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Abstract

Despite the great success of Siamese-based trackers,

their performance under complicated scenarios is still not

satisfying, especially when there are distractors. To this

end, we propose a novel Siamese relation network, which

introduces two efficient modules, i.e. Relation Detector

(RD) and Refinement Module (RM). RD performs in a meta-

learning way to obtain a learning ability to filter the dis-

tractors from the background while RM aims to effectively

integrate the proposed RD into the Siamese framework to

generate accurate tracking result. Moreover, to further im-

prove the discriminability and robustness of the tracker, we

introduce a contrastive training strategy that attempts not

only to learn matching the same target but also to learn

how to distinguish the different objects. Therefore, our

tracker can achieve accurate tracking results when fac-

ing background clutters, fast motion, and occlusion. Ex-

perimental results on five popular benchmarks, including

VOT2018, VOT2019, OTB100, LaSOT, and UAV123, show

that the proposed method is effective and can achieve state-

of-the-art results. The code will be available at https:

//github.com/hqucv/siamrn

1. Introduction

Visual object tracking, which is the fundamental task

in computer vision, has received much attention over the

last decades [17, 64, 63, 65]. It aims to capture the posi-

tion of an arbitrary target accurately by given only its ini-

tial state [29]. With the increasing demand for the prac-

tical application such as autonomous driving [30], robotics,
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Figure 1. Tracking Result of our Siamese relation network with

two state-of-the-art trackers in VOT2018 [22]. Benefiting from

our Relation Detector and Refinement Module, when facing sim-

ilar distractors, appearance change and complex background, our

tracker is more robust to these challenges and gets more accurate

results. Figure 4 further shows the ability to filtering distractors

from the target region.

surveillance [56] and human-computer interaction [33], cur-

rent trackers require not only accuracy but also speed and

robustness to overcome the existing challenges, such as oc-

clusions, fast motions, appearance deformations, illumina-

tion change, and background clutters [55], etc.

Owing to the development of CNN and the various net-

work architectures, we can unveil the powerful deep feature

for computer vision tasks [24]. In recent years, the Siamese

network based trackers [6, 3, 27, 66, 26] have drawn great
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attention due to their balanced speed and performance.

However, there still exists a gap of robustness between

the Siamese trackers and the discriminative trackers that

are equipped with an update mechanism [4, 8, 5, 57, 22],

which can be manifested in the occasion of tracking failure

when encountering similar distractors or background clut-

ters. This is because the training setting of the Siamese

trackers is only to match the same target in abundance of im-

age pairs and ignore to distinguish their difference. There-

fore, the discriminability for Siamese trackers is deficient

when addressing complicated situations. Meanwhile, the

target is incompetent to be highlighted due to the Siamese-

style cropping strategy, which may introduce the distrac-

tive context. Moreover, the classification and regression

branches, which are two significant pillars in Siamese-based

trackers, are usually optimized independently [6, 26, 27],

increasing the probability of mismatch between them dur-

ing tracking. To be specific, the box corresponding to the

position with the highest classification confidence is not the

most accurate one for the tracked target.

To address the above issues, we propose a novel Siamese

relation network, which introduces two efficient modules

named as Relation Detector (RD) and Refinement Moudle

(RM). RD aims to learn the ability to filter the distractors

from background via meta-learning. Specifically, we define

two categories labeled as target and non-target. Given the

training pairs assigned with the label, we perform a two-

way one-shot learning, which intends to measure the re-

lationship between them by the nonlinear learnable com-

parators. Therefore the distractors are filtered out due to

low-relevant relationships. The RM is used to integrate the

information obtained by RD and the classification branch

to refine the tracking results, alleviating the mismatch be-

tween classification and regression branches. Furthermore,

we equip RD with a contrastive training strategy that at-

tempts not only to learn matching the same target but also

pay attention to distinguish the different objects by form-

ing a training triplet and the different combinations of sam-

ples, which effectively boosts the discriminant ability of

the proposed tracker. Benefiting from the above modules,

our tracker possesses remarkable discriminability and ro-

bustness when facing background clutters, fast motion, and

occlusion, as shown in Figure 1. Experiments (details in

Section 4.1) show that our tracker achieves state-of-the-art

performance on five popular tracking benchmarks, which

confirms the effectiveness of the proposed method.

