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Abstract

Data-driven based approaches, in spite of great success

in many tasks, have poor generalization when applied to

unseen image domains, and require expensive cost of anno-

tation especially for dense pixel prediction tasks such as se-

mantic segmentation. Recently, both unsupervised domain

adaptation (UDA) from large amounts of synthetic data and

semi-supervised learning (SSL) with small set of labeled

data have been studied to alleviate this issue. However,

there is still a large gap on performance compared to their

supervised counterparts. We focus on a more practical set-

ting of semi-supervised domain adaptation (SSDA) where

both a small set of labeled target data and large amounts

of labeled source data are available. To address the task

of SSDA, a novel framework based on dual-level domain

mixing is proposed. The proposed framework consists of

three stages. First, two kinds of data mixing methods are

proposed to reduce domain gap in both region-level and

sample-level respectively. We can obtain two complemen-

tary domain-mixed teachers based on dual-level mixed data

from holistic and partial views respectively. Then, a stu-

dent model is learned by distilling knowledge from these

two teachers. Finally, pseudo labels of unlabeled data are

generated in a self-training manner for another few rounds

of teachers training. Extensive experimental results have

demonstrated the effectiveness of our proposed framework

on synthetic-to-real semantic segmentation benchmarks.

1. Introduction

Semantic segmentation with the goal of assigning

semantic-level labels to every pixel in an image is one

of the fundamental topics in computer vision due to its

widely critical real-world applications, such as autonomous

driving [11] and robotic navigation [28, 39]. Over the

†Equal contribution
‡Part of this work was done while he was in Noah’s Ark Lab

past few years, deep convolutional neural networks(CNNs)

have achieved dramatic improvements in semantic segmen-

tation [1, 25, 17, 26, 2, 48]. The success of CNN-based

methods benefits from large volume of manually labeled

data [24, 8], and the assumption of independent and identi-

cal data distribution between training and testing samples.

However, performance drops significantly when the model

trained on training set (source domain) is directly applied to

unseen test scenarios (target domain). In addition, densely

annotating pixel-wise labels of many samples in target do-

main is time-consuming and uneconomical.

To reduce the heavy demand for pixel-wise annotation,

one way is to employ large amounts of easy-to-get simula-

tion data which can be collected from game engines such

as GTA5 [33] and SYNTHIA [34]. In addition, unsuper-

vised domain adaptation (UDA) strategy, which aims at

transferring knowledge from a synthetic label-rich source

domain to a real-world label-scarce target domain, is re-

quired to bridge domain gap between synthetic and real-

world domains. Impressive results have been achieved

by UDA methods that extract domain-invariant representa-

tions via entropy minimization [31, 43], generative mod-

elling [16, 12] and adversarial learning [42, 41]. How-

ever, domain shift cannot be completely eliminated by these

methods due to weak supervision on target examples. There

is still a big gap in performance compared with supervised

methods. Another way in addressing the issue of heavy an-

notation is to annotate only a small set of images from target

domain and make full use of plenty of unlabeled data with

semi-supervised learning (SSL) techniques [10, 30, 9, 29].

Due to the shortage of labeled data in SSL setting, the ob-

tained model has the risk of overfitting to the small amount

of labeled data. How to effectively utilize available unla-

beled and limited labeled data from different domains is the

key in improving model’s accuracy and generalization for

pixel-wise prediction tasks.

Hence, a more practical task of semi-supervised domain
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adaptation (SSDA) is recently introduced by combining the

small set of labeled target data images in SSL with the large

amounts of labeled source domain data and unlabeled tar-

get domain data. In order to address the SSDA problem,

one naive way is to equip UDA methods with additional su-

pervision on the extra labeled target images (see Baseline

in Table 1.). For example, Alleviating Semantic-level Shift

(ASS) model [44] is proposed for better promoting the dis-

tribution consistency of features by using adversarial learn-

ing on outputs from two labeled domains. However, these

methods cannot fully explore rich information within avail-

able labeled and unlabeled data in two domains.

