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Abstract

The problem of novelty detection in fine-grained visual

classification (FGVC) is considered. An integrated un-

derstanding of the probabilistic and distance-based ap-

proaches to novelty detection is developed within the frame-

work of convolutional neural networks (CNNs). It is shown

that softmax CNN classifiers are inconsistent with novelty

detection, because their learned class-conditional distribu-

tions and associated distance metrics are unidentifiable. A

new regularization constraint, the class-conditional Gaus-

sianity loss, is then proposed to eliminate this unidentifia-

bility, and enforce Gaussian class-conditional distributions.

This enables training Novelty Detection Consistent Classi-

fiers (NDCCs) that are jointly optimal for classification and

novelty detection. Empirical evaluations show that NDCCs

achieve significant improvements over the state-of-the-art

on both small- and large-scale FGVC datasets.

1. Introduction

Deep convolutional neural networks (CNNs) enabled

significant breakthroughs in image classification [25, 49,

19]. However, CNN classifiers are trained under the closed-

world assumption that test examples belong to one of the

classes on which the CNN was trained. These are referred

to as seen or known classes. This assumption is violated

in many practical settings, e.g. medical diagnosis [46] or

autonomous driving [3], where CNNs can be exposed to

images from both seen and unseen classes, i.e. classes that

do not appear in the training set. In this setting, CNNs are

well-known to assign examples from unseen classes to seen

classes with high confidence [6, 56]. In fact, an entire lit-

erature on adversarial attacks [51, 16] has grown out of this

observation. Novelty detection aims to thwart this problem,

by identifying and rejecting examples from unseen classes.

Novelty detection can be divided into the one-class and

multi-class settings depending on the number of known

classes. In one-class novelty detection [43, 36, 38], which

is also known as one-class classification (OCC), all train-

ing examples are assumed from the same class and have

no labels. When seen and unseen classes are from differ-

ent domains, novelty detection becomes out-of-distribution

(OOD) detection [20, 28, 52, 12, 27]. For instance, a clas-

sifier of handwritten digit images is confronted with natural

images. While OCC and OOD detection have gained signif-

icant attention, they are best suited when seen and unseen

classes are fundamentally different.

In this work, we address a different and more challenging

setting where both seen and unseen classes are sub-classes

(e.g., African hunting dog vs. Chesapeake Bay retriever)

of a common category (e.g., dog). This is of very practi-

cal value for intelligent systems. For example, there might

be cases in which it is necessary for surveillance systems

deployed at wildlife sanctuaries to detect unseen animal

species which might become alien-invasive species. More-

over, this is more frequent during the regular operation of

vision systems. In applications such as autonomous driv-

ing, it is impossible to train for all object sub-classes that

already exist, e.g. all road obstacles, or will be created af-

ter deployment of the classifier, e.g. new types of scooters

or construction signs. Hence, sooner or later, the classifier

will face unseen sub-classes. Since this type of novelty de-

tection requires fine distinctions between seen and unseen

classes, it is best addressed in the multi-class setting, where

seen classes are modeled individually.

The core of a novelty detection algorithm is a novelty

score or a measure of an example x not belonging to seen

classes [9, 39]. This score can be computed by projecting x

onto a feature space V , usually the embedding learned by a

CNN, and thresholded to produce a novelty detection deci-

sion. Two popular classes of novelty scores are probabilistic

and metric-based [41]. The former estimates the probability

of x under the distributions of seen classes. The latter es-

timates distances between x and seen class representatives.

It can be shown that these two approaches are intrinsically

connected for exponential family distributions [5], a family

of probability densities that includes most parametric mod-

els in common use. Exponential family distributions are de-

fined by a sufficient statistic, which can be seen as a feature
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transformation or embedding, a set of canonical parame-

ters, and a cumulant or log-partition function. The latter is

a convex function of the canonical parameters and defines

the geometry of the feature space: its derivatives are the mo-

ments of the distribution and its conjugate function defines

the Bregman divergence [10] that underlies the geometry of

V [4]. Hence, for exponential family features, probabilistic

and metric scores are two faces of the same coin.

In this work, we leverage the fact that a CNN trained for

classification induces exponential family class-conditional

distributions on its embedding v(x), whose geometry thus

follows the associated Bregman divergences. This enables

novelty detection by simply thresholding the latter. The

difficulty, however, is that the standard training by cross-

entropy minimization produces class-conditional distribu-

tions and corresponding Bregman divergences, that are un-

known. In fact, we show that both class-conditional dis-

tributions and Bregman divergences are unidentifiable from

the CNN parameters. While seen classes are exponentially

distributed, these parameters are compatible with many cu-

mulant functions and, consequently, Bregman divergences.