Our main contributions can be summarized as follows.

• We introduce a novel Relation Detector (RD) that is

trained to obtain the ability to filter the distractors from

background via few-shot learning based contrastive

training strategy. Benefit from RD, during the track-

ing procedure, our tracker can distinguish the target in

the cluttering background once given the initial state

of the target without further fine-tuning.

• To integrate the information obtained by RD and the

classification branch to refine the tracking results, we

design a Refinement Module, which can jointly oper-

ate the classification and regression to localize the tar-

getreducing the mismatch between those two branches.

• Our method achieves state-of-the-art results on five

popular benchmarks, including VOT2018, VOT2019,

OTB100, LaSOT, and UAV123, which confirms the ef-

fectiveness of our proposed method.

2. Related Work

2.1. Siamese network based Trackers

Recently, Siamese network based trackers consider

tracking as a metric learning problem and have drawn great

attention for their good trade-off between speed and ac-

curacy [15, 47, 66, 27, 26, 6]. Bertinetto et al. first

introduced SiamFC [3] for visual tracking, which aims

to learn the similarity metric between the target template

and search region and operate a comparison formed as the

cross-correlation to localize the target. With the emergence

and success of region proposal network (RPN) [38], Li et

al. [27] applied it into the Siamese networks framework,

referred to as SiamRPN, which solved the scale variation

of the target. In order to unveil the powerful deep fea-

ture extracted by the deep network, SiamRPN++ [26] and

SiamDW [60] tackled the challenge brought by introduc-

ing the deep network into the Siamese framework and made

the performance highly improved. Chen et al. [6] borrowed

the idea from FCOS [46] into tracking and designed a sim-

ple yet effective anchor-free tracker, which can get rid of

the intricate parameters of anchor setting. However, these

Siamese-based trackers usually localize the target by us-

ing the classification and regression branch and optimize

them independently, which can arouse the mismatch be-

tween them in tracking procedure [21]. Alternatively, we

design a Refinement Module that can jointly operate the op-

timization of these two branches by collaborating with RD

output, which balances these two branches to obtain more

confident and accurate tracking results.

2.2. Backgroud Distractors in Visual Tracking

The Siamese network based trackers are susceptible to

be affected by background distractors, which severely ham-

pers the robustness of tracker. To find out its causes is

the less capable discrimination ability. DaSiamRPN [66]

finds the inappropriate distribution of semantic and non-

semantic negative samples hamper the discriminability of

the tracker, so they replace one of the image in training
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Figure 2. The tracking pipeline of the proposed Siamese Relation Network. The proposed Relation detector (RD) and joint Refinement

Module (RM) are presented. During tracking, we feed the features of proposals that are generated from the regression branch by precise

ROI pooling [20] into RD to measure the relationships with target-specific feature. Then we convert the output of the RD to a matching

score and utilize it in the Refinement Module (RM) to jointly operate the regression and classification branches to predict the target location.

image pairs by negative semantic sample randomly. Re-

cently, some approaches aim to fuse online updating strat-

egy into Siamese framework to pursue more discrimina-

tion performance. CFNet [47] interpreted the correlation

filter as a differentiable layer to update the model online,

and DSiam [15] used a fast transformation module to per-

form online learning. UpdateNet [59] tried to estimate the

target template during tracking to overcome the target ap-

pearance variation. However, online update strategy needs

heavy computation and the accumulated tracking error will

eventually lead to failure. Alternatively, we proposed a Re-

lation Detector (RD), which learns to filter the distractors

from background, and further develop a contrastive train-

ing strategy that not only to learn matching the same target

but also to learn how to distinguish the different objects.