Semantic segmentation is a dense pixel-wise prediction

task, and classification of one pixel depends not only on its

own value but also on its neighbourhood’s context. We fo-

cus on how to effectively utilize labeled data in different

domains to extract domain-invariant representations in both

region-level and sample-level. The proposed framework

consists of three steps. First, two kinds of data mixing meth-

ods are proposed to reduce domain gap in both region-level

and sample-level. The region-level data mixing is achieved

by applying two binary masks to labeled images from two

domains and combining the two masked regions, which en-

courages a model to extract domain-invariant features about

semantic structure from partial view. On the other hand,

the image-level data mixing directly mixes labeled images

from two domains from holistic view. Such two mixing

ways help train two complementary teacher models that

work on both two kinds of data distribution. In the second

step, we employ knowledge distillation technique to extract

“dark knowledge” from these two complementary teachers,

which works as guidance in the learning process of a student

model for target domain. By integrating knowledge from

two views and making full use of unlabeled data, the stu-

dent model of the same network architecture can give even

better performance than any of its teachers. Once a good

student model for target domain is obtained, pseudo labels

could be generated with self-training strategy to expand the

set of labeled target domain data for iterative update. Com-

pared with traditional self-training methods, which directly

use pseudo labels to train a final model, we instead leverage

these pseudo labels to obtain two stronger domain-mixed

teachers, which also leads to stronger student by another

round of knowledge distillation. Overall, in our framework,

teachers and student are progressively growing, and we can

obtain a final well-trained student model.

Our contributions of this paper are three-fold:

• Two kinds of data mixing methods are proposed to

train domain-mixed teachers across domains in both

region-level and sample-level to alleviate data distri-

bution mismatch between different domains.

• A stronger student model on target domain can be ob-

tained by distilling knowledge from complementary

domain-mixed teachers. It can be further strengthened

by employing pseudo labels which are generated for

unlabeled target data in a self-training manner.

• Extensive experiments demonstrate that the proposed

method can achieve superior performance on two com-

mon synthetic-to-real semantic segmentation bench-

marks with small amounts of labeled data.

2. Related Works

Unsupervised domain adaptation for semantic segmen-

tation. Unsupervised domain adaptation (UDA) methods

for semantic segmentation have been extensively studied to

address domain discrepancy between photo-realistic syn-

thetic dataset and unlabeled real dataset. One mainstream

approach is by adversarial learning [42, 41, 6, 5, 17, 37, 19],

which aims to employ a discriminator to measure the di-

vergence across two domains. Another approach to solve

UDA problem is to utilize generative networks [38, 16, 49]

to generate target-style images by applying style transfer

technique on annotated source image. Some methods based

on self-training [21, 50, 23, 14] have been employed to gen-

erate pseudo labels of unlabeled data and use them to fine-

tune the model. [21] firstly generates different stylized an-

notated images to learn texture-invariant representation and

then uses self-training to generate pseudo labels of unla-

beled data to fine-tune the model on target domain.

Although impressive results have been achieved in UDA

for semantic segmentation, the domain gap cannot be fully

alleviated due to the lack of strong supervision in the tar-

get domain, and there is still an observed performance gap

compared with their supervised counterparts.

Semi-supervised learning for semantic segmentation.

One way to reduce the heavy demand for manual pixel-wise

labeling is to only label a small amount of data from tar-

get distribution and adopt semi-supervised learning (SSL)

strategy to learn a great generalized model among ample

unlabeled and limited labeled data. Numerous methods

have since been developed to improve model generaliza-

tion [30, 20, 9, 29, 18, 4, 13]. Consistency regulariza-

tion is one of the most popular methods and the key idea

is to encourage the network to give consistent predictions

for perturbed unlabeled inputs. One most related work

is [10], which enforces a consistency between mixed out-

put of teacher network and the prediction of student over

the mixed inputs by a region-level data augmentation Cut-

Mix [46] with a teacher-student architecture [40]. Our

method also shares similar philosophy as theirs, however,

we propose to train two domain-mixed teachers with two

kinds of domain-mixing methods to fully exploit two sets

of data from two different domains.

Semi-supervised domain adaptation. Also aims to reduce

the data distribution mismatch, compared with UDA, semi-

supervised domain adaptation (SSDA) bridges domain dis-
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Figure 1. The first two stages of the proposed SSDA framework, training of domain-mixing teachers and multi-teacher knowledge distil-

lation. The domain-mixed teachers are trained based on the dual-level mixed data. Then these two domain-mixed teachers are used to

train a good student. The student will generate pseudo labels for next round of teachers training. E means the ensemble operation of two

domain-mixed teachers. The black arrows represent the training data flow, blue arrows represent the data flow of inference, which do not

require gradient backward. The red arrows represent the computation of losses.

crepancy via introducing partially labeled target samples.

