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Abstract

Dense Event Captioning (DEC) aims to jointly local-

ize and describe multiple events of interest in untrimmed

videos, which is an advancement of the conventional video

captioning task (generating a single sentence description

for a trimmed video). Weakly Supervised Dense Event Cap-

tioning (WS-DEC) goes one step further by not relying

on human-annotated temporal event boundaries. However,

there are few methods trying to tackle this task, and how to

connect localization and description remains an open prob-

lem. In this paper, we demonstrate that under weak supervi-

sion, the event captioning module and localization module

should be more closely bridged in order to improve descrip-

tion performance. Different from previous approaches, in

our method, the event captioner generates a sentence from

a video segment and feeds it to the sentence localizer to re-

construct the segment, and the localizer produces word im-

portance weights as a guidance for the captioner to improve

event description. To further bridge the sentence localizer

and event captioner, a concept learner is adopted as the

basis of the sentence localizer, which can be utilized to con-

struct an induced set of concept features to enhance video

features and improve the event captioner. Finally, our pro-

posed method outperforms state-of-the-art WS-DEC meth-

ods on the ActivityNet Captions dataset.

1. Introduction

A conventional video captioning task [6, 53] refers to

generating a single sentence description for a trimmed video

(usually around 10 seconds long), and it has been exten-

sively studied in recent years [45, 58, 34, 17, 46, 61, 67].

Since natural videos contain multiple events, the Dense

Event Captioning (DEC) task [20] is later introduced, which

aims at generating multiple temporally localized event de-

scriptions for untrimmed videos with the help of temporal

∗Corresponding author.

𝐿𝐿𝐿𝐿𝐿𝐿 𝐶𝐶𝐶𝐶𝐶𝐶 𝐿𝐿𝐿𝐿𝐿𝐿𝑅𝑅 𝑅𝑅

𝐶𝐶𝐶𝐶𝐶𝐶 𝐿𝐿𝐿𝐿𝐿𝐿𝐶𝐶𝐶𝐶𝐶𝐶𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼

(a) Previous WS-DEC method

(b) Proposed method

GT sentence segment sentence segment

segment sentence segmentGT sentence

𝑅𝑅𝑅𝑅
𝑅𝑅 Reconstruction Loss

Network Module

Figure 1. Comparison of the workflows of the previous

method [11] (a) and our proposed method (b). ‘Cpt’ and ‘ISAB’

denote concept learner and induced set attention block. The yel-

low connections highlight our advantages, and they bridge the cap-

tioner and localizer more closely by allowing richer bidirectional

information passing between the two modules.

boundary annotations for each event. Weakly Supervised

Dense Event Captioning (WS-DEC) [11] goes one step fur-

ther by not relying on the resource-consuming temporal

boundary annotations, and this also makes the task more

challenging.

For strongly supervised dense event captioning, the event

localization module can receive strong supervision signals

to learn to predict precise temporal boundaries and the cap-

tioning module can focus on more accurate video segments

during both training and testing. Thus most existing meth-

ods [47, 22, 68, 32] design a localization module similar to

temporal action detection networks [5, 24] to firstly gener-

ate events of interest and then describe them with a cap-

tioning module. But for weakly supervised dense event

captioning, other than the sentence annotation, the local-

ization and captioning modules can only receive informa-

tion from each other. As shown in Fig. 1 (a), the first WS-

DEC method [11] adopted an iterative approach, in which

the event captioner and sentence localizer in turn feed out-

puts to each other. Its underlying assumption is that by op-
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timizing the reconstruction losses, the sentence localizer’s

output will converge to a point that is optimal for the event

captioner. To the best of our knowledge, there are only two

published methods [11, 39] of WS-DEC and both adopted

the same workflow. In this paper, we propose a new WS-

DEC method with its simplified workflow shown in Fig. 1

(b). We argue that directly stacking the event captioner and

sentence localizer in a feedforward fashion is not sufficient,

since there is no pathway for information communication

between these two subtasks other than input-output con-

nections. Thus the goal of this work is introducing addi-

tional information communication to more closely bridge

these two subtasks. Technically, we base our sentence lo-

calizer on a multiple instance concept learner, which can

capture localized semantic concepts (although not perfect)

for aligning with the sentence features in a frame-to-word

level. The localizer can then pass two types of information

to the captioner: 1) the word importances learned during

video-text alignment to guide the caption generation, 2) the

concept features to construct an induced set of concept fea-

tures to enhance the original video features via an Induced

Set Attention Block. In this way, both the language decoder

and visual encoder are more closely connected with the sen-

tence localizer and can receive richer information compared

to previous methods. Note that we bridge the event cap-

tioner and sentence localizer but not deeply couple them, so

that it is possible to adopt more sophisticated captioner or

localizer models in the future for further improvement with-

out changing the proposed workflow. Our proposed method

is abbreviated as EC-SL.

