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Abstract

3D object detection in point clouds is a challenging vi-

sion task that benefits various applications for understand-

ing the 3D visual world. Lots of recent research focuses

on how to exploit end-to-end trainable Hough voting for

generating object proposals. However, the current voting

strategy can only receive partial votes from the surfaces

of potential objects together with severe outlier votes from

the cluttered backgrounds, which hampers full utilization of

the information from the input point clouds. Inspired by

the back-tracing strategy in the conventional Hough voting

methods, in this work, we introduce a new 3D object detec-

tion method, named as Back-tracing Representative Points

Network (BRNet), which generatively back-traces the repre-

sentative points from the vote centers and also revisits com-

plementary seed points around these generated points, so as

to better capture the fine local structural features surround-

ing the potential objects from the raw point clouds. There-

fore, this bottom-up and then top-down strategy in our BR-

Net enforces mutual consistency between the predicted vote

centers and the raw surface points and thus achieves more

reliable and flexible object localization and class predic-

tion results. Our BRNet is simple but effective, which sig-

nificantly outperforms the state-of-the-art methods on two

large-scale point cloud datasets, ScanNet V2 (+7.5% in

terms of mAP@0.50) and SUN RGB-D (+4.7% in terms of

mAP@0.50), while it is still lightweight and efficient.

1. Introduction

As one of the fundamental tasks that aims at understand-

ing 3D visual world, 3D object detection would like to

predict amodal 3D bounding boxes and associated seman-

tic labels of objects in real 3D scenes. 3D object detec-

tion technologies would significantly benefit various down-

stream real world applications such as augmented reality,

*Lu Sheng is the corresponding author.
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Figure 1. The votes generated by VoteNet [20] and its variants

usually suffer from (a) partial coverage of the object surfaces, (b)

outliers from the cluttered background. By examining the corre-

sponding seed points, the generated proposals from these votes

receive erratic features with respect to the objects, and may be less

reliable for predicting accurate bounding boxes, orientations and

even semantic classes. Best viewed on screen.

robotics and etc. In this work, we focus on 3D object de-

tection from point clouds. It is even more challenging be-

cause the irregular, sparse and orderless characteristics of

this special 3D input make it a hard task to design reliable

point-based 3D object detection systems by leveraging the

recent progress in 2D object detection.

While earlier works resorted to reordering point clouds

into regular forms [3, 7, 32, 33, 43], or applying predefined

shape templates [15, 19, 40], VoteNet [20] and its vari-

ants [36, 41, 2, 1] have shown a great success in design-

ing end-to-end 3D object detection networks based on raw

point clouds. VoteNet reformulates the traditional Hough

voting process into a point-wise regression problem, and

generates an object proposal by sampling a number of seed

points from the input point cloud whose votes are within the

same cluster. The aggregated feature in each vote cluster is

then used to estimate the 3D bounding box (e.g. center, size

and orientation) and the associated semantic label.

Therefore, the quality of the regressed votes principally

determine the reliability of the generated proposals, and

then the performance on the object detector. However, al-

though the clustered vote centers are quite accurate, the
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Figure 2. Back-tracing representative points and revisiting seed

points. We show the vote cluster center for the two chairs (in pur-

ple points). The representative points are back-traced from the

vote cluster center (in red points). We set the number of represen-

tative points per proposal as 12 in this case, which are illustrated

on the right chair. Then, the seed points within a fixed distance

of the representative points are revisited, shown in blue points on

the left chair. The revisited seed points provide good coverage

of the chair’s surface, which imply the object shape and keep the

structural details as the chair armrest. Best viewed on screen.

votes are usually not as representative as our expectation.

For example, as illustrated in Fig. 1, by retrieving the seed

points of votes from the given vote clusters, these cor-

responding seed points either partially cover the underly-

ing objects (Fig. 1(a)) or contain severe outliers from the

cluttered background (Fig. 1(b)). Therefore as shown in

Fig. 1(a), it is undoubted that we cannot accurately predict

the bounding box of a long bookshelf if the votes only cap-

ture a small area surrounding the vote center. Likewise as

shown in Fig. 1(b), the severe outliers make it impossible to

accurately detect the chair based on the vote features. More-

over, these seed points are less informative due to the lack of

knowledge from the votes, so that there will be less signif-

icant gains if we simply back-trace these seed features (as

in conventional Hough voting [14]) to improve the voting-

based 3D object detection methods.

However, in our point of view, back-tracing is still neces-

sary and could partially address the aforementioned issues

with a special design. To be specific, as shown in Fig. 2,

we would like to backwardly generate (or trace) the virtual

representative points from the center of each vote cluster,

and use these virtual points to revisit their surrounding seed

points. This generative back-tracing operation indicates

possible object shape distributions around the vote center,

while the revisited seed features provide complementary lo-

cal structural clues that may not be fully discovered by the

votes. This bottom-up and then top-down process can end

up with a mutual interaction that associates the seed features

and the vote features, which has the potential to enhance

each other features and enable more robust object class pre-

diction and more accurate bounding box regression.