Recently, a few methods have been proposed based on deep

learning [45, 32, 22, 35] for image classification. [45] de-

composes SSDA into two sub-problems: UDA and SSL,

and employs co-training [3] to exchange the expertise be-

tween two classifiers, which are trained on MixUp-ed [47]

data between labeled and unlabeled data of each view.

Due to the complex densely pixel-wise prediction and no

explicit decision boundaries between examples in seman-

tic segmentation, SSDA methods based on discriminative

class boundaries for image classification cannot be directly

applied to semantic segmentation. Just one previous work

have been developed to study SSDA for semantic segmen-

tation. Wang et al. [44] propose Alleviating Semantic-level

Shift (ASS) framework to realize feature alignment across

domain from global and semantic level. ASS introduces

an extra semantic-level adaptation module through adver-

sarial training on the corresponding outputs of source and

target labeled inputs besides the additional supervision on

extra small amount of labeled target data upon the classical

AdaptSeg framework [41]. However, the naive supervision

of labeled target samples cannot fully take advantage of la-

beled two domains, and the adversarial loss makes training

unstable due to the weak supervision. To solve this issue,

we propose a novel iterative framework based on dual-level

domain mixing methods without any adversarial training.

3. Method

3.1. Problem Statement

In the setting of semi-supervised domain adaptation

(SSDA), we are provided with a small set of labeled tar-

get domain images upon the large amounts of labeled

source and unlabeled target domain images. Let DS =

{(xs
i
, ys

i
)}NS

i=1
represents the NS labeled source domain

samples, and DT = {(xt
i
, yt

i
)}NT

i=1
represents the NT la-

beled target domain samples, and DU = {xu
i
}NU

i=1
repre-

sents the NU unlabeled target domain samples. With the

SSDA setting, we aim at developing a way to efficiently

utilize the available DS , DT and DU and obtain a segmen-

tation model which has great performance on unseen test

data sampled from target data distribution.

3.2. Domainmixed Teachers

Performance degradation comes from inconsistent data

distribution in different domains. We propose two data mix-

ing methods for domain adaptation, one is region-level data

mixing and another is sample-level data mixing, to reduce

the data distribution gap from two views. As we all know,

data with labeled ground truth provides much information

for training one model in deep learning-based methods. In

SSDA, two types of labeled data, i.e., DS , DT , are pro-

vided. Our region-level and sample-level data mixing meth-

ods are implemented on these two kinds of labeled data,

and two domain-mixed teacher models can be trained on

the mixed data. Because of different views of data mixing,

these two domain-mixed teachers are complementary.

Region-level data mixing. Semantic segmentation is a

dense pixel-wise prediction task, and the classification of

one pixel depends not only on its own value but also on

its regional neighbourhood’s context. Thus, if one image

contains both source domain and target domain content, the

model can learn domain-invariant representation because

different regions with different feature distribution can be

seen at the same time during model training.

Inspired by CutMix [46] where patches from an im-

age are cut and pasted to another one to augment data

for improving model’s generalization ability, here we pro-
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pose to conduct region-level data mixing on set DS and

DT to reduce domain gap. Given two labeled images

{xt, yt}, {xs, ys}, the region-level mixing operation can be

described as below.

x
rl = M ⊙ x

t + (1−M)⊙ x
s,

yrl = M ⊙ yt + (1−M)⊙ ys,
(1)

where M denotes a binary mask indicating where the re-

gion needs to fusion, and ⊙ is element-wise multiplication.

As shown in Fig. 1, the mixed image xrl contains both con-

tents of xs and x
t, and the corresponding mixed labels yrl

are obtained for each pixel according to which domain the

region containing that pixel comes from. In detail, a rect-

angular region is cropped from x
s according to randomly

chosen coordinates, and then pasted on the same location of

x
t. The region-level data mixing is able to produce interme-

diate samples between different domains, which works as a

bridge, filling in the gap between domains. This helps ex-

plore essential semantic contexts across different domains

from partial view. Additionally, this operation can destroy

the inherent structure of the original target picture, and reg-

ularize the training process of region-level teacher. Once

the mixed images and their labels are ready, we can train

a semantic segmentation model through supervised training

on the mixed data. The training objective function can be

written as follows.

LRL = Lce(MRL(x
rl), yrl), (2)

where MRL represents teacher model trained on region-

level mixed data, Lce denotes the cross entropy loss.