The main contribution of this paper is a new way to in-

tegrate the temporal localization and description for events

in untrimmed videos under the weakly supervised setting,

where temporal boundary annotations are not available. The

proposed method is also an exploration of what type of in-

formation communication pathway should be built between

the two subtasks in order to better bridge and unify them,

which is a problem not yet fully investigated in the litera-

ture.

2. Related Work

Video Captioning. Most video captioning methods fo-

cus on generating a single sentence for a trimmed video,

and this can be treated as a sequence-to-sequence trans-

lation and modeled by encoder-decoder networks [45].

To enrich video representation, later methods either ex-

tend the encoder-decoder network by incorporating tem-

poral [58]/spatial [57, 8, 54] attention mechanism or fus-

ing multimodal feature representations [17, 1, 48, 28, 7].

Recent methods also explore more fine-grained object fea-

tures [61, 65] to better understand videos.

Dense Event Captioning. Dense event captioning net-

works can generally be decomposed into two parts: event

localization and sentence generation modules, where the

latter is usually a RNN-based decoder [20, 47, 22, 32] or

a Transformer [68]. Using temporal annotations for the

events, these methods design and train their event localiza-

tion modules like in action detection [12, 5, 24], i.e., event

proposals are generated by complex RNNs [20, 47] or tem-

poral convolution networks [22, 68]. However, their event

localization modules can not work without temporal anno-

tations (which are resource-consuming), and thus can not be

directly adapted for weakly supervised dense event caption-

ing. There are other attempts at generating multiple sen-

tence descriptions for an untrimmed video, such as video

paragraph captioning [52, 59]. The major difference is that

paragraph captioning focuses on the coherence of the sen-

tences and completely ignores the localization of the events.

Attention-Based Feature Aggregation. Multimodal at-

tention [17, 28, 54], memory models [48, 36, 13, 27], and

feature bank [2, 51] can generally be viewed as attention

based feature aggregation approaches, which are popular

in various video understanding tasks. We draw inspiration

from [21], which develops an Induced Set Attention Block

to process sets of data. But unlike [21], where the inducing

points are trainable parameters, we learn and construct the

induced set out of a concept learner.

MIL for Weakly Supervised Localization. Multiple

Instance Learning (MIL) is commonly used in weakly su-

pervised localization tasks, such as temporal action lo-

calization [26, 33, 49] and object detection [55, 56, 42].

When temporal/spatial annotations are not available, the

whole video/image is treated as a bag of instances with

bag-level annotations, and the predictions for instances

(frames/object proposals) are aggregated as the bag-level

prediction. The instances can capture localized features

through MIL. In our work, we learn concept features for

sentence localization and further construct an induced set

of concept features to improve the event captioner.

Temporal Event Localization. Temporally localiz-

ing event descriptions in videos is a recently-proposed

task [14]. For this task, performing cross-modal inter-

action between the visual and textual modalities is criti-

cal [60, 63, 19, 31, 38, 16], and is usually done by first

separately encoding the video and sentence and then jointly

processing visual and textual representations. The tempo-

ral segments are predicted by regression [60, 31] or ranking

proposals [63, 19, 38, 16] based on the fused visual-textual

representation. Tackling temporal event localization with-

out temporal annotation is also an open problem, and sev-

eral methods based on contrastive learning have been re-

cently proposed [30, 29, 64]. We should note that directly

stacking captioning and weakly-supervised temporal event

localization methods can yield a naı̈ve solution to WS-DEC,

but the overall framework will not be end-to-end trainable

and there will be no rich information communication be-
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Figure 2. The training workflow of the proposed method. The sentence localizer is built on a MIL (Multiple Instance Learning) concept

learner and performs video-sentence interaction and alignment (Sec. 3.1). Based on the concept learner, an Induced Set Attention Block is

constructed and used to enhance the video features(Sec. 3.2). The event captioner takes the enhanced features and first generates captions

for multiple proposals and selects the most confident one for the sentence localizer to reconstruct (Sec. 3.3). The Induced Set Attention

Block acts as a bridge between the sentence localizer and the event captioner.

tween the two subtasks.