This is illustrated in Figure 1(a). Although novelty de-

tection can be performed by assuming divergences of spe-

cific forms, e.g. Euclidean distances, this creates an incon-

sistency between classification and novelty detection that

makes the latter suboptimal. It is thus important to consider

alternate forms of CNN training that produce classification

CNNs consistent with novelty detection. In this work, we

propose to regularize CNN training so as to eliminate the

unidentifiability of Figure 1(a). In particular, we seek regu-

larization constraints that guarantee a desired (distribution,

divergence) pair. While any pair could be chosen, we en-

force multivariate Gaussian distributions and the associated

Mahalanobis distances, for simplicity. However, given the

high-dimensional nature of modern CNN embeddings, even

covariances constraints are difficult to enforce. We show,

however, that it is possible to leverage insights gained from

the analysis of embedding geometry to derive a new Class-

Conditional Gaussianity (CCG) regularization loss.

As shown in Figure 1(b), the combination of the CCG

loss LCCG with the standard cross-entropy loss LCE can be

seen as a loss function that operates on the two sides of

softmax regression layer. On one hand, LCE shapes the

class-posterior probabilities at the output of the layer, en-

suring optimal classification on seen classes. On the other,

LCCG shapes the class-conditional distributions at the layer

input, forcing them to be Gaussian. Finally, because the

output class-posterior probability distributions are compati-

ble with any exponential family distribution for the class-

conditionals, the addition of this regularization does not

hinder classification performance. Overall, the resulting

classifier is consistent with novelty detection, which can

be equally implemented by thresholding class-conditional

Embedding
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(a) ND-inconsistent CNN

Embedding

Softmax

Regression

(b) ND-consistent CNN

Figure 1. 1(a): A CNN trained for classification with the cross-

entropy loss LCE is inconsistent with novelty detection (ND). Be-

cause the class-conditional distributions learned by the CNN are

unidentifiable, multiple sets of distributions (visualized using con-

tour plots) are compatible with the CNN parameters. 1(b): Reg-

ularization with the proposed CCG loss LCCG makes the distribu-

tions identifiable, in fact Gaussian, without sacrificing classifica-

tion performance.

probabilities or Bregman divergences, with little loss of

classification performance on seen classes.

The paper makes four contributions to the study of nov-

elty detection. The first is a theoretical analysis of the soft-

max classifier, showing that although it learns exponential

family class-conditional distributions, these are not identi-

fiable. The second is the derivation of identifiability condi-

tions, that guarantee Gaussian distributions and associated

Mahalanobis distances. The third is the CCG regulariza-

tion loss that encourages these conditions to hold, produc-

ing classifiers that are consistent with novelty detection. Fi-

nally, evaluations on various fine-grained visual classifica-

tion datasets demonstrate that our proposed method signifi-

cantly advances the state-of-the-art for novelty detection.

2. Related Works

Novelty Detection: Novelty detection has long been in-

vestigated in the machine learning and signal processing

literature [32, 33, 41]. While many strategies have been

proposed, two are of particular relevance to this work:

probabilistic and distance-based novelty detection. Prob-

abilistic methods are based on estimating class-conditional

probabilities. However, most density estimation techniques

used in prior works, such as Gaussian mixtures [58] or

kernel density estimation [24], do not scale well to high-

dimensional data, e.g. high-resolution images. Distance-

based approaches rely on distance metrics in feature space

to compute distances (or similarity measures) between ex-

amples and known classes. As we will show in the next

section, these two philosophies can be unified in the frame-

work of CNN learning, but both the class-conditional distri-
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butions learned by CNNs and the distances that define the

geometry of CNN feature space are unidentifiable.

CNN-based methods: In recent years, many works have

used deep neural networks for visual novelty detection

[20, 28, 12, 30, 21, 39]. For example, [30] proposed to use

the Kernel Null Foley-Sammon transform (KNFST) [9] to

learn a mapping from CNN feature space to a kernel feature

space, where novelty detection is performed by threshold-

ing distances between test examples and seen classes. This

approach and its variants [9, 8, 30] suffer from the limitation

that the CNNs are not specifically trained to enable optimal

novelty detection. Several works instead propose to train

the CNN with an auxiliary dataset of examples from do-

mains different from that of the seen classes [21, 13, 39].