Our model is trained offline and can advance the discrim-

inability and robustness of the tracker stably when facing

complicated scenarios.

2.3. FewShot Learning and Meta Learning

Few-shot learning aims to recognize novel visual cat-

egories from very few labeled examples [45]. There is

usually only one or very few feasible data during train-

ing. Therefore how to overcome this situation to ensure

the generalization of the model becomes a challenging

task [28]. The mainstream few-shot learning approaches

are optimized by recurrent neural network (RNN) [41], fur-

ther fine-tuned on the target problem [14] or trained to learn

an effective metric [36, 44]. A popular trend is to design a

general strategy that can guide supervised learning within

each task, named as meta-learning [1, 2]. The accumulated

meta-knowledge is transferable and the network is able to

deal with different tasks. Recently, with the great success

of MAML [14], Huang et al. [19] and Wang et al. [50]

used this fine-tune technique to operate fast adaption for

their online tracking task. Inspired by [13, 44], we aim to

learn a transferable deep metric for filtering the distractors

by measuring the relationships between proposals and the

target via the proposed Relation Detector (RD). Unlike [13],

which assumes the categories of the objects to be detected

are given and focuses on detecting the objects based on

given categories of support images. However, there is no

concept of category in tracking and it is necessary to deter-

mine whether the two objects are the same one.

3. Method

In this section, we first give an overview of our Siamese

relation network, then we introduce the Relation Detector

in detail, followed by the description of contrast training

strategy. Finally, we present our joint Refinement Module.

3.1. Overview

We adopt SiamBAN [6] as our strong baseline which

employs ResNet-50 [16] as the backbone for Siamese net-

work. A cascade structure is designed in our network in

order to leverage the multi-level features for more accu-

rate prediction. During inference, the input of the network

is a pair of images. One image is the first frame of a se-

quence cropped to size of 127 × 127 and used as template

image. The other one is the subsequent frame cropped to

255×255 and used as search image. After processing them

with the backbone we get multi-scale feature maps, which

are used for the operation of cross-correlation. Then we uti-

lize Relation Detector (RD), which has learned transferable

knowledge based on deep metric, to measure the relation-

ships between target and proposals generated by regression

branch. In the end, integrating the outputs of RD and clas-

sification results, Refinement Module generates the predic-

tion of the tracking result. Compared to a two-stage tracker

like SPM [51], which first generates candidates in the same
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Figure 3. The architecture of Relation Detector (RD). It consists

of three different nonlinear comparators, named as Gloabl Detec-

tor, Local Detecor and Patch Detector. We measure the relation-

ships between target and ROI (region of interest) by these detectors

which is meta learned to filter the distractors. Each detector finally

generates a score to measure the relationship of the input pair.

category and then predicts final result within a two-round

classification and regression procedure, we only carry out

one-round and intend to jointly refine the two branches. The

tracking pipeline of our method is shown in Figure 2.

3.2. Relation Detector

The characteristic of the tracking task is that the tracked

target can be an arbitrary object, which can be something

we have never seen before. A naive way is to calculate

the difference between proposals and targets by fixed hand-

craft linear comparator [42, 48] (Cosine distance, Euclidean

distance, Mahalanobis distance). However, it can be eas-

ily invalid when facing indistinguishable distractors, so we

propose a novel Relation Detector (RD) equipped with the

adaptive nonlinear comparator that has a substantial dis-

criminative ability to filter the distractors by measuring the

similarity relationship with the tracked target. Since train-

ing such a detector requires samples of the target in the

same sequence, which are usually deficient, the conven-

tional training strategy can not work well while the way of

few-shot learning can overcome this challenge. Therefore

we conduct the few-shot learning to train the network so

that our Relation Detector can transfer the meta-knowledge

gained during massive diverse few-shot task learning.

The detailed structure of the RD is shown in Figure 3. It

consists of three different non-linear learnable comparators,

i.e. Global Detector, Local Detector, and Patch Detector.