Weakly Supervised Dense Event Captioning. To the

best of our knowledge, thus far there are only two published

WS-DEC methods [11, 39]. The first work [11] proposed

an iterative approach. In the training phase, the video and

one event description are fed to the sentence localizer to

obtain a temporal boundary prediction, and then the tempo-

ral segment is fed to the event captioner to generate a sen-

tence, which is again used to relocate the temporal segment.

The two modules are learned by alternatively optimizing the

caption and temporal segment reconstruction errors across

iterations. Following the framework of [11], [39] focuses

on utilizing additional audio features to improve event cap-

tioning. In existing approaches to WS-DEC, there is no in-

formation communication between the event captioner and

sentence localizer other than necessary inputs. Besides, the

alternative training prevents the whole model from being

end-to-end optimized.

3. Proposed Method

As shown in Fig. 2, the model in our proposed method

consists of three components, the Sentence Localizer, the

Event Captioner, and the Induced Set Attention Block. In

the following sections, we describe the details of each com-

ponent and how the components benefit from each other.

3.1. Sentence Localizer

Given a video, the goal of the sentence localizer is

to temporally relocate a sentence that the event captioner

generated from a video segment (proposal). To achieve

this goal, the localizer should analyze the relation between

video frames and words, and we tackle this by exploiting

semantic concepts in videos.

Learning Semantic Concepts. Inspired by previous

work which mine word- or phrase-level semantic con-

cepts [50, 31, 16, 9] from the video to perform sentence

localization, in our sentence localizer, we first construct

a multiple instance learning subtask to predict concepts

with only video-level annotations. The sentence localizer

first takes in the video features V = {v1, ...,vL},V ∈
R

L×Dv and projects them into a latent concept space with

a position-wise fully connected network, obtaining E =
{el = Ω(vl)}

L
l=1, E ∈ R

L×De . Then for each el a con-

cept prediction is produced

pl = sigmoid(Φ(el)), (1)

where pl ∈ R
Nc denotes the probabilities of Nc concepts

appearing in the l-th frame (instance), Φ(·) is a normal-

ized [41] multi-label classifier to alleviate the long-tailed

issue of the concept distribution. Since under weak supervi-

sion, we only have a single binary label p̂ ∈ R
Nc associated

with the entire video (bag), the instance level predictions are

first aggregated via attention:

p̄ =
∑L

l=1 αlpl, where

αl = Softmax(al), al = Uatt(tanh(Uael + ba)),
(2)

and Uatt ∈ R
Datt×1, Ua ∈ R

Datt×De , and ba ∈ R
Datt are

learnable parameters. Note that other aggregation functions

also work as long as they are permutation-invariant [18].

Then a weighted cross-entropy loss is used to train this MIL

network:

Lmil = −
1

Nc

Nc∑

n=1

µc(p̂ log p̄+ (1− p̂) log(1− p̄)), (3)

where the concept-wise weight µc is decided by the occur-

ring frequency of each concept.
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Video-Sentence Interaction. Through MIL, the trans-

formed video features E should pickup concept-related in-

formation in each frame, and we then perform frame-to-

word matching between E and the sentence features S =
{s1, ..., sT } produced by the event captioner (Sec. 3.3).

The concept and sentence features are projected into a joint

space and their matching scores (logits) are computed as

Alt = τ(Ueel)τ(Usst)/
√
Dj , (4)

where Dj is the dimensionality of the joint space, Ue ∈
R

Dj×De and Us ∈ R
Dj×Ds are transformation matri-

ces, and τ(·) denotes the ReLU activation. We then sum

A ∈ R
L×T column-wise and row-wise and normalize them

to obtain frame-level and word-level importance weights,

respectively.

W v = Softmax(Alt.sum(t)),

W s = Softmax(Alt.sum(l)),
(5)

where sum(·) denotes tensor summation along a specified

axis. The normalized W v ∈ R
L and W s ∈ R

T can be

viewed as the importance of frames and words, respectively.

Based on these weights, the global video and sentence rep-

resentations can be obtained by weighted aggregation:

V̄ =
∑L

l=1 W
vel, S̄ =

∑T

t=1 W
sst. (6)

Since V̄ and S̄ are in the joint space, we use a contrastive

loss to learn the representations by constructing positive and

negative video-sentence pairs.