These strategies are successful for out-of-distribution de-

tection, where examples in the auxiliary dataset effectively

mimic unseen test examples, teaching the CNN to discrimi-

nate between them and known classes examples. However,

they lose effectiveness when known and novel examples are

from fine-grained classes within the same category.

Generative Models: Deep generative models, such as vari-

ational autoencoders and generative adversarial networks,

have also been proposed for novelty detection. For exam-

ple, [46, 57, 2, 38] use the image reconstruction error or the

latent vector reconstruction error produced by these models

as novelty score. Alternatively, [40, 1] propose to employ

generative models for modeling the probability distribution

of known classes. However, methods based on image gener-

ation are usually only successful in simple scenarios, with

low resolution (e.g., 28×28 or 32×32) images and small

numbers of classes [11].

Related Topics: Out-of-distribution (OOD) detection can

be viewed as a special case of novelty detection where novel

examples are from another problem domains or datasets.

However, as discussed above, most approaches to OOD de-

tection are not suitable for the more challenging task of

novelty detection within fine-grained classes. Multi-class

novelty detection also has close relationships with research

problems such as one-class classification (OCC) [36, 38]

and open-set recognition (OSR) [45, 6, 31]. OSR aims to

simultaneously identify unknown examples and classify ex-

amples from known classes. OCC approaches can be used

for multi-class novelty detection by treating the multiple

training classes as one super class. This, however, fails to

exploit the richness of label information in the training data

and tends to underperform in multi-class novelty detection.

In addition to the aforementioned topics, uncertainty esti-

mation and probabilistic neural networks [14, 18, 15, 26]

aim to address the overconfidence issue of deep CNNs and

may also be promising in novelty detection. The method of

deep ensemble [26], which achieves state-of-the-art perfor-

mance in uncertainty calibration [35], is evaluated for nov-

elty detection in this work.

3. Novelty Detection Consistent Classifier

In this section, our approach for novelty detection is pre-

sented in details. We start by briefly reviewing the training

of CNN classifiers and discussing the difficulties of identi-

fying either class-conditional distributions or distance met-

rics learned by CNNs.

3.1. Learning CNN classifiers

Consider a classification problem with observations and

labels drawn from random variables X ∈ X and Y ∈ Y =
{1, · · · , C}. A CNN performs classification in three stages.

The first is a feature extractor or embedding v : X → V ⊂
R
d which maps an image x ∈ X into a d-dimensional fea-

ture space V . This is typically achieved through a sequence

of layers combining convolutional and non-linear transfor-

mations. The second is a softmax regression

PY |X(y|v(x)) =
e〈wy,v(x)〉+by

∑C
k=1 e

〈wk,v(x)〉+bk
(1)

where wy/by is the classification weight/bias for class y and

〈·, ·〉 denotes the dot product . Finally, classification predic-

tions are made by the Bayes decision rule

y∗ = argmax
y∈Y

PY |X(y|v(x)). (2)

CNNs are usually trained under the principle of maxi-

mum log-likelihood, i.e.,

maximize
∑

(x,y)∈Dtrain

logPY |X(y|v(x)) (3)

where Dtrain denotes the training set. This is typically done

via stochastic optimization. Given a batch of training ex-

amples {(xi, yi)}
m
i=1, the CNN parameters are optimized

by minimizing the cross-entropy loss:

LCE = −
1

m

m∑

i=1

log
e〈wyi

,v(xi)〉+byi

∑C
k=1 e

〈wk,v(xi)〉+bk
. (4)

Multi-class novelty detection [9, 39] addresses the detec-

tion of examples from new classes, on which the network

has not been trained. For example, when a dog classifier

trained on C breeds is faced with an example of a dog of

an unseen breed. A simple solution is to threshold some

confidence score derived from the class-posterior distribu-

tion of (1), e.g. its maximum value [20]. A value below the

threshold signals that the CNN has little confidence on the

image class, suggesting that the image is likely to be from

an unseen class and should be rejected. However, the esti-

mation of class-posterior probabilities via (1) is unreliable

in the open-world case, where test examples can be from un-

known novel classes. In fact, its underlying assumption that
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∑
k∈Y PY |X(k|v(x)) = 1 does not hold anymore. Hence,

this approach tends to be suboptimal for novelty detection.

This problem can be avoided by performing the novelty

detection before the softmax layer, i.e. by acting directly on

the output of the feature extractor v(·). Two alternatives

are possible. The first is to threshold the class-conditional

probability distributions PX|Y (x|y) or PX|Y (v(x)|y) [41].