Sample-level data mixing. Sample-level data mixing aims

to mix the data from different domains from holistic view.

The source and target examples are sampled from inconsis-

tent distribution with a big gap. We find that direct mixing

of these data can already help reduce the gap between differ-

ent domains to some extent. There are two advantages with

sample-level data mixing method. On the one hand, the in-

troduction of large amounts of source images alleviates the

model overfitting to the small amount of target images. On

the other hand, the sample-level mixing helps explore inter-

mediate decision boundary between different domains from

holistic view. In our experiments, we randomly sample two

examples from source set DS and target set DT , then di-

rectly feed both of them into model during one iteration.

Given two images from DS and DT , the training objective

function of sample-level teacher is defined as follows.

LSL = Lce(MSL(x
s), ys) + Lce(MSL(x

t), yt), (3)

where MSL represents teacher model trained on sample-

level mixed data.

3.3. Multiteacher Knowledge Distillation

After obtaining two pre-trained domain-mixed teachers,

we employ knowledge distillation (KD), a technique to dis-

Algorithm 1 Training process of our proposed framework.

Require: labeled source dataset DS = {(xs
i
, ys

i
)}NS

i=1
, un-

labeled target dataset DU = {xu
i
}NU

i=1
, labeled target

dataset DT = {(xt
i
, yt

i
)}NT

i=1
, initialized weights of

teachers model M0

RL
, M0

SL
and student model M0

S
,

iterative rounds R.

Procedure:

1: for r← 1 to R do

2: Dual-level domain mixing

3: OptimizeMr

RL
andMr

SL
by Eq. (2) and (3) ⊲

Training two teachers

4: OptimizeMr

S
by Eq. (4) ⊲ Training student model

5: Generate pseudo labels ŷu
i

following [23] byMr

S

6: Update DU = {xu
i
, ŷu

i
}NU

i=1
to labeled target dataset

DT

7: end for

8: return student modelMR

S

tilling knowledge by minimizing the KL-divergence be-

tween outputs of these two models. Here we adapt it to

extract “dark knowledge” from these two complementary

teachers. The pipeline of multi-teacher KD is shown in

Fig. 1 (b), including two pre-trained domain-mixed teach-

ers and one student with the same network architecture as

teacher. The outputs of two teachers are ensembled as a

stronger guidance to supervise the training of the student

model on unlabeled target data. Besides, the student model

is also supervised by the labels on the small amount of la-

beled target data. The objective function of learning student

MS is defined as below.

LS =λklLkl(E (MRL(x
u),MSL(x

u)),MS(x
u))

+ λceLce(MS(x
t), yt),

(4)

where λkl and λce are the weights of KL-divergence loss

and cross entropy loss respectively, E denotes the ensem-

ble operation of two models. In experiments, the ensemble

operation is implemented by averaging the outputs of two

complementary teachers.

By integrating knowledge from two views and making

full use of unlabeled data, we can obtain one student with

even superior performance than any one of its teachers.

3.4. Progressive Improving Scheme

Normally, a teacher network usually has stronger ability

than student network. However, here a good student model

is obtained by distilling knowledge from the ensembled out-

puts of two complementary domain-mixed models on large

amount of unlabeled data. We focus on how to use a student

to further improve teachers’ performance for next step.

Recently, self-training as a simple but effective technique

to address the scarceness of labeled training data, and are

widely applied in SSL and UDA for image classification
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task. In our task, the teachers we obtain are trained based

just on labeled source data and a small amount of labeled

target data. Motivated by the success of self-training, we

believe the teachers can be further improved with this strat-

egy. In detail, following [23], pseudo labels of DU are

generated via the learned student model to update the la-

beled set of images in dataset of DT for next round training

of domain-mixed teachers. Once stronger domain-mixed

teachers are obtained, a stronger student can be obtained by

another round of multi-teacher KD.

Overall, the whole training process of our framework

goes iteratively. Both the domain-mixed teachers and stu-

dent are progressively growing, i.e., they can help the learn-

ing of each other through knowledge distillation and self-

training strategies. We summarize our proposed algorithm

in Algorithm 1.

4. Experiments

4.1. Experimental Setup

Following the setting of unsupervised domain adapta-

tion methods in semantic segmentation, we also conduct ex-

tensive experiments and report the mean intersection-over-

union (mIoU) score on two commonly used synthetic-to-

real benchmarks, which are GTA5 [33] and SYNTHIA [34]

to Cityscapes [7] respectively.