To this end, we propose a new point cloud-based 3D ob-

ject detection method, named as Back-tracing Representa-

tive Point Network (BRNet), by incorporating the end-to-

end learnable back-tracing and revisiting operations into the

voting-based framework. Specifically, we propose a repre-

sentative points generation module that generatively sam-

ples uniformly distributed representative points within the

3D area of a candidate object, based on the features of a

vote cluster center. The generated points can coarsely in-

fer the object bounding boxes even though their sampling

process is class-agnostic. The revisited seed points of each

representative point are aggregated in a similar way as ROI

grid pooling [28], but based on the spatial layout of the rep-

resentative points. After fusing the aggregated features of

the revisited seed points and the features of the vote cluster

center, we obtain the refined proposals to eventually detect

the objects. Note that the proposed bounding box regression

scheme explicitly depends on the spatial distribution of the

representative points, thus improves robustness with respect

to shape variations within and across object categories.

The contributions of this work are three-fold: (1) the first

3D object detection network, named as BRNet, that suc-

cessfully adapts the back-tracing step of Hough voting to

3D object detection. (2) an end-to-end learnable network

that can generatively back-trace the representative points,

reliably revisit the seed points, and then mutually refine the

object proposals for more robust object classification and

more accurate bounding box regression. (3) the state-of-

the-art 3D object detection performance on two benchmark

datasets, ScanNet V2 [4] (50.9% in terms of mAP@0.50)

and the SUN RGB-D [31] (43.7% in terms of mAP@0.50),

with lightweight model size and high executive efficiency.

2. Related Works

3D object detection on point clouds. Object detection

from 3D point clouds is challenging due to the irregular,

sparse and orderless characteristics of 3D points. Earlier at-

tempts usually relied on projections onto regular grids such

as multi-view images [3] and voxel grids [43, 37, 12, 7, 30],

or based on the candidates from RGB-driven 2D proposal

generation [21, 11] or segmentation hypotheses [8], where

the existing 2D object detection or segmentation meth-

ods based on regular image coordinates can be effortlessly

adapted. Other approaches also studied how to exploit dis-

criminative [15, 19] or generative shape templates [40], and

high-order contextual potentials to regularize the proposal

objectness [16], or used sliding shapes [33, 32], or clouds

of oriented gradients (COG) [27].

Thanks to PointNet [22], deep neural networks have be-

come extensively employed onto raw point clouds. For

instance, PointRCNN [29] introduced a two-stage 3D ob-

ject detector, which is analogous to the two-stage 2D ob-

ject detection methods such as Faster RCNN [26]. Inspired

by the Hough voting strategy for 2D object detection and

instance segmentation [14], VoteNet [20] was built upon

the backbone of PointNet++ [23] and presented an end-
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to-end trainable 3D object detector. Later on, the exten-

sions of VoteNet [20], such as MLCVNet [36], HGNet [2]

and 3DSSD [39], employed the contextual clues, the hier-

archical graph neural networks and the feature-FPS sam-

pling strategy to enable better generation of object propos-

als. However, these methods heavily depend on the unre-

liable vote clustering proposed in [20], which is inevitably

affected by outliers and usually overlooks inlier seed points.

H3DNet [41] partially tackled this issue by introducing a

hybrid set of overcomplete geometric primitives to refine

the initial bounding boxes predicted by the clustered votes.

But these primitives centers are learned with less accurate

supervisions and also collected by a similar clustering strat-

egy, thus may still fail to eliminate the outliers or capture

sufficient geometric clues to infer the target objects. In this

work, we show how to leverage the representative points

back-traced from the vote centers to complementarily pro-

file the target objects, which enables more discriminative

categorization and more robust bounding box regression.

Anchor-free 2D object detection. The implementation of

the back-tracing representative points in our BRNet adopts

similar anchor-free localization strategies in 2D object de-

tection. Unlike two-stage 2D object detectors such as Faster

RCNN [26], SSD [17] and YOLOv2 [25] that generate pro-

posals with the predefined anchors, the anchor-free detec-

tors [13, 35, 42, 34, 38, 24, 5], especially the regression-

based approaches [34, 38, 10, 24, 5], either directly regress

borders [24], regress the object boundaries with an iterative

dynamic sampling strategy [38], or regress 4D offsets as the

surrogate of the localization results[34]. Inspired by these

methods, in our method, the back-tracing process relies on a

class-agnostic offset regressor to retrieve the representative

points that indicate the likely shape profile surrounding each

vote center and thus provides more local structural clues

for latter inference. Rather than localization constrained by

predefined class-aware statistics, as in VoteNet [20] and its

successors, the proposed BRNet benefits more flexible re-

gression without losing its discriminative power.

Back-tracing in voting-based object detection and in-

stance segmentation. Leibe et al. [14] applied the hough

voting strategy for simultaneously 2D object detection and

instance segmentation. The core part of this approach is

a learned highly flexible representation for object shapes

in a probabilistic extension of Generalized Hough Trans-

form. Moreover, the work in [9] combined the top-down

clues available from object detection and the bottom-up

power of Markov Random Fields (MRFs) when perform-

ing class-specific object detection and segmentation in 3D

scenes. These methods rely on a top-down strategy such

as back-tracing object hypotheses to enhance the bottom-up

strategy such as Hough voting. Their mutual agreement en-

hances each other, and thus devotes to the success of more

reliable object detection. The proposed BRNet also fol-

lows this idea with a new end-to-end trainable back-tracing

process based on the representative points. Recently, as a

3D instance segmentation method, 3D-MPA [6] applied a

“direct” back-tracing strategy to cluster the surface points

from the corresponding votes in one cluster. In contrast, our

method alleviates the inherent partial coverage and outlier

issues from the “generative” back-tracing strategy.