While these model the generative distribution of examples

from the known classes, they are valid models to measure

the probability of x under class y, even when x is from an

unseen class. The second is to measure distances between

x and some representative of the distributions of the known

classes in the feature space V , e.g. the class mean. The intu-

ition is that, in V , examples from class y cluster around the

class mean. Novelty detection should thus be possible by

either thresholding probability distributions or distances in

V . The main difficulty is that both the distributions learned

by the CNN and the distances that define the geometry of V
are usually unknown. In fact, as we show next, they are not

even identifiable from the learned CNN.

3.2. Unidentifiability of Classconditional Distribu
tions

Using Bayes’ rule, the class-posterior distribution can be

written as

PY |X(y|v(x)) =
PX|Y (v(x)|y)PY (y)∑C
k=1 PX|Y (v(x)|k)PY (k)

. (5)

It follows from (1) and (5) that the class-posterior distri-

butions learned by a CNN are compatible with any set of

class-conditional distributions of the form

PX|Y (v(x)|y)PY (y) ∝x e
〈wy,v(x)〉+by (6)

where ∝x denotes a proportional relationship whose pro-

portionality constant is determined by x. This holds when

PX|Y (v(x)|y) = q(x)e〈wy,v(x)〉−ψ(wy) (7)

PY (y) =
eψ(wy)+by

∑C
k=1 e

ψ(wk)+bk
, (8)

where q(·) is a non-negative function and ψ(wy) is a

constant such that (7) integrates to 1. In this case,

PX|Y (v(x)|y) is an exponential family distribution of

canonical parameter wy , sufficient statistic v(x), and cu-

mulant function ψ(·) [5]. However, the learned CNN only

provides us with v(x) and wy . We cannot determine

PX|Y (v(x)|y) for any x without knowledge of ψ(wy) or

q(x). In other words, there are multiple exponential family

distributions compatible with v(x) and wy learned by the

CNN. A toy example is provided in Supplementary Material

to illustrate this. In conclusion, the class-conditional distri-

butions PX|Y (v(x)|y) are not identifiable from the leaned

CNN, as shown in Figure 1(a).

3.3. Unidentifiability of Bregman Divergence

The cumulant function ψ(·) of an exponential family dis-

tribution PX|Y (v(x)|y) possesses several important prop-

erties [34, 4, 5]. First, it is a convex function. Second, its

first and second order derivatives satisfy ∇ψ(wy) = µy
and ∇2ψ(wy) = Σy , where µy = EX|Y [v(x)|y] and

Σy = EX|Y [(v(x) − µy)(v(x) − µy)
⊤|y] are the mean

and covariance of v(x) under class y. Third, it has a conju-

gate function defined as

φ(µy) = sup
w

{〈w,µy〉 − ψ(w)}, (9)

and it is the canonical parameter wy associated with ψ and

µy that achieves the supremum, i.e.

φ(µy) = 〈wy,µy〉 − ψ(wy). (10)

From this, it follows that

〈wy,v(x)〉 − ψ(wy)

= 〈wy,µy〉 − ψ(wy) + 〈wy,v(x)− µy〉

= φ(µy) + 〈wy,v(x)− µy〉

= φ(µy) + 〈∇φ(µy),v(x)− µy〉

= −dφ(v(x),µy) + φ(v(x)) (11)

where

dφ(a,b) = φ(a)− φ(b)− 〈∇φ(b),a− b〉 (12)

is the Bregman divergence [10] between a and b associated

with φ. Using (11), (7) can be rewritten as

PX|Y (v(x)|y) = q(x)eφ(v(x))−dφ(v(x),µy) (13)

∝x e
−dφ(v(x),µy). (14)

Hence, learning a CNN under the cross-entropy loss en-

dows V with a geometry defined by the Bregman diver-

gence dφ(v(x),µy). In fact, it can be shown that the cor-

respondence between PX|Y (v(x)|y) and dφ(v(x),µy) is

bijective, i.e. there is a unique Bregman divergence for ev-

ery exponential family distribution [4]. Since, as discussed

in the last subsection, multiple exponential family distribu-

tions are compatible with the learned CNN, there are mul-

tiple Bregman divergences corresponding to them. Hence,

like the class-conditional distributions, the distances defin-

ing the geometry of V are not identifiable, either.

