64.0% 21.6% 41.0% 37.9%

3
- 43.0% 5.2% 26.4% 20.1%

X 50.8% 8.4% 33.7% 25.2%

Table 6. Results on scene text recognition benchmarks. “R” de-

notes the radius. “P” means whether to preprocess with STT.

to 71.3%) for NRTR and 4.8% (71.0% to 75.8%) for SEED.

For the full set of IC15, the accuracy on the 1,811 text im-

ages increases by 1.1% (76.5% to 77.6%) for NRTR and

0.9% (79.7% to 80.6%) for SEED. So the proposed STT is

capable of boosting performance on robust text recognizers.

4.3. Failure Cases

As shown in Figure 10, we visualize several failure cases

from TextZoom. We notice that the model is hard to handle

the LR images with long and small texts. When the text im-

age has a complicated background or occlusion, the perfor-

mance of our model is subpar. Furthermore, artistic fonts

and handwriting texts bring difficulties to the model. We

also observe that our model is hard to tackle those images

whose labels have not appeared in the training set.

Figure 10. Failure cases in TextZoom. Long texts , artistic fonts,

occlusion, and unseen texts indeed bring difficulties for our STT.

5. Conclusion

In this paper, we put forward a text-focused super-

resolution model, called Scene Text Telescope, aiming to

excavate text-specific properties. The proposed backbone

termed TBSRN utilizes the self-attention mechanism to

tackle irregular text images. The Position-Aware Mod-

ule and Content-Aware Module help the model pay more

attention to the position and the content of each charac-

ter without bringing additional time overhead. Further-

more, the weighted cross-entropy loss alleviates the diffi-

culty caused by confusable characters. With these com-

ponents, the generated images are more distinguishable for

recognition models. Hence, the proposed method shows its

superiority in upsampling low-resolution scene text images.
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