Lcst = [△− sim(V̄ +, S̄+ + sim(V̄ +, S̄−)]+

+[△− sim(V̄ +, S̄+) + sim(V̄ −, S̄+)]+,
(7)

where [·]+ denotes truncating negative values to zero,

(V̄ +, S̄+) is the positive pair as annotated, and the nega-

tive pairs (V̄ +, S̄−) and (V̄ −, S̄+) can be constructed by

replacing the sentence or video with an arbitrary sentence

or video in the mini-batch, this is because the ActivityNet

Captions dataset is diverse enough. sim(·) is the cosine sim-

ilarity function and △ is the margin and is empirically set to

0.3 in all our experiments. Because the sentence fed to the

localizer is generated from an event proposal, Ĝ = {ŝ, ê},

we use a cross-entropy loss to ensure the frame-level impor-

tance scores W v can relocate the proposal.

Lloc =−
1

L

∑L

l=1

(
M(l, Ĝ) logW v+

(1−M(l, Ĝ)) log(1−W v)
)
,

(8)

where

M(l, Ĝ) = sigmoid(l − ŝ)− sigmoid(l − ê) (9)

is a soft mask construction function. Segment predictions

can then be generated by applying the Temporal Actionness

Grouping [66] strategy to the the predicted W v . During in-

ference, there are multiple proposals and the event captioner

will help rank them (Sec. 3.3).

3.2. Induced Set Attention Block

Preliminary. We begin this section by defining some

common attention operations that will be used throughout

this section. Given two sets of features X ∈ R
N×Dx ,Y ∈

R
N×Dy , the Multihead Attention Block (MAB): RN×Dx ×

R
N×Dy → R

N×Dx , is the same as defined in previous

methods [43, 21].

MAB(X,Y ) = LN(H, FFN(X)),

where H = LN(X + MultiHead(X,Y ,Y )),
(10)

LN(·) is Layer Normalization [3], FFN(·) is position-wise

feedforward layer, and MultiHead(·) is the same as the

original [43]. Then using MAB we can conveniently define

Self-Attention Block (SAB) and Vector Attention Block

(VAB):

SAB(X) := MAB(X,X),

VAB(x,Y ) := MAB(x.unsqueeze(0),Y ),
(11)

where the unsqueeze(·) operator expands a vector to a ma-

trix with one row. In [21], the Induced Set Attention Block

is defined as

ISAB(X) = MAB(X,H),

where H = MAB(I,X).
(12)

The inducing points I are randomly initialized trainable pa-

rameters, and are expected to implicitly encode some global

structure of the inputs X .

Induced Set Attention. We construct the inducing

points out of the sentence localizer’s learned concept rep-

resentations E = Ω(V ). Through MIL, the position-

wise concept predictions pl in Eq. (1) can capture the se-

mantic concepts (although not perfect) in each short video

segment represented by vl, and have associated concept

features el. We select K top concepts {c1, ..., cK} from

the video-level prediction p̄. For each concept ck, since

p̄[ck] =
∑

l αlpl[ck] (Eq. (2)), we obtain the most con-

tributing feature elk , where

lk = argmax
l

αlpl[ck], (13)

and [·] is the vector indexing operator. Then the induced set

of concept features are F = {el1 , ..., elK},F ∈ R
K×De .

We define our Induced Set Attention Block as

ISABcf (V ) = MAB(V ,H),

where H = MAB(F ,Ω(V )).
(14)

Here each Hk = VAB(Fk,E) also has a clear meaning,

which is attentively selecting relevant concept features for

each elk . Since the predictions pl can be noisy, this can

help construct robust concept features to enhance the origi-

nal video features.

Gating Enhanced Features. We denote the enhanced
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features and original features as V E = ISABcf (V ) and

V O = SAB(V ), respectively. To combine them, we devise

a gating mechanism

V C
l = glV

E
l + (1− gl)V

O
l ,

where gl = sigmoid(UgEV
E
l + UgOV

O
l + bg),

(15)

and UgE ∈ R
1×De , UgO ∈ R

1×Dv , and bg ∈ R are learn-

able parameters. The combined features V C are the inputs

to the event captioner. The gating is to allow the captioner

to dynamically choose to rely on the enhanced feature or the

original feature at each frame, and this can stabilize training

at the early stage.