Cityscapes is an autonomous driving dataset captured

from 50 cities in real world. It contains densely annotated

2,975 and 500 images with a fixed resolution of 2048×1024

for training and validation respectively. All images are man-

ually labeled by 19 semantic categories. For SSDA set-

ting, we randomly select different numbers of images, such

as (100, 200, 500, 1000), from the whole training set to

demonstrate the effectiveness of our method across differ-

ent settings. The validation set is used to evaluate the per-

formance of our method.

GTA5 is a synthetic dataset in which the images are

collected from game video and the corresponding seman-

tic labels are automatically generated by computer graph-

ics techniques. It includes 24,966 synthesized images with

pixel-wise labels of 33 classes. In experiments, we consider

the 19 common classes with Cityscapes dataset to train our

models.

SYNTHIA is also a synthetic dataset and we

use SYNTHIA-RAND-CITYSCAPES as another labeled

source domain, which contains 9,400 fully annotated syn-

thetic images with resolution of 1280×960. It has 16 com-

mon categories with Cityscapes dataset. We train our mod-

els with the common classes and report the 13-class mIoU

on validation set.

Table 1. Semantic segmentation performance comparison

with the state-of-the-art UDA, SSL and SSDA methods on

GTA5→Cityscapes. 19-class mIoU (%) score are reported on

Cityscapes validation set across 0, 100, 200, 500, 1000, 2975

numbers of labeled target images. “∗” denotes our reimplemen-

tation on corresponding numbers of labeled Cityscapes images.

GTA5 images are not introduced for implementing SSL methods.

Best results are highlighted.

Type Methods
Labeled target images

0 100 200 500 1000 2975

UDA

AdaptSeg [41] 42.4 - - - - -

Advent [42] 44.8 - - - - -

LTI [21] 50.2 - - - - -

PIT [27] 50.6 - - - - -

Supervised DeeplabV2 - 41.9 47.7 55.5 58.6 65.3

SSL
CutMix∗ [10] - 50.8 54.8 61.7 64.8 -

DST-CBC∗ [9] - 48.7 54.1 60.6 63.2 -

SSDA

Baseline - 52.6 53.6 58.4 61.6 66.6

MME∗ [36] - 52.6 54.4 57.6 61.0 64.2

ASS [44] - 54.2 56.0 60.2 64.5 69.1

Ours - 61.2 60.5 64.3 66.6 69.8

4.2. Implementation Details

For all the following experiments, similar to [42], a

DeeplabV2 [1] model, which contains Atrous Spatial Pyra-

mid Pooling (ASPP) module to extract multi-scale repre-

sentations and utilizes a pre-trained ResNet-101 [15] on

ImageNet as backbone, is employed as our semantic seg-

mentation architecture. To train our proposed framework,

we implement it using Pytorch deep learning toolbox. All

the experiments are conducted on a single Tesla V100 GPU

with 32GB memory to accelerate computing. We also im-

plement our algorithm on MindSpore∗, which is a new deep

learning computing platform.

An optional operation before training the model is to ap-

ply a simple image translation method to source domain

images to reduce the visual difference between source and

target domain. Here, following [14], images are converted

into LAB color space and are matched to the statistics of

target domain. Image translation is applied at the begin-

ning in most experiments except as otherwise noted. Then

sample-level and region-level data mixing are conducted on

labeled source data with target style and the target data. We

then train domain-mixed teachers with cross entropy loss

on supervised data. Student model is obtained on both la-

beled and unlabeled target data with cross entropy and KL

loss. The weight λkl, λce in Eq. 4 are set to 0.5 and 1 re-

spectively. For self-training, the portion of selected pseudo

labels and the confidence threshold are separately, similar

to [23], set to 0.5 and 0.9. Iterative rounds R are set to 4

and 3 for GTA5→Cityscapes and SYNTHIA→Cityscapes

respectively. All the models are trained by the Stochastic

Gradient Descent (SGD) optimizer with initial learning rate

∗https://www.mindspore.cn/
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Figure 2. Qualitative results of our method and baseline method on different numbers of labeled target images on GTA5 to Cityscapes. (a)

target images and corresponding ground truth (GT), (b)-(e) segmentation results of different numbers of labeled target images.

Table 2. Semantic segmentation performance comparison

with the state-of-the-art UDA, SSL and SSDA methods on

SYNTHIA→Cityscapes. Here we train the DeeplabV2 model

with 16 classes and report 13-class mIoU (%) score following

the previous works on UDA. Other settings are kept same as in

Table 1. Best results are highlighted.