3. Methodology

In this section, we describe the technical details of our

BRNet. Sec. 3.1 presents an overview of our method. In

Sec. 3.2 to Sec. 3.5, we elaborate the network architecture

and the learning objective of our BRNet.

3.1. Overview

As illustrated in Fig. 3, the input of our BRNet is a point

cloud P ∈ R
N×3, with a 3D coordinate for each of the

N points. Such an input typically comes from multi-view

stereo (e.g. ScanNet [4]) or depth sensors (e.g. SUN RGB-

D [31]). The output is a collection of (oriented) bounding

boxes B, each box b ∈ B is associated with a predefined

category label lb ∈ C, a center cb = [cxb , c
y
b , c

z
b ]

⊤ ∈ R
3 in

a world coordinate system, the size of bounding box sb =
[sxb , s

y
b , s

z
b ]

⊤ ∈ R
3, an orientation angle θb in the xy-plane

of the same world coordinate system.

BRNet consists of four main modules: (1) vote gener-

ation and clustering, (2) back-traced representative points

generation, (3) seed point revisiting, and (4) proposal re-

finement and classification followed by standard 3D NMS.

In the first module, we follow the same network and train-

ing strategy as in VoteNet [20] to generate the seed points,

the votes and the vote clusters. We will elaborate the other

three modules in the following parts.

3.2. Generating Back­traced Representative Points

The conventional back-tracing step of Hough voting for

identifying object boundaries [14] is less reliable for amodal

object detection from partial observations, as it just picks

up seed points that contribute to the selected votes. For ex-

ample, in VoteNet [20], these back-traced seed points can

only capture local geometric area near the cluster center

while containing the outliers from the cluttered background

in the meantime. VoteNet [20] circumvents this issue by

removing the back-tracing step and using a PointNet-like

set aggregation block just for votes, and then generates the

object proposals and classifies them. However, the afore-

mentioned incompleteness issue and the outliers within the

votes (delivered from the seed points) are clearly harmful

for the detection task. To this end, we argue that it is still

beneficial to use back-tracing in point-based 3D object de-

tection, but it requires a better tracing strategy to effectively

find the representative seed points. In contrast to the con-

ventional back-tracing strategy, we propose a representative
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Figure 3. An overview of our proposed BRNet for 3D object detection in point clouds. Given an input point cloud consisting of N points

with the XYZ coordinates, we generate votes from it and group the votes into M clusters as in VoteNet [20]. For each of the M vote cluster

centers, we back-trace K representative points from it. The back-traced representative points imply the possible area of the object. We

then revisit the seed points around the representative points and aggregate the surrounding seed point features to the representative points.

The clustered vote features and the revisited seed features are fused and processed by the proposal refinement and classification module to

produce the refined representative points and object’s semantic category, which can be easily transformed into 3D object bounding boxes.

The standard 3D NMS is eventually used to generate the final detection results. Best viewed on screen.

point generation (RPG) module to backwardly regress the

virtually generated representative points from the votes in

a generative manner. The generated representative points

are uniformly distributed within the potential 3D area of a

candidate object, which can also indicate 3D object shapes

when interacted with their actual surrounding seed points.

To be specific, the vote sampling and grouping block

generates a set of vote cluster centers {vi}
M
i=1

, where vi =
[p⊤

i , f
⊤

i ]⊤ with pi ∈ R
3 as the vote’s geometric position

in the 3D space and fi ∈ R
C as its feature extracted from

the preceding network, M is the number of vote clusters.

Then, the RPG module generates a set of representative

points for each vote cluster center. Rather than directly

sampling the 3D coordinates of these points, this module si-

multaneously predicts the tentative orientation θi ∈ [0, 2π]
of the potential object, and regresses the offset distances

xi ∈ R
6 from vi to the tentative object’s surface in 6 canon-

ical directions (i.e. front/back/left/right/up/down), and then

uniformly samples distributed representative points Ri =
{rki = (xk

i , y
k
i , z

k
i )}

K
k=1

along these directions (which are

skewed by the predicted orientation) within the range of

the offset distances. K is the number of representative

points. In this work, we sample 2 uniformly distributed

points within the range of each offset, thus K = 2×6 = 12
in total.

Network architecture and learning. The RPG module is

implemented by using multi-layer perceptrons (MLP) with

the ReLU activation function and batch normalization. It

takes the feature fi from the vote center vi as the input, and

its output is the set {xi, θi}. We employ exp(·) to map any

real number to (0, ∞) on the output of xi. This module

is supervised by the ground-truth (GT) offsets as the vote

center can be assigned to a GT object, i.e.