3.4. Identifiability Regularization Constraints

In this work, we propose to add regularization con-

straints to CNN training so as to enable the identification

of both the class-conditional probability distributions and

the distance functions that define the geometry of V . We

note that these constraints do not affect the optimality of the
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classifier, whose posterior distribution remains of the form

of (1) and whose class-conditionals remain of the form of

(6). The only difference is that we eliminate the extra de-

grees of freedom that make the learned CNN compatible

with multiple distributions in the exponential family. This

is accomplished by enforcing one particular distribution.

While, in principle, any member of the exponential fam-

ily could be used, a natural choice is to require the distribu-

tions to be Gaussians with different means, i.e.

PX|Y (v(x)|y) =G(v(x);µy,Σ) (15)

where

G(x;µ,Σ) =
1

(2π)d/2|Σ|1/2
e−

1

2
(x−µ)⊤Σ

−1(x−µ). (16)

Two immediate consequences are that, from (15) and (14),

the associated Bregman divergence is the Mahalanobis dis-

tance

dφ(v(x),µy) =
1

2
(v(x)− µy)

⊤
Σ

−1(v(x)− µy)

=
1

2
‖v(x)− µy‖

2
Σ

(17)

and that

PX|Y (v(x)|y) = Ke−dφ(v(x),µy) (18)

where K is a constant. This enables novelty detection by

thresholding Mahalanobis distances, which are intuitive and

easy to compute. In fact, this simplicity has led many pre-

vious works to use Mahalanobis distances in V for tasks

such as image retrieval [22, 29], out-of-distribution detec-

tion [27], person re-identification [42], etc.

The difficulty, ignored by most of these works, is that the

Mahalanobis distance only reflects the geometry of V when

(15) holds. This must be enforced during CNN training, as

a regularization constraint. However, this constraint is not

trivial to implement. A possibility would be to add one reg-

ularizer across classes, forcing the sample covariance of the

feature vectors to be the desired Σ. This has three problems.

First, it is difficult to estimate a d-by-d covariance Σ when

d is large (e.g. d = 4096 for our experiments in Section 4).

Second, even if this were possible, it is not clear what the

target covariance Σ should be. Third, and most important,

forcing a distribution to have a certain covariance Σ is in-

sufficient to guarantee that the distribution is Gaussian. In

summary, this regularization would 1) require the specifica-

tion of the target covariance Σ and 2) would not guarantee

the desired Gaussianity. Both of these are undesirable prop-

erties. The following lemma provides a more effective and

efficient path towards the regularization.

Lemma 1. Consider an exponential family distribution

PX|Y (v(x)|y) of sufficient statistic v(x) and canonical pa-

rameter wy . Then (15) holds if and only if

µy = Σwy (19)

where µy and Σ are the mean and covariance of v(x) un-

der class y.

3.5. The ClassConditional Gaussianity Loss

The lemma shows that there is a simple way to guaran-

tee Gaussian class-conditionals. It suffices to enforce the

constraint of (19) during CNN training. Even this, however,

is not trivial to implement. One possibility is to estimate

µy and Σ by the sample mean and sample covariance of

the training examples and then minimize the norm of differ-

ence between the two sides of (19). This, however, is not

well suited for the mini-batch style of optimization com-

monly used for CNN training.

In this work, we propose a better alternative. This con-

sists of parameterizing Σ by learnable parameters θ and

then forcing v(x) under class y to have mean µy(θ) =
Σ(θ)wy and covariance Σ(θ). We tackle this from two

aspects.

First, {µk(θ)}
C
k=1 and Σ(θ) should fit the data distri-

bution in V . This can be done efficiently by minimizing

the negative log-likelihood (NLL) of the Gaussian mod-

els {G(v(x);µk(θ),Σ(θ))}Ck=1 with respect to the train-

ing data. From (16), up to constants independent on

{µk(θ)}
C
k=1 and Σ(θ), the NLL for mini-batch training ex-

amples {(xi, yi)}
m
i=1 is given by

LNLL =
log |Σ(θ)|

2
+

1

2m

m∑

i=1

‖v(xi)− µyi(θ)‖
2
Σ(θ) .

(20)

Since this NLL minimization is just in order to update our

estimation of {µk}
C
k=1 and Σ, we only optimize the param-

eters of {µk(θ)}
C
k=1 and Σ(θ) for minimizing LNLL. In

other words, we detach {v(xi)}
m
i=1 in (20) from the com-

putational graph for backpropagation.