Type Methods
Labeled target images

0 100 200 500 1000 2975

UDA

AdaptSeg [41] 46.7 - - - - -

Advent [42] 48.0 - - - - -

LTI [21] 49.3 - - - - -

PIT [27] 51.8 - - - - -

Supervised DeeplabV2 - 53.0 58.9 61.0 67.5 72.2

SSL
CutMix∗ [10] - 61.3 66.7 71.1 73.0 -

DST-CBC∗ [9] - 59.7 64.3 68.9 70.5 -

SSDA

Baseline - 58.5 61.9 64.4 67.6 73.1

MME∗ [36] - 59.6 63.2 66.7 68.9 72.7

ASS [44] - 62.1 64.8 69.8 73.0 77.1

Ours - 68.4 69.8 71.7 74.2 77.2

2.5×10−4, the momentum 0.9 and weight decay 10−4 as

mentioned in [42]. The learning rate is decreased with the

polynomial annealing procedure with power of 0.9.

4.3. Performance Comparison

Our proposed method is conducted on two common

synthetic-to-real GTA5 to Cityscapes and SYNTHIA to

Cityscapes benchmarks to demonstrate the effectiveness of

proposed framework. The performance is compared with

the baseline method and existing state-of-the-art methods

on UDA, SSL and SSDA settings. More extensive experi-

ments can be seen in supplementary materials.

Baseline. SSDA aims to alleviate the domain shift problem

by introducing extra a small amount of labeled target data

compared with UDA setting. As mentioned in Section 1,

one naive way to address SSDA problem is by adding addi-

tional supervision upon UDA methods. Therefore, here we

employ the classical UDA method named AdaptSeg [41],

one multi-level adaptation method by adversarial learning

on multi-level outputs, with extra supervised cross entropy

loss on limited labeled target images as our baseline model.

GTA5 to Cityscapes. The performance comparisons with

several state-of-the-art methods on GTA5 to Cityscapes are

shown in Table 1. In experiment, iterative round R is set

to 4. After the iterative training, our method achieves the

best performance on different ratios of labeled target do-

main images compared with existing methods in UDA, SSL

and SSDA settings. Compared with UDA methods such as

AdaptSeg, Advent [42], LTI [21], and PIT [27], our method

can obtain above 10% performance improvement by label-

ing just 100 target images and significantly reduce the per-

formance gap compared with the oracle model. Particularly,

our method outperforms the SSL methods CutMix [10]

and DST-CBC [9], which use related CutMix and self-

training techniques respectively, by a large performance

gain. ASS [44], to be our known, which is the first work

on SSDA for semantic segmentation, employs additional

semantic-level adaptation on the outputs of both labeled

source and target images to alleviate semantic-level shift

except the additional supervision. We modify MME [36],

which is used to address image classification in SSDA set-

ting, for semantic segmentation task, and obtain inferior re-

sults. We think the reason is that SSDA methods for clas-

sification without taking into account the semantic contexts

in an image and cannot be directly applied to segmentation

task. The proposed approach obtains superior results on all

ratios of labeled data. The reason is that the supervision of

adversarial learning is weak and we can fully take advantage

of available labeled data to reduce domain gap by dual-level

data mixing. In addition, our method also performs well on
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Table 3. Performance comparison of ensembled models from single view and inconsistent views in terms of per-class IoUs and mIoU (%).

The M1
′

RL means the repeat run of the first round of M1

RL. Best results are highlighted.

GTA5→Cityscapes

Model ro
ad

si
d

ew
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k
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u
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d
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g