Lrep-off =
1

Mpos

M∑

i=1

‖xi − x∗

i ‖ρ · I[vi is positive], (1)

where I[vi is positive] indicates whether the vote center vi

is around a GT object center (within a radius of 0.3). Mpos

is the number of positive vote centers. ρ means smooth-ℓ1
norm. And x∗

i is the GT offsets from the vote center vi to

the 6 faces of the GT bounding box. This module is also

supervised by the GT orientation of the same GT object.

To better predict the orientation angle, we adopt the bin-

based angle prediction scheme as in [21], which predicts a

classification score for each orientation bin and a regression

offset in each bin, and then uses the cross-entropy loss for

orientation bins, and the smooth-ℓ1 loss for the regression

offset. We term the orientation loss as Lrep-ang. Therefore,

the final learning objective for this module is

Lrep = λLrep-off + Lrep-ang, (2)

where λ = 20 is used to balance the two terms.

3.3. Revisiting Seed Points

By back-tracing the representative points Ri in a gener-

ative manner from a vote center vi, i = 1, . . . ,M , we can

roughly obtain the size and the position of a possible object

in a class-agnostic way, but it still requires mutual consis-

tency from the actual seed points in order to reliably gener-
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ate the object proposals for more accurate object localiza-

tion, bounding box estimation and object class prediction.

To be specific, we revisit the seed points {qj |‖qj − rki ‖ ≤
δ} within a fixed radius (δ=0.2 in the work) surrounding a

back-traced representative point rki , k = 1, . . . ,K, and ag-

gregate the revisited seed features by using a PointNet-like

block [22], denoted as g̃
r
k

i

. This process is similarly imple-

mented as ROI-grid pooling proposed in PV-RCNN [28],

but with a different griding and radius selection strategy.

Thereafter, to each vote center (or called proposal) vi,

the set of aggregated seed point features g̃
r
k

i

from each

representative point rki can be further fused into a sin-

gle feature g̃vi
, which is implemented by concatenating

{g̃
r
k

i

}Kk=1
in a predefined order before being projected to

a 128-dimensional feature. The predefined order should be

consistent for each proposal, but different ordering strate-

gies do not affect the performance. The revisited seed fea-

tures are summarized into g̃vi
, which thus captures the local

object-level features from the relatively precise raw point

clouds instead of the predicted vote points.

3.4. Proposal Refinement and Classification

The back-traced representative point set Ri helps to re-

visit the seed points and aggregate the local geometric clues

from the potential object indicated by the vote center vi.

The aggregated feature g̃vi
can be concatenated with the

feature fi of the vote center vi, and then refine the proposal

and use for more discriminative object class prediction. To

this end, the fused feature f̃i = [g̃⊤
vi
, f⊤i ]⊤ ∈ R

256 is fed

into a shared MLP to predict the residuals ∆xi and ∆θi
based on the preceding estimation results xi and θi, and pro-

duce the final output set {xi+∆xi, θi+∆θi}. Meanwhile,

we predict the objectness score and the semantic classifica-

tion score for each fused feature, similarly as in [20]. Note

that the final offsets xi + ∆xi can be reformulated as the

bounding box size si = [sxi , s
y
i , s

z
i ]

⊤ ∈ R
3 and the object

center ci = [cxi , c
y
i , c

z
i ]

⊤ ∈ R
3, by min-max clipping the fi-

nal representative point set R̃i in the canonical coordinate.

3.5. The Learning Objective

In summary, the loss function of the entire framework of

the newly proposed BRNet is defined as following:

L = Lvote-reg + λobj-clsLobj-cls+

λsem-clsLsem-cls + λrepLrep + λrefineLrefine (3)

Following the terms and label assignment strategy used in

VoteNet [20], the loss terms Lvote-reg, Lobj-cls, Lsem-cls indi-

cate the per-point vote regression loss, the objectness loss

and the semantic classification loss, respectively. Lrep is de-

fined in Sec. 3.2. Lrefine is used to supervise the residuals

from the initial representative point sets to the final repre-

sentative point sets:

Lrefine =
1

Mpos

M∑

i=1

(λ‖xi +∆xi − x∗

i ‖ρ+

‖(θi +∆θi − θ∗i ‖ρ) · I[vi is positive] (4)

ρ denotes the smooth-ℓ1 norm. θ∗i is the orientation angle

of the ground-truth object bounding box. Lrefine is computed

only on the positive vote clusters. The weighting factors are

λobj-cls = 1, λsem-cls = 0.1, λrep = 1, λrefine = 1 and λ = 20.

4. Experiments

4.1. Setups and Implementation Details

Datasets. We evaluate our method on two large-scale in-

door scene datasets, i.e. SUN RGB-D [31] and ScanNet

V2 [4]. SUN RGB-D consists of 10, 355 single-view indoor

RGB-D images annotated with the oriented 3D bounding

boxes and the semantic labels for 37 categories. The point

clouds are converted from the depth maps based on the pro-

vided camera parameters. The captured point clouds con-

tain severe occlusions and holes, thus are challenging for

3D object detection. ScanNet V2 is a 3D mesh dataset about

1, 500 3D reconstructed indoor scenes. It contains 18 ob-

ject categories with densely annotated axis-aligned bound-

ing boxes. The scans in the ScanNet V2 dataset are more

complete with more objects than those in the SUN RGB-D

dataset. For both datasets, we use the same data preparation

and training/validation split as in VoteNet [20].