Second, the embedding v(·) should adapt so that

EX|Y [v(x)|y] = Σ(θ)wy . We encourage this by mini-

mizing the Mahalanobis distances from {v(xi)}
m
i=1 to the

corresponding means {µyi(θ) = Σ(θ)wyi}
m
i=1, i.e.,

LMD =
1

2m

m∑

i=1

‖v(xi)− µyi(θ)‖
2
Σ(θ) . (21)

Noting that it is easy for the minimization of Mahalanobis

distances to get away with simply increasing the magni-

tude of Σ(θ), we only optimize the parameters of v(·) and

{µk(θ)}
C
k=1 for minimizing LMD.
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By combining (20) and (21), we have the identifiability

regularization loss

LCCG = γLNLL + LMD (22)

where γ > 0 is a multiplier that balances the contribu-

tions of the two terms. This proposed regularization has

two advantages. First, there is no need to specify the tar-

get covariance Σ, which is simply learned as a byprod-

uct of the optimization. Second, the minimization of (22)

also encourages the distribution of v(x) under class y to

have mean Σ(θ)wy and covariance Σ(θ), it follows from

Lemma 1 that it forces the class-conditional distributions

PX|Y (v(x)|y) to be Gaussian. For this reason, we refer to

(22) as the Class-Conditional Gaussianity (CCG) loss.

The cross-entropy loss of (4) and the CCG loss can be

naturally combined into an overall objective

L = LCE + λLCCG (23)

where λ > 0. As shown in Figure 1(b), this can be seen as a

loss function that operates on the two sides of softmax layer.

On one hand, LCE shapes the class-posterior probabilities at

the output of the layer, ensuring optimal classification on

seen classes. On the other hand, LCCG shapes the distribu-

tions at the layer input, forcing them to be Gaussian. Both

losses constrain the classifier parameters {wk}
C
k=1 that con-

nect the input to the output. This enforces the condition

of (19), which guarantees consistency between the input

and output distributions, removing the ambiguity at the in-

put, where the class-conditional distributions are forced to

be Gaussian. Finally, because the output class-posterior

distributions are compatible with any exponential family

distribution for the class-conditionals, the addition of this

regularization does not hinder classification performance.

Furthermore, the fact that the seen classes have identifiable

class-conditional distributions simplifies novelty detection,

since there is no need to explicitly learn the distance metric

that defines the geometry of V . This distances simply ”fall

out” of the optimization of (23), enabling improved novelty

detection performance. These observations are validated by

our empirical evaluation in Section 4.

3.6. Summary

The proposed Novelty Detection Consistent Classifiers

(NDCC) is implemented as follows. First, a CNN is trained

with known classes examples and the joint loss L of (23).

This produces a pair of parameters (wy,Σ(θ)) per class

y, and encourages the class-conditional distributions to be

Gaussians of mean µ̂y = Σ(θ)wy and covariance Σ̂ =
Σ(θ). Given a test example x, its novelty score is computed

as the smallest Bregman divergence of (17), between x and

the known classes

Novelty(x) = min
y∈Y

‖v(x)− µ̂y‖
2
Σ̂
. (24)

Dogs FounderType CUB-200 Caltech

fine-grained ✓ ✓ ✓ ✗

# classes 120 200 200 256

# images 20580 1352600 6033 30607

Table 1. Statistics of the datasets used for evaluation.

A novelty detection decision is finally made by thresholding

Novelty(x). For practical applications, the threshold can be

chosen by different strategies. A simple one is to choose a

percentile of the distribution of novelty scores for examples

from known classes (for instance, we can choose the 90th

percentile if the acceptable false negative rate is 10%). In

literature, the novelty score is usually used for performance

evaluations of novelty detection methods.

4. Experiments

Datasets. NDCC was evaluated on three fine-grained

datasets, Stanford Dogs [23], FounderType-200 [30] and

CUB-200-2010 [53]. To show that NDCC is not limited to

the fine-grained setting, we also conducted evaluations on

the coarse-grained Caltech-256 [17] dataset. Some statistics

and sample images from these datasets are given in Table 1

and Figure 2.

Test Protocol. For fair comparison, we followed the proto-

col (seen/novel and train/test splits, etc) used in the litera-

ture [30, 39]. All methods are evaluated with two backbone

CNNs, AlexNet [25] and VGG-16 [49]. ImageNet pre-

trained models are used for initialization of NDCC. Nov-

elty detection performance is evaluated with the area under

the receiver operating characteristic curve (AUROC). This

is a measure of average performance across all thresholds

of (24), which captures the ability of a statistic (e.g., nov-

elty score) to distinguish two groups (e.g., novel and seen

classes) and is widely used in the novelty detection litera-

ture [9, 8, 30, 40, 38, 1, 30, 7].