w
al

l

fe
n

ce

p
o

le

li
g

h
t

si
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n

v
eg
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te
rr

ai
n

sk
y

p
er

so
n

ri
d

er

ca
r

tr
u

ck

b
u

s

tr
ai

n

m
b

ik
e

b
ik

e

mIoU

M1

RL 95.0 66.6 85.4 19.7 20.1 38.7 37.3 50.6 87.5 46.6 89.5 65.2 33.9 89.1 46.8 37.6 13.1 35.1 59.6 53.5

M1
′

RL 95.5 67.6 85.6 30.5 19.6 36.9 35.0 49.6 87.6 46.4 90.0 64.8 29.5 88.3 37.7 39.1 15.0 37.7 58.8 53.4

M1

SL 93.8 59.2 85.4 33.9 29.0 37.5 42.3 45.3 86.8 44.4 86.0 63.8 37.6 87.7 45.9 49.5 0.1 39.0 56.2 53.9

M1
′

SL 94.1 61.2 85.6 32.5 31.2 38.2 38.7 44.6 86.4 46.3 86.6 64.1 38.3 88.3 42.9 48.5 1.5 35.9 54.7 53.7

E(M1

RL,M
1
′

RL) 95.6 68.4 86.0 24.6 20.8 38.8 37.6 50.9 87.8 47.7 89.7 65.4 33.1 89.2 44.7 41.6 10.9 35.3 60.2 54.1

E(M1

SL,M
1
′

SL) 94.4 62.1 86.0 33.4 31.7 38.9 42.0 45.6 87.2 47.6 87.0 64.9 39.1 88.8 48.4 50.8 0.5 39.9 57.0 55.0

E(M1

RL,M
1

SL) 95.5 67.4 86.0 30.1 26.3 39.6 41.7 50.0 88.0 49.3 89.1 66.7 40.0 90.0 53.2 49.6 0.7 43.3 61.3 56.2

E(M1

RL,M
1
′

SL) 95.5 68.0 86.1 30.8 28.5 40.2 39.2 49.4 87.9 50.0 89.1 66.7 40.0 89.8 50.0 48.0 2.8 42.6 59.9 56.0

E(M1
′

RL,M
1

SL) 95.5 67.8 86.4 33.0 26.9 39.3 42.1 49.5 88.0 50.2 89.1 66.3 39.1 89.8 50.6 51.2 0.2 42.0 60.4 56.2

E(M1
′

RL,M
1
′

SL) 95.5 68.2 86.4 33.7 29.0 39.9 39.6 48.9 88.0 50.5 89.1 66.4 39.7 89.7 46.7 49.3 1.2 41.4 59.4 55.9

Table 4. The detailed results of domain-mixed teachers and student model during different rounds in the whole training process on

GTA5→Cityscapes. For 2975 labeled images, our framework is justly trained one round.

Number 100 200 500 1000 2975

Rounds R 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

Mr

RL 53.5 59.6 59.9 60.4 56.6 59.2 59.8 59.1 61.7 62.7 63.1 63.6 65.4 65.3 65.4 64.7 68.2 - - -

Mr

SL 53.9 57.8 59.7 59.3 54.4 57.3 58.9 58.5 58.4 61.0 61.1 61.4 61.7 63.1 63.7 63.3 65.8 - - -

Mr

S 57.1 59.8 61.0 61.2 58.3 60.2 60.3 60.5 62.5 63.7 64.1 64.3 65.5 66.0 66.6 66.0 69.8 - - -

fully 2975 images with the performance of 69.8%.

In Fig. 2, we further display some qualitative segmen-

tation results of both our method and baseline method on

100, 200, 500 and 1000 labeled target images. Overall, our

method achieves more complete segmentation results than

baseline model in the same ratio of labeled images. As the

number of labeled images increases, more refined segmen-

tation results we can obtain by our proposed approach.

SYNTHIA to Cityscapes. In order to further measure the

performance of our approach, we also compare the results

with several state-of-the-art methods on the SYNTHIA to

Cityscapes. Since there are only 16 common categories be-

tween the SYNTHIA and Cityscapes, we just train a seg-

mentation model with the common categories. As shown in

Table 2, following previous UDA works [42, 41], we also

report 13-class mIoU score to compare with existing other

methods. From the results, it is clear that our method out-

performs the UDA, SSL and SSDA methods with a large

performance gain. And the similar discussions we can draw

as in “GTA5 to Cityscapes”.

5. Ablation Study

5.1. Complementarity

To examine the complementarity of models trained from

different views, we select 100 labeled target images and

train the domain-mixed teachers twice separately from

sample-level and region-level mixed data. Then ensem-

ble of different models including two region-level teach-

ers and two sample-level teachers, are conducted and re-

sults are shown in Table 3. Overall, from Table 3, we can

draw a conclusion that model ensemble is effective for im-

proving the performance, and the ensembled models from

dual-level data mixing views can achieve better results than

that from single-level data mixing view. In detail, region-

level teachers perform better in categories which can be

predicted without strictly relying on the structural informa-

tion, such as road, sidewalk, vegetation and sky. How-

ever, they have poor predictions on the fence, light and

bus classes whose shape is distinctive. We explain that the

region-level data mixing operation could destroy the struc-

ture of these classes. Although model ensemble from one

single view can realize impressive results on its own advan-

tageous categories, the categories with poor performance

are still poor. For example, the ensembled model from two

region-level models achieves the best IoU score on road and

sidewalk classes, and the worst results on rider and fence

classes. Such best-worst phenomenon also occurs in en-

sembled model of sample-level teachers, but on different

categories compared with ones in region-level. So we can

fuse the models with different complementary levels and

achieve a good result in all categories.