Input and data augmentation. The input of our method is

a point cloud randomly sub-sampled from the raw data of

each dataset, i.e., 20, 000 points from a point cloud in the

SUN RGB-D dataset, and 40, 000 points from a 3D mesh in

the ScanNet V2 dataset. We also include the height feature

to each point. To augment the training data, we add random

flipping, rotating and scaling to the input point clouds, as

the way employed by VoteNet [20].

Network training details. Our network is end-to-end opti-

mized by using the Adam optimizer with the batch size as 8.

The base learning rates are 0.001 for the SUN RGB-D [31]

dataset and 0.005 for the ScanNet V2 [4] dataset. We train

the network for 220 epochs on both datasets. The cosine

annealing learning rate strategy[18] is adopted for learning

rate decay. Based on PyTorch platform equipped with one

NVIDIA GeForce RTX 2080 Ti GPU card, it takes around

4 hours to train the model on the ScanNet V2 dataset, while

it takes around 12 hours on the SUN RGB-D dataset.

Inference and evaluation. Our method takes the point

clouds of the entire scenes as the inputs and outputs the ob-

ject proposals. The proposals are post-processed by a 3D

NMS module with an IoU threshold of 0.25. The evalua-

tion follows the same protocol as in [33] using mean aver-

age precision, especially mAP@0.25 and mAP@0.50.
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Table 1. 3D object detection results on the ScanNet V2 validation set(left) and the SUN RGB-D V1 validation set(right). Evaluation

metric is average precision with 3D IOU thresholds as 0.25 and 0.50. *Note for fair comparison, we report the results of H3DNet on the

ScanNet V2 dataset under both 1 and 4 PointNet++ backbones (BB) settings. While we only report the result of H3DNet with 4 PointNet++

backbones (BB) on the SUN RGB-D dataset, as the work [41] only reports the result under this setting.

ScanNet V2 Input mAP@0.25 mAP@0.50

DSS [33] Geo + RGB 15.2 6.8

F-PointNet [21] Geo + RGB 19.8 10.8

GSPN [40] Geo + RGB 30.6 17.7

3D-SIS [7] Geo + 5 views 40.2 22.5

VoteNet [20] Geo only 58.6 33.5

HGNet [2] Geo only 61.3 34.4

MLCVNet [36] Geo only 64.7 42.1

H3DNet (1BB)* [41] Geo only 64.4 43.4

H3DNet (4BB)* [41] Geo only 67.2 48.1

Ours Geo only 66.1 50.9

SUN RGB-D Input mAP@0.25 mAP@0.50

DSS [33] Geo + RGB 42.1 -

COG [27] Geo + RGB 47.6 -

2D-driven [11] Geo + RGB 45.1 -

F-PointNet [21] Geo + RGB 54.0 -

VoteNet [20] Geo only 57.7 32.9

HGNet [2] Geo only 61.6 -

MLCVNet [36] Geo only 59.8 -

H3DNet (1BB)* [41] Geo only - -

H3DNet (4BB)* [41] Geo only 60.1 39.0

Ours Geo only 61.1 43.7

Table 2. 3D object detection results on the ScanNet V2 validation set. The evaluation metric is the average precision with 3D IOU

threshold as 0.50. *Note that for H3DNet only the per-category results with 4 PointNet++ backbones are reported in [41].

ScanNet V2 cab bed chair sofa tabl door wind bkshf pic cntr desk curt fridg showr toil sink bath ofurn avg

VoteNet [20] 8.1 76.1 67.2 68.8 42.4 15.3 6.4 28.0 1.3 9.5 37.5 11.6 27.8 10.0 86.5 16.8 78.9 11.7 33.5

MLCVNet [36] 16.6 83.3 78.1 74.7 55.1 28.1 17.0 51.7 3.7 13.9 47.7 28.6 36.3 13.4 70.9 25.6 85.7 27.5 42.1

H3DNet* [41] 20.5 79.7 80.1 79.6 56.2 29.0 21.3 45.5 4.2 33.5 50.6 37.3 41.4 37.0 89.1 35.1 90.2 35.4 48.1

Ours 28.7 80.6 81.9 80.6 60.8 35.5 22.2 48.0 7.5 43.7 54.8 39.1 51.8 35.9 88.9 38.7 84.4 33.0 50.9

4.2. Comparisons with the State­of­the­art Methods

We compare our method with a list of reference meth-

ods, for example the earlier attempts, such as COG [27],

DSS [33] and 3D-SIS [7], 2D-driven [11] and F-

PointNet [21], and GSPN [40], and the recent point cloud-

based state-of-the-art methods such as VoteNet [20] and its

successors MLCVNet [36], HGNet [2] and H3DNet [41].