Given the support feature fs and query proposal features fq
with the size of 7 × 7 × C, the Global Detector aims to

compare their global characteristics through deep embed-

ding, while the Local Detector tries to learn a more detailed

comparison in pixel-wise and channel-wise. For the Patch

Detector, we design it for learning the relationships between

different patches.

However, directly applying the ROI features to the RD

may cause the problem of feature misalignments. Thus we

introduce a self-attention module [53], which can align the

pairs of ROI features before putting them into RD. We con-

duct the experiment to analyze their performance and effec-

tiveness, which will be further discussed in section 4.3.

3.3. Contrastive Training Strategy

Unlike the conventional learning framework, the few-

shot learning task has the characteristic of lacking labeled

samples in each category [45]. It aims to construct a clas-

sifier to assign a label ŷ to each sample x̂ in the query set,

through some known labeled samples which are considered

as support set. When the support set contains N different

categories, and each category has K labeled samples, we

define it as N -way K -shot. In our training, we define two

categories, i.e. target and non-target, and conduct our ex-

periments as two-way one-shot learning.

Generation of Contrastive Training Samples. Only

matching objects of the same instance is insufficient be-

cause the ability to distinguish the different also matters.

Thus we exploit the potential relationships of the training

samples and construct the training triplet (sc , qc , sn), where

sc and sn are positive support and negative support images,

and qc are query images. sc and qc are extracted from the

same video while sn is from different video.

During every single shot, we not only match the objects

belonging to the target category but also distinguish distrac-

tors in non-target class and the model learns to measure the

relationships among different sample combinations gener-

ated by the input triplet. In detail, we define the ground-

truth of positive supports as sp , and use pp to represent the

positive proposal that generated by sc and qc . Similarly, the

ground-truth of negative supports are denoted as nn , and we

use pn for negative proposals that are generated by sc and

qc . Then we combine them to different pairs, as (sp , pp),
(sp , pn), (nn , pp/pn), and keep the ratio as 1:2:1. We adopt

MSE loss as the loss function and calculate the matching

loss on these formed pairs.

Hard Negative Mining. At the early stage of train-

ing, applying easy samples can make the model convergent

stably. To further enhance the discriminative power of the

model, we introduce the hard negative mining technique in

the middle and later stage of training. In detail, we perform

the hard negative mining in two different ways (online and

offline). For the online ways, we first compute the intersec-

tion of union (IoU) between proposals and ground-truth and

then remove part of the proposals with IoU value greater

than 0.2. Then from the left proposals, we choose the pro-
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posals with the highest confidence score as the hard nega-

tive samples. For the offline ways, we generate an index

table for approximate nearest neighbor queries during the

pre-processing of large scale datasets including VID [39],

GOT [18] and LaSOT [11]. Then given an image of the

tracked object, we use the index table to retrieve nearest

neighbors of the tracked object in the embedding space [49]

and can find N different hard negative samples.

3.4. Refinement Module

Classification and regression are two pillars in CNN-

based trackers, which are usually optimized independently

leading to the issue of mismatch between them. To be spe-

cific, the box corresponding to the position with the highest

classification confidence is not the most accurate, not even

the tracked target. We design a refinement module, which

effectively integrates the proposed RD into the Siamese

framework. At first we utilize the output of the RD and con-

vert it to a matching score sized of 25 × 25 × 1 . Next, we

conduct an element-wise multiplication between the match-

ing score and cross-correlation feature map of the classifi-

cation branch, which can filter the distractors in the back-

ground by suppressing the false positive position. Then we

pass the refined correlation feature through a convolution

layer to generate a refined classification confidence score.

Figure 4 provides some examples of the obtained confi-

dence map. With the refinement module, we combine the

information of the regression branch with the classification

branch, and jointly operate them to predict the target loca-

tion so that the problem of mismatch can be alleviated.

3.5. Groundtruth and Loss function