Parametrization of Σ. A generic covariance matrix Σ ∈

S
d
++ has

d(d+1)
2 degrees of freedom. For large d, this is a

very large number. For example, using a 4096-dimentional

feature space V results in a number of degrees of freedom

larger than the number of parameters of a 152-layer ResNet

[19]. To overcome this difficulty, we restrict Σ to be di-

agonal and consider two parametrization strategies. From

simple to complex, they are

1. Σ = diag(σ2, · · · , σ2),

2. Σ = diag((σ(1))2, · · · , (σ(d))2),

where σ(j) = σ + δ(j) and σ, {δ(j)}dj=1 are learnable pa-

rameters. Under these two strategies, the resulting Gaus-

sians are respectively spherical and elliptical. For both of

them, Σ is initialized as an identity matrix. Under strat-

egy 1, it is true that LMD of (21) bears certain resemblance
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Stanford Dogs FounderType-200 CUB-200-2010 Caltech-256

Figure 2. Sample images from the datasets used for evaluation. Images in each column are from the same class.

Method Stanford Dogs FounderType-200 CUB-200-2010 Caltech-256

AlexNet VGG-16 AlexNet VGG-16 AlexNet VGG-16 AlexNet VGG-16

Finetune [39] 0.702 0.766 0.650 0.841 0.638 0.684 0.785 0.827

OCSVM [47] 0.520 0.542 0.612 0.627 0.548 0.569 0.561 0.576

KNFST [9] 0.602 0.633 0.678 0.870 0.624 0.647 0.688 0.743

KNFST pre [9] 0.619 0.649 0.655 0.590 0.567 0.602 0.672 0.727

Local KNFST [8] 0.600 0.626 0.633 0.683 0.609 0.625 0.628 0.712

Local KNFST pre [8] 0.589 0.652 0.523 0.549 0.573 0.619 0.600 0.657

OpenMax [6] 0.711 0.776 0.667 0.852 0.664 0.708 0.787 0.831

MND [7] 0.762 0.904 - - - - 0.751 0.882

TLN [39] 0.748 0.825 0.741 0.893 0.673 0.738 0.807 0.869

Deep Ensemble [26] 0.666 0.790 0.830 0.866 0.677 0.749 0.795 0.848

NDCC(σ) 0.814 0.913 0.922 0.952 0.702 0.752 0.791 0.886

NDCC(σ(j)) 0.823 0.923 0.940 0.964 0.709 0.775 0.813 0.895

Table 2. Multi-class novelty detection performance (AUROC) of different methods. The best results are highlighted in bold, and the second

best underlined. The suffix “pre” in a method name indicates that CNNs pre-trained on ILSVRC12 [44] are used for feature extraction.

to the center loss [54, 55], but the latter focus on enhancing

the discriminative power of CNNs for face recognition. The

NDCCs implemented with the two strategies are denoted as

“NDCC(σ)” and “NDCC(σ(j))”, respectively.

Implementation Details. We adopted PyTorch [37] to train

NDCCs by stochastic gradient descent (SGD) with momen-

tum of 0.9. Weight decay of 0.0005 was applied to the pa-

rameters of CNN embedding v(·). The SGD batch size was

set to be 256 for all datasets. In practice, we found that the

training of NDCCs can be significantly sped up if the em-

bedding is L2-normalized, i.e., ‖v(x)‖ = r, ∀x. This can

be easily implemented with a L2-normalization layer and

a predefined multiplier r > 0. To minimize the discrepan-

cies between training and test distributions, we disabled all

dropout [50] layers in NDCCs. For all the datasets, we set

the multiplier γ of (22) as γ = 1
4096 and determined the

multiplier λ of (23) by hold-out validation on the training

set. More implementation details (hyperparameters such as

learning rate, input size, etc) are included in Supplementary

Material.

Comparison to the State-of-the-art. The NDCC variants

are compared to several baseline methods including One-

Class SVM (OCSVM) [47, 48], KNFST [9], Local KNFST

[8], Transfer Learning Novelty (TLN) [39], Mixing Nov-

elty Detection (MND) [7] and Deep Ensemble [26]. Among

these, TLN and MND have state-of-the-art performance for

multi-class novelty detection. A simple baseline “Finetune”

is also used in the comparisons. This is to finetune the CNN

with a cross-entropy loss and use the negative of the maxi-

mum activation in the last fully-connected layer as novelty

score. For deep ensemble, the ensemble size is set as 5 and

the maximum class-posterior probability (averaged over en-

semble members’ predictions) is used for novelty score, i.e.,

Novelty(x) = −maxy∈Y PY |X(y|v(x)).