Quantitative results. The comparison results are sum-

marized in Table 1. Our method outperforms all base-

line methods by remarkable performance gains, for exam-

ple more than 7.5% and 4.7% improvement in terms of the

mAP@0.50 metric on the validation sets of ScanNet V2 and

SUN RGB-D respectively. Note that mAP@0.50 is a fairly

challenging metric as it basically requires more than 79%
coverage in each dimension of a bounding box, which in-

dicates that back-tracing representative points can signif-

icantly improve the localization accuracy. Notably, ML-

CVNet [36] works well on the ScanNet dataset but achieves

relatively poor performance on the SUN RGB-D dataset,

while HGNet [2] works well on the SUN RGB-D dataset

but achieves poor result on the ScanNet dataset, especially

in terms of the mAP@0.50 metric. Our method works

well on both datasets, which indicates its stronger gener-

alization ability for different detection scenarios. ScanNet

contains relative complete 3D reconstructed meshes, while

SUN RGB-D consists of single-view RGB-D scans with se-

vere occlusions and holes. Moreover, H3DNet [41] ensem-

bles 4 PointNet++ [23] backbones to achieve the reported

result on the SUN RGB-D dataset, while our model only

needs one backbone as the base feature extractor. It fur-

ther validates it is effective to back-trace the representative

points for reliably parsing the object proposals. As shown

in Table 2, our method performs the best on 12 classes

among 18 total classes from the ScanNet dataset in terms of

mAP@0.50. While our method only uses one PointNet++

backbone for point cloud feature extraction, it outperforms

H3DNet [41] with 4 PointNet++ backbones. Moreover, it

achieves better performance on the categories (e.g. “cabi-

net”, “chair”, “sofa”, “table”, “counter” and “desk”) with

irregular sizes or shapes, as its back-tracing and revisiting

process removes the outliers from the votes and enables bet-

ter mutual agreement between the votes and the local object

surfaces, whilst its class-agnostic regression strategy makes

the estimation process robust to shape variations.

Qualitative results. In Fig. 4 and Fig. 6, we visualize

the representative 3D object detection results, from our

method and the baseline methods, such as VoteNet [20],

MLCVNet [36] and H3DNet [41]. These results demon-

strate that our method achieves more reliable detection re-

sults with more accurate bounding boxes and orientations.

Our method also eliminates false positives and discovers

more missing objects when compared with the baseline

methods1.

4.3. Ablation Study and Discussions

Class-agnostic bounding box regression. Our method re-

gresses the representative points in a class-agnostic way,

which are then converted to the proposal’s bounding boxes.

1MLCVNet does not provide a checkpoint for the SUN RGB-D

dataset [31] thus we cannot provide its visualization results on this dataset.
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Figure 4. Qualitative results of different 3D object detection methods on ScanNet V2 dataset [4]. The baseline methods are VoteNet [20],

MLCVNet [36] and H3DNet [41]. Best viewed on screen.

ba
th
tu
b

ch
air

to
ile
t

nig
ht
_s
ta
nd

dr
es
se
r

be
d

de
sk

so
fa

ta
ble

bo
ok
sh
elf

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Ac
cu

ra
cy

 g
ai

n

In
tra

-c
at

eg
or

y 
siz

e 
va

ria
nc

e

Figure 5. Class-agnostic bounding box regression works better

on the categories with high intra-category size variances. For each

category we show the relative accuracy gain (in blue dots) of the al-

ternative method “VoteNet+CA-Reg” over VoteNet [20] and intra-

category size variance(in red squares), which is normalized by the

mean category size.

Note VoteNet [20] and its variants [2, 36, 41] have to es-

timate the sizes of object proposals in a class-aware way.

Thus these baseline methods usually output the object sizes

that can only moderately vary around the class-aware tem-

plates, and tend to falsely detect the objects when their

sizes are unusual. To validate this observation, we imple-

ment an alternative method that employs a similar regres-

sion strategy as in our method but shares the same network

as VoteNet [20]. We term this variant as “VoteNet+CA-

Reg”. As shown in Table 3, this variant significantly outper-

forms VoteNet. As shown in Figure 5, we also observe that

this alternative method works better for the categories with

high intra-category variance in sizes, and the mAP@0.50
gains of this alternative method over VoteNet on the SUN

RGB-D dataset are positively related to size variances.

Table 3. Quantitative ablation experiments on ScanNet V2 and

SUN RGB-D datasets. “+CA-Reg” means VoteNet [20] with

a class-agnostic bounding box regressor, “+Seed-Pts” indicates

VoteNet with votes fused with their corresponding seed points.

ScanNet V2 SUN RGB-D

mAP@0.25 mAP@0.50 mAP@0.25 mAP@0.50
VoteNet 58.6 33.5 57.7 32.9

+CA-Reg 59.3 40.8 58.2 37.6

+Seed-Pts 59.1 37.6 59.5 33.6

Ours 66.1 50.9 61.1 43.7

Back-tracing, revisiting and refinement. Back-tracing the

representative points should also be combined with the sub-

sequent revisiting and refinement modules. As shown in

Table 3, we find this complete method has significant per-

formance gains (∼ 10% mAP improvement on ScanNet

and ∼ 6% mAP improvement on SUN RGB-D in terms of

mAP@0.50) over the aforementioned baseline. The back-

tracing operation gives rough estimation of the object ex-

tent, and the revisiting and refining operations further up-

date the proposal features with the reliable seed features

in the neighborhood, thus offering better chance to pro-

duce more accurate detection results. Moreover, as shown

in Figure 7, the revisited seed points by our method com-

pactly cover the object’s surface, while the corresponding

seed points retrieved by the votes can only partially cover

the surface, and also suffer from the outliers.