What is the functionality of ISAB? Since video is a

collection of semantic concepts and their interactions, the

information captured by the ISAB can be seen as a highly

abstracted global structure of the video. This information is

better captured by the concept learner inside the sentence lo-

calizer since it is location-sensitive, whereas the event cap-

tioner (even with attention) tends to ignore such structure

when it can easily draw rich information in an untrimmed

video for generating a sentence. Instead, we expect the

event captioner to benefit from such information.

3.3. Event Captioner

Before feeding the enhanced video features to the

event captioner, we note that the induced set attention

is permutation-invariant. However, the video’s temporal

structure should be modeled in order to understand an event.

So we use a single-layer bidirectional LSTM to sequentially

process the enhanced video features, and the hidden states

of both directions are concatenated at each time step as the

encoded feature. The encoded features are denoted as Ṽ .

Since the sentence’s corresponding temporal boundaries

are unknown, we first generate a set of event proposals to

describe and choose the most confident one to feed to the

sentence localizer to reconstruct the proposal. The event

proposals are denoted as G = {Gi}
M
i=1, where Gi =

(si, ei) is a segment of the video, and a mask M(:, Gi) ∈
[0, 1]L can be generated as in Eq. (9). The mask M(:, Gi)

and the encoded video features Ṽ are fed to the event cap-

tioner, which is a two-layer LSTM network to generate a

sentence. During training, the annotated caption is given as

C = {ŵ1, ..., ŵT }.

Then the LSTM network runs for T steps to generate a

sentence and each step is formulated as

h
(1)
t = LSTM(1)(att(Ṽ ,M(:, Gi),h

(1)
t−1),h

(1)
t−1),

h
(2)
t = LSTM(2)([embed(wt−1),h

(1)
t ],h

(2)
t−1),

(16)

where [·] means feature concatenation, h
(k)
t is the state of

the k-th LSTM at the t-th timestep, embed(·) is a word-

embedding function, and att(·)1 is the temporal atten-

1More details are placed in the Supplementary Materials.

tion [58] mechanism on the video features with the atten-

tion weights masked by M(:, Gi). Each h
(2)
t is fed to a

fully-connected layer with Softmax activation to produce

a probability prediction over the vocabulary, denoted by

yi
t ∈ [0, 1]Nw , where Nw is the vocabulary size. Given

the annotated caption C, the confidence of the prediction

for proposal Gi is

Confi =
1

T
log(

T∏

t=1

yi
t[ŵt]) =

1

T

T∑

t=1

log(yi
t[ŵt]). (17)

We select the proposal with the highest confidence Ĝ =
argmaxGi

Confi and the features of its generated sentence

as inputs to the sentence localizer for training. While dur-

ing inference, we compute the confidences of each proposal

based on their predicted words to rerank them. The hidden

states h
(2)
t for the words are used as the sentence features

(i.e. st in Eq. (4)) for the localizer. The word-level impor-

tance weights W s from the sentence localizer are incorpo-

rated (controlled by hyperparameter γ) into the captioning

loss to recalibrate the word importances

Lcap = −
1

T

∑T

t=1(1 + γW s) log(yi
t[ŵt]). (18)

3.4. Overall Loss

The sentence localizer and the event captioner can be

jointly trained with the overall loss

Lall = Lcap + λlLloc + λcLcst + λmLmil, (19)

where λl, λc, and λm are tunable hyperparamaters used to

balance these losses during training.

3.5. Discussion

Although we have noted in both Fig. 2 and the subsec-

tions about what information is passed between the cap-

tioner and localizer, we would like to further discuss and

emphasize about this.

From localizer to captioner. Since the core of the lo-

calizer is modeling the relation between frames and words,

its learned features contain richer semantic concept infor-

mation than the raw CNN features, and this is helpful for

the captioner. We further devise the ISAB to condense and

stabilize the concept features. In addition, the word impor-

tance learned in the localizer is utilized in the training of the

captioner.

From captioner to localizer. The captioner is mainly re-

sponsible for the sentence-related aspects. It produces fea-

ture vectors of each word for the localizer, and most impor-

tantly, the confidence scores of generated sentences that can

be used to rerank the corresponding video segments.