The evaluation results are summarized in Table 2. Re-

sults of all baseline methods except deep ensemble on

Standford Dogs, FounderType-200, and Caltech-256 are

quoted from [39, 7]. All other results are produced by our

experiments. A clarification on this is provided in Supple-

mentary Material. The table shows that NDCC beats the

state-of-the-art on all the four datasets. In fact, all vari-

ants of NDCC achieve state-of-the-art results for most net-

works and datasets. The only exception is NDCC(σ) which

underperforms the state-of-the-art for the combination of

AlexNet and Caltech-256. Among NDCCs, best perfor-

mance is usually achieved with strategy 2, i.e. NDCC(σ(j)).

For AlexNet/VGG-16, NDCC(σ(j)) outperforms the cur-

rent state-of-the-art by a margin of 6.1%/1.9% on Stan-
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Figure 3. AUROC and closed-world classification accuracy (CA) versus λ.

Model Stanford Dogs FounderType-200 CUB-200-2010 Caltech-256

AlexNet VGG-16 AlexNet VGG-16 AlexNet VGG-16 AlexNet VGG-16

Finetune+G1 0.632 0.849 0.759 0.811 0.547 0.577 0.557 0.612

Finetune+G2 0.591 0.841 0.732 0.823 0.542 0.570 0.571 0.626

Table 3. Multi-class novelty detection performance (AUROC).

ford Dogs, 11.0%/7.1% on FounderType-200, 3.2%/2.6%
on CUB-200-2010, and 0.6%/1.3% on Caltech-256.

Comparing datasets, the gains of NDCC are larger for

Stanford Dogs, FounderType-200, and CUB-200-2010 than

for Caltech-256. This can be explained by the fact that the

formers are fine-grained datasets, while the latter is not. As

shown in Figure 2, differences between fine-grained classes

are subtler, requiring more sophisticated novelty detection

algorithms. It is, in fact, worth noting that all NDCC vari-

ants significantly outperform TLN on all three fine-grained

datasets, despite the fact that TLN uses extra auxiliary data

(e.g. ILSVRC12 dataset) for training. This is unsurprising,

since images from a completely different problem domain

offer limited guidance on how to reject images from an un-

seen class within the same category of seen classes. Overall,

while the methods in the literature have noticeably weaker

performance for fine- than coarse-grained data, this is much

less the case for NDCC.

Ablation Study. To further demonstrate the necessity of

the proposed regularization, we evaluated the performance

of simply modeling the class-conditional distributions in

V of the “Finetune” method. Specifically, we modeled

PX|Y (v(x)|y) using two Gaussian models:

1. G1(v(x);µy, diag(σ
2, · · · , σ2)),

2. G2(v(x);µy, diag((σ
(1))2, · · · , (σ(d))2)).

The parameters {µk}
C
k=1, σ, and {σ(j)}dj=1 were learned

by maximum likelihood estimation on the training set and

the corresponding Bregman divergences were used to ob-

tain the novelty score of (24). The resulting novelty de-

tection performance is shown in Table 3. Comparing with

the NDCC results of Table 2, shows that the proposed reg-

ularization is critical for the strong NDCC performance.

Another observation is that the model with more covari-

ance freedom (Finetune+G2) fails to guarantee better perfor-

mance. This might be because there are not enough training

examples to constrain the covariance estimation.

Closed-world Classification. To investigate the impact of

the CCG regularization on the ability of CNNs to clas-

sify known classes, we evaluated the closed-world classi-

fication accuracy and the novelty detection performance of

NDCC(σ) with an AlexNet backbone, as a function of λ

in (23). The results are presented in Figure 3. While the

novelty detection performance improves dramatically as λ

increases, the classification accuracy on known classes re-

mains nearly constant. This is consistent with our analysis

in Section 3.5.

In addition, some qualitative results are presented in the

Supplemental Material to visualize the efficacy of NDCC.

5. Conclusion

We considered the problem of novelty detection in fine-

grained visual classification. We first showed that unidenti-

fiability of both class-conditional distributions and distance

metrics is a significant hurdle to learning CNNs jointly op-

timal for classification and novelty detection. To address

this problem, we proposed a new regularization, the CCG

loss, that enforces Gaussianity of class-conditional distri-

butions. This was shown to enable state-of-the-art novelty

detection results on both small- and large-scale fine-grained

visual classification datasets.
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