We also visualize some segmentation results of ensemble

of different-level models in Fig. 3. From Fig. 3, the pixels

what is wrongly classified in one view will be corrected in

another view.

11024



(a) Target Image (b) GT (c) Ensemble (d) Region-level (e) Sample-level

Figure 3. Qualitative results of ensembled models from region-level and sample-level views on GTA5 to Cityscapes. (a) target images, (b)

ground truth, (c) segmentation results of model ensemble of different views, (d) results of model trained on region-level mixed data, (e)

results of model trained on sample-level mixed data.

Table 5. Results of two domain-mixed teachers and student in the

first round of our framework whether using style transfer or not

across different number of labeled target images.

Model Use-trans 100 200 500 1000 2975

M1

RL

T 53.5 56.6 61.7 65.4 68.2

F 52.7 55.6 62.1 65.2 67.9

M1

SL

T 53.9 54.4 58.4 61.7 65.8

F 51.5 53.5 56.4 59.8 64.0

M1

S

T 57.1 58.3 62.5 65.5 69.8

F 55.8 57.0 62.1 65.0 68.9

5.2. Number of Iterative Rounds

We discuss our results reported in Table 1 during dif-

ferent rounds in the whole training process on GTA5

to Cityscapes, and the detailed results of three models,

domain-mixed teachers and student, are shown in Table 4.

All three models can be improved with obvious perfor-

mance gain compared with first round in training process.

During different rounds, the student model will outperform

both of two teachers, and the stronger student will correct

the learning of teachers through generating more accurate

pseudo labels, thus the teachers and student are progressive

growing. This demonstrates the effectiveness of our pro-

posed iteratively framework. We notice that the best mod-

els are achieved in different rounds on different numbers of

labeled images.

5.3. Image Translation

In the above experiments, a simple image translation

method in LAB color space is firstly taken to further re-

duce the visual difference between different domain images.

Additionally, the experiments without style transfer are also

conducted to demonstrate the effectiveness of our approach.

We just compare the results of two-domain mixed teach-

ers and student model in the first round of our framework.

From Table 5, we can draw the following three observa-

tions. First, the student model using style transfer achieves

better performance than ones without it. Therefore, dual-

level data mixing with style transfer can further reduce dis-

tribution mismatch across domains. Secondly, the teacher

model trained on region-level mixed data becomes insen-

sitive as the number of images increases. Superior perfor-

mance without style transfer is obtained on 500 labeled tar-

get images than using style transfer. We argue that the rea-

son is that region-level data mixing is relatively robust to

whether style transfer is conducted in the one patch cropped

from source image. Because of significant improvement in

sample-level data mixing, we can also obtain better results

with style transfer. Finally, our proposed framework can

obtain better results than ASS even if without style transfer

on 100, 200, 500, 1000 labeled images.

6. Conclusion

In this paper, we propose a novel framework based on

dual-level domain mixing to address semi-supervised do-

main adaptation problem. Two complementary domain-

mixed teachers can be obtained based on proposed two

kinds of data mixing methods in both region-level and

sample-level. A stronger student model on target domain

is obtained by distilling knowledge from these two domain-

mixed teachers. Then pseudo labels generated the strong

student are used for next round training of domain-mixed

teachers, which is conducted in a self-training fashion. Ex-

tensive experiments demonstrate the proposed framework

can fully take advantage of the available data from source

and target domains, and achieve superior performance on

two commonly used synthetic-to-real benchmarks.
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Cord, and Patrick Pérez. Advent: Adversarial entropy mini-

mization for domain adaptation in semantic segmentation. In

Proceedings of the IEEE conference on computer vision and

pattern recognition, pages 2517–2526, 2019. 1, 2, 5, 6, 7

[43] Tuan-Hung Vu, Himalaya Jain, Maxime Bucher, Matthieu
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