This bidirectional information communication is the

main difference between our method and existing ones.
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Method WS M C R B@1 B@2 B@3 B@4

DCE [20] ✗ 4.82 17.29 - 17.95 7.69 3.86 2.20

DVC [22] ✗ 6.93 12.61 - 12.22 5.72 2.27 0.73

Bi-SST [47] ✗ 9.60 12.68 19.10 18.99 8.84 4.41 2.30

Masked-Transformer [68] ✗ 9.56 - - - - 4.76 2.23

SDVC [32] ✗ 8.82 30.68 - 17.92 7.99 2.94 0.93

RUC AI·M3 [40] ✗ 11.28 14.03 - 16.59 9.65 5.32 2.91

Multi-modal MUTAN fusion [39] ✓ 4.93 13.79 10.39 10.00 4.20 1.85 0.90

WS-DEC [11] ✓ 6.30 18.77 12.55 12.41 5.50 2.62 1.27

EC-SL (Ours) ✓ 7.49 21.21 13.02 13.36 5.96 2.78 1.33

EC-SL (less data) ✓ 7.03 19.53 12.79 12.13 5.68 2.59 1.23

Table 1. Dense event captioning performances (%) of our proposed method and state-of-the-art methods on the ActivityNet Captions

validation set. “WS” denotes “weakly supervised”.

Method WS IoU=0.1 IoU=0.3 IoU=0.5

CTRL [14] ✗ - 47.43 29.01

ABLR [60] ✗ 73.30 55.67 36.79

2D-TAN [62] ✗ - 58.75 44.05

FIAN [38] ✗ - 64.10 47.90

WSLLN [15] ✓ 75.40 42.80 22.70

LCGB [10] ✓ 74.20 44.30 23.60

SCN [25] ✓ 71.48 47.23 29.22

WS-DEC [11] ✓ 62.71 41.98 23.34

EC-SL (Ours) ✓ 68.48 44.29 24.16

Table 2. Temporal event localization performances (%) of our

proposed method and state-of-the-art methods on the ActivityNet

Captions dataset. We measure the top-1 recall under different tem-

poral IoU thresholds between the predicted temporal segment and

the ground-truth. “WS” denotes “weakly supervised”.

4. Experiments

4.1. Experimental Setting

Dataset. The ActivityNet Captions dataset originally

contains 10,009, 4,917, and 5,044 videos for training, val-

idation, and testing, respectively. The video duration is

about 150 seconds on average. Each video contains 3.65

sentence annotations on average, and each sentence has

an average length of 13.48 words. Since the testing set

is not publicly available, we test our method on the origi-

nal validation set (both val 1 and val 2) as previous meth-

ods [11, 39]. We also randomly split a small validation set

with 577 videos from the training set for hyperparameter

tuning and model selection.

Training and Inference. In the first training epoch, we

generate non-overlapping sliding window proposals with

{1/4, 1/3, 1/2} of the video length. As described in Sec. 3,

the captioner chooses one proposal and the localizer pre-

dicts frame importance weights. We use the Temporal Ac-

tionness Grouping (TAG) [66] to generate proposals based

on the predictions and use them for the next epoch. For in-

ference, the initial proposals are sliding windows with {1/3,

1/2, 1} of the video length. The proposals generated by

TAG are ranked by their confidences (Eq. (17)), and we

keep the top 4 proposals after reranking.

Evaluation. Like previous methods, we use the offi-

cial evaluation script2 released in [20], which uses ME-

TEOR [4], CIDEr [44], ROUGE [23], and BLEU [35] met-

rics to evaluate event caption quality. Specifically, the above

metrics are computed for the proposals if they overlap with

the ground-truth segments with a temporal IoU larger than

a given threshold, and otherwise the scores are set to 0. All

the metrics are computed with IoU thresholds {0.3, 0.5, 0.7,

0.9} and finally averaged.

Implementation Details. For the video features, we use

the officially released C3D features as [11] and uniformly

sample 128 features for each video for efficient computing.

The sentences are trimmed to have a maximum sentence

length of 25 words, and the vocabulary constructed on the

training set contains 10,300 words. For fair comparison, we

do not use pretrained word embeddings and all the word em-

bedding vectors are randomly initialized and jointly trained

with the whole model. To build the concept vocabulary, we

select all the noun and verb words from the sentences of

training videos and lemmatize them, and the words that oc-

cur more than 5 times are kept, which results in a concept

vocabulary of 2,186 words. Each sentence is then assigned

a binary label according to whether its words are in the vo-

cabulary. The λl, λc, and λm are set to 1, 1, and 10, respec-

tively. The batch size is set to 32 in all our experiments, and

we use the Adam optimizer with a learning rate of 1e-4. We

implement all our code in PyTorch 1.6.0.