Moreover, to validate whether the seed points can help

improve the object detection results, we consider another

variant (termed as “VoteNet+Seed-Pts”) that VoteNet has

its vote features fused with the corresponding seed points’

features. In comparison to VoteNet, this alternative method

also achieves non-trivial gains on both datasets, especially
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Figure 6. Qualitative comparison results of the 3D object detection methods on the SUN RGB-D dataset [31]. The baseline methods are

VoteNet [20] and H3DNet [41]. Best viewed on screen.

(a) Corresponding seed points (b) Revisited seed points

Figure 7. Comparison between the corresponding seed points and

the revisited seed points. The seed points are marked as blue points

and the predicted bounding boxes are the green boxes. The revis-

ited seed points completely cover the chair, while the correspond-

ing seed points suffer from partial coverage and the outliers.

on ScanNet V2 in terms of mAP@0.50.

Sampling strategy of representative points. In Table 4,

we compare different sampling strategies to generate our

representative points. “Ray” means uniform sampling

along 6 directions between 0 and the maximum offsets.

“Grid” means uniform sampling within the 3D bounding

box spanned based on the predicted offsets. “#Pts” is the

number of sampled points. Our methods using different

strategies are generally comparable.

Model size and speed. As listed in Table 5, our proposed

method is efficient in comparison to VoteNet, and is 3×
faster than the current state-of-the-art H3DNet [41], when

evaluated on both datasets. Its model size is marginally in-

creased from that of VoteNet, and around 4× smaller than

that of H3DNet. Knowing that the proposed method has

significant performance gains than these reference methods

(as discussed in Sec. 4.2), its lightweight model validates

that the proposed back-tracing strategy is significant for 3D

object detection in point clouds2.

Number of Backbones. Our BRNet can also be improved

2Note that MLCVNet does not provide a checkpoint for the SUN RGB-

D dataset, we omit its comparison on this dataset.

Table 4. Results of BRNet using different RP sampling strategies.
ScanNet V2 SUN RGB-D

Types #Pts mAP@0.25 mAP@0.50 mAP@0.25 mAP@0.50

Ray 6 65.0 48.3 60.3 42.7

Ray 12 66.1 50.9 61.1 43.7

Ray 18 65.8 48.4 60.4 42.9

Grid 8 65.4 49.1 59.9 42.2

Grid 27 66.0 49.2 60.2 42.5

Table 5. Model size and processing time comparison of different

methods, which are evaluated on a NVIDIA GeForce RTX 2080

Ti GPU card with the same configuration. #BB means the number

of backbones used for feature extraction.

Method #BB Model size ScanNet SUN RGB-D

VoteNet [20] 1 11.2MB 0.130s 0.076s

MLCVNet [36] 1 13.9MB 0.141s -

H3DNet [41] 4 56.0MB 0.330s 0.241s

Ours 1 12.9MB 0.133s 0.079s

after using 4 backbones, and it achieves the result of 51.8%

in terms of mAP@0.50 on ScanNet [4], which outperforms

H3DNet (4 backbones) with a remarkable margin (+3.7%).

5. Conclusion

In this work, we have introduced a new approach to im-

prove the voting-based 3D object detection method by gen-

eratively and class-agnostically back-tracing the represen-

tative points. We revisit the seed points around the back-

traced representative points and extract fine object surface

features to generate the high-quality object proposals. Com-

prehensive ablation studies show the importance and effec-

tiveness of the proposed back-tracing, revisiting and refine-

ment operations. Qualitative and quantitative results fur-

ther demonstrate that our method remarkably outperforms

the existing methods while bringing negligible increases in

model size and executive time compared with VoteNet [20].
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[14] Bastian Leibe, Aleš Leonardis, and Bernt Schiele. Robust

object detection with interleaved categorization and segmen-

tation. IJCV, 77(1-3):259–289, 2008. 2, 3

[15] Yangyan Li, Angela Dai, Leonidas Guibas, and Matthias

Nießner. Database-assisted object retrieval for real-time 3D

reconstruction. In Computer Graphics Forum, volume 34,

pages 435–446. Wiley Online Library, 2015. 1, 2

[16] Dahua Lin, Sanja Fidler, and Raquel Urtasun. Holistic scene

understanding for 3D object detection with RGBD cameras.