4.2. Performance Comparison

Table 1 shows the dense event captioning performances

of our method and state-of-the-art methods, note that there

are only two published weakly supervised methods [11, 39].

[39] used 80% of the training data due to YouTube video

downloading issues (8,026 training video), so we also per-

formed an experiment on randomly sampled 8,026 videos

(less data) for fair comparison. As can be observed, our

method outperforms weakly supervised competitors by a

clear margin on most metrics (1.19 on METEOR and 2.44

on CIDEr), which proves that our proposed method of

bridging the event captioner and sentence localizer can re-

2https://github.com/ranjaykrishna/densevid_eval
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# Method M C R B@1 B@2 B@3 B@4

1 EC-SL base 6.85 19.09 11.92 12.14 5.22 2.41 1.15

2 EC-SL base + Lmil 7.03 20.46 12.24 12.66 5.59 2.55 1.18

3 EC-SL base + Lmil + ISAB 7.18 20.98 12.79 13.09 5.63 2.56 1.23

4 EC-SL base + Lmil + ISAB + gating 7.39 21.44 12.92 13.36 5.96 2.69 1.28

5 EC-SL base + Lmil + ISAB + gating + W
s in Lcap 7.49 21.21 13.02 13.36 6.05 2.78 1.33

Table 3. Ablation Experiments. The ‘base’ model is our final model with Lmil, ISAB, gating, and W
s in Lcap removed.

Group Component Value M C R B@1 B@2 B@3 B@4

1 Induced Set Size

8 7.26 21.05 12.74 13.11 5.89 2.72 1.25

16 7.49 21.21 13.02 13.36 5.96 2.78 1.33

32 7.45 21.44 12.92 13.37 6.02 2.74 1.27

64 7.48 21.45 12.90 13.36 5.99 2.73 1.26

2 Choosing Inducing Points
Random 7.14 20.67 12.75 13.10 5.65 2.56 1.20

Max 7.49 21.21 13.02 13.36 5.96 2.78 1.33

3 Word Representations

Logits 6.57 18.41 11.76 12.06 5.19 2.35 0.98

Embed 7.37 21.36 12.81 13.28 5.95 2.62 1.14

Hidden 7.49 21.21 13.02 13.36 5.96 2.78 1.33

Table 4. More Ablation Experiments. We vary the size of the induced set of concept features, and study different ways to construct the

induced set and different types of sentence features. Underlined are the default values for each component in our final model.

ally boost event captioning performance. It should also be

noted that comparing our method with strongly supervised

methods, there is still a significant performance gap. The

advantage of supervised method is that (1) their caption-

ing models can get accurate video segments during train-

ing, which critically affects description quality, and (2) their

temporal localization models are strongly supervised to ac-

curately find video segments which may contain events.

Also, using reinforcement learning to optimize for the eval-

uation metrics are commonly seen [22, 32, 40].

To compare with [11], we evaluate the single sentence

localization performance of our method and the event cap-

tioner is completely not involved, which is also the setting

of the temporal event localization task [14]. Table 2 presents

the temporal event localization performances of our method

and compared methods. Note that this evaluation is not in-

tended for WS-DEC methods because: 1) WS-DEC meth-

ods are not trained to localize the ground-truth sentences,

and 2) pretrained word embeddings (such as GloVe [37])

are not used. Nevertheless, our method achieves results

comparable to state-of-the-art weakly supervised event lo-

calization methods and outperforms the previous WS-DEC

method [11]. This can prove the effectiveness of our sen-

tence localizer. From Table 2 we can also see that strongly

supervised methods have a clear advantage over weakly su-

pervised ones regarding top-1 recalls. This is mainly be-

cause they generate a large number of segment proposals

by dense sliding windows [38] or even enumerating all pos-

sible temporal segments [62].

4.3. Ablation Study

In this section, we present ablation experiment results to

verify the effectiveness of the important components and

design choices of our proposed model. The results are pre-

sented in Table 3 and 4. Due to the space limit, more abla-

tion results are placed in the Supplementary Materials.

Effects of MIL. From Table 3 (#1 and #2) we can first

confirm that multiple instance concept learning is impor-

tant for performing a frame-to-word matching between the

video and sentence in the localizer, which may also affect

event captioning through W s. The multi-label concept pre-

diction has a top-20 precision and recall of 22.52% and

37.93%, respectively. Note that it is possible to use an ex-

ternal concept detector (like in [50]), but that would require

additional annotations and is somehow against the intention

of weak supervision. Also, there is a gap between external

datasets and the ActivityNet regarding the concepts.

Effects of the Induced Set Attention Block. Compar-

ing experiments #2 and #3, the enhanced features from the

ISAB can clearly improve captioning performances with-

out the gating mechanism (V E and V O are summed). This

proves that the ISAB really passes useful information to the

captioner. As indicated by experiments #3 and #4, the gat-

ing in Eq. (15) helps the captioner utilize concept features

more properly and achieve a further performance boost.

Effects of caption loss weighting. The caption loss

weighting in Eq. (18) is an important connection between

the sentence localizer and the event captioner in our method.

The weights provided by the sentence localizer represents

the importance of the words for localizing the correspond-

ing event in video, thus as shown by comparing experiments

#4 and #5, guiding the captioner to focus on more important

words can improve captioning performances.

In Table 4, we study different configurations of the

model components.

Different constructions of the induced set. We can ob-

serve that as the size of the induced set increases (Group

1), the performance first improves and then saturates. This

indicates that the inducing points really extracts crucial in-

formation from the concept features and a small number of
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A man and a woman holds the rings

and put them in the curling court.

Two man holds special shoes and are ready

to play in the court holding the rings.

Man throw the rings to

the court playing.

A group of people are seen standing in front

of the camera and leads into several shots

of people playing.

A group of people are

shown in an indoor

rink.

They are playing

a game of curling.

A group of people are

gathered in a room.

Input 

Video

Ground-

truth

Ours

Input 

Video

Ground-

truth

Ours

A group of children are gathered at

an outdoor event.

They are engaged in a game of kickball. They kick the ball and run to the bases.

A group of people are outside in a backyard. A young boy is seen standing

in front of a large group of

people holding a ball.

A group of people are seen standing

around a tree with one another and

speaking to the camera.A little girl walks in front of the camera.

Frame

Importance

Frame

Importance

Figure 3. Qualitative Results (Best viewed in color). The ground-truth temporal segments and captions as well as ours are shown. The

segments and captions are matched using different colors. We also show the frame importance weights for one of our predicted segments.

them is sufficient. As pointed out by [21], this also helps

reduce the time complexity of the attention block compared

to using all the concept features. We also validate the way

of choosing inducing points in our method by comparing

against randomly selecting the concept features (Group 2).

Different sentence representations. Since we do not

use pretrained word embeddings, the word representations

can only be provided by the event captioner. We study three

types of representations (Group 3): the randomly-initialized

word embedding, the LSTM hidden state after encoding the

word embedding, and the logits of word prediction. Among

these choices, the logits performs the worst, this is because

it is high-dimensional and leads to severe over-fitting for

the localizer. The LSTM hidden states perform better than

plain word embeddings, we conjecture the reason is that the

hidden state encodes not only the current word, but also the

previous words, giving it richer context about the sentence.

4.4. Qualitative Results

Fig. 3 presents the qualitative results of two videos. We

can see that our model is able to generate localized and ac-

curate event descriptions despite the lack of temporal anno-

tations. Compared to the ground-truth, some captions are

comparable in terms of capturing the overall environment

(e.g., indoor rink, outside, and backyard), however, it is dif-

ficult to recognize small objects like the rings, shoes and

ball. This could be the limitation of our concept learner,

which is trained on long-tailed data and is based on the C3D

network that crops the video to 112×112 pixels.

5. Conclusion

In this paper, we have studied the task of weakly super-

vised dense video captioning, which is both challenging and

rarely investigated in the literature. To more closely bridge

the event captioner and sentence localizer, which is over-

looked by existing methods, we have proposed an Induced

Set Attention Block built on top of the multiple instance

concept learner to act as the pathway for information com-

munication from the sentence localizer to the event cap-

tioner. The experimental results on the ActivityNet Cap-

tions dataset have shown that our proposed method out-

performs state-of-the-art methods when adopting the same

video features. The limitation of our method is that without

external training data, the concept learner can not accurately

detect concepts that are visually small and still suffers from

the long-tailed issue. Addressing these limitations and ex-

ploring ways to pass information from the event captioner

to the sentence localizer are the focuses of our future work.
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