In ICCV, pages 1417–1424, 2013. 2

[17] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian

Szegedy, Scott Reed, Cheng-Yang Fu, and Alexander C

Berg. SSD: Single shot multibox detector. In ECCV, pages

21–37. Springer, 2016. 3

[18] Ilya Loshchilov and Frank Hutter. SGDR: Stochas-

tic gradient descent with warm restarts. arXiv preprint

arXiv:1608.03983, 2016. 5

[19] Liangliang Nan, Ke Xie, and Andrei Sharf. A search-classify

approach for cluttered indoor scene understanding. ACM

TOG, 31(6):1–10, 2012. 1, 2

[20] Charles R Qi, Or Litany, Kaiming He, and Leonidas J

Guibas. Deep hough voting for 3D object detection in point

clouds. In ICCV, pages 9277–9286, 2019. 1, 2, 3, 4, 5, 6, 7,

8

[21] Charles R Qi, Wei Liu, Chenxia Wu, Hao Su, and Leonidas J

Guibas. Frustum pointnets for 3d object detection from

RGB-D data. In CVPR, pages 918–927, 2018. 2, 4, 6

[22] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas.

PointNet: Deep learning on point sets for 3D classification

and segmentation. In CVPR, pages 652–660, 2017. 2, 5

[23] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J

Guibas. Pointnet++: Deep hierarchical feature learning on

point sets in a metric space. In NeurIPS, pages 5099–5108,

2017. 2, 6

[24] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali

Farhadi. You only look once: Unified, real-time object de-

tection. In CVPR, pages 779–788, 2016. 3

[25] Joseph Redmon and Ali Farhadi. YOLO9000: better, faster,

stronger. In CVPR, pages 7263–7271, 2017. 3

[26] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.

Faster R-CNN: Towards real-time object detection with re-

gion proposal networks. IEEE TPAMI, 39(6):1137–1149,

2016. 2, 3

[27] Zhile Ren and Erik B Sudderth. Three-dimensional object

detection and layout prediction using clouds of oriented gra-

dients. In CVPR, pages 1525–1533, 2016. 2, 6

[28] Shaoshuai Shi, Chaoxu Guo, Li Jiang, Zhe Wang, Jianping

Shi, Xiaogang Wang, and Hongsheng Li. PV-RCNN: Point-

voxel feature set abstraction for 3D object detection. In

CVPR, pages 10529–10538, 2020. 2, 5

[29] Shaoshuai Shi, Xiaogang Wang, and Hongsheng Li. PointR-

CNN: 3D object proposal generation and detection from

point cloud. In CVPR, pages 770–779, 2019. 2

[30] Shaoshuai Shi, Zhe Wang, Jianping Shi, Xiaogang Wang,

and Hongsheng Li. From points to parts: 3d object detec-

tion from point cloud with part-aware and part-aggregation

network. arXiv preprint arXiv:1907.03670, 2019. 2

[31] Shuran Song, Samuel P Lichtenberg, and Jianxiong Xiao.

SUN RGB-D: A RGB-D scene understanding benchmark

suite. In CVPR, pages 567–576, 2015. 2, 3, 5, 6, 8

[32] Shuran Song and Jianxiong Xiao. Sliding shapes for 3D ob-

ject detection in depth images. In ECCV, pages 634–651.

Springer, 2014. 1, 2

[33] Shuran Song and Jianxiong Xiao. Deep sliding shapes for

amodal 3D object detection in RGB-D images. In CVPR,

pages 808–816, 2016. 1, 2, 5, 6

8971



[34] Zhi Tian, Chunhua Shen, Hao Chen, and Tong He. FCOS:

Fully convolutional one-stage object detection. In ICCV,

pages 9627–9636, 2019. 3

[35] Lachlan Tychsen-Smith and Lars Petersson. DeNet: Scalable

real-time object detection with directed sparse sampling. In

ICCV, pages 428–436, 2017. 3

[36] Qian Xie, Yu-Kun Lai, Jing Wu, Zhoutao Wang, Yiming

Zhang, Kai Xu, and Jun Wang. MLCVNet: Multi-level con-

text votenet for 3D object detection. In CVPR, pages 10447–

10456, 2020. 1, 3, 6, 7, 8

[37] Yan Yan, Yuxing Mao, and Bo Li. SECOND: Sparsely em-

bedded convolutional detection. Sensors, 18(10):3337, 2018.

2

[38] Ze Yang, Shaohui Liu, Han Hu, Liwei Wang, and Stephen

Lin. RepPoints: Point set representation for object detection.

In ICCV, pages 9657–9666, 2019. 3

[39] Zetong Yang, Yanan Sun, Shu Liu, and Jiaya Jia. 3D-SSD:

Point-based 3D single stage object detector. In CVPR, pages

11040–11048, 2020. 3

[40] Li Yi, Wang Zhao, He Wang, Minhyuk Sung, and Leonidas J

Guibas. GSPN: Generative shape proposal network for 3d

instance segmentation in point cloud. In CVPR, pages 3947–

3956, 2019. 1, 2, 6

[41] Zaiwei Zhang, Bo Sun, Haitao Yang, and Qixing Huang.

H3DNet: 3D object detection using hybrid geometric primi-

tives. In ECCV, 2020. 1, 3, 6, 7, 8

[42] Xingyi Zhou, Jiacheng Zhuo, and Philipp Krahenbuhl.

Bottom-up object detection by grouping extreme and center

points. In CVPR, pages 850–859, 2019. 3

[43] Yin Zhou and Oncel Tuzel. VoxelNet: End-to-end learning

for point cloud based 3D object detection. In CVPR, pages

4490–4499, 2018. 1, 2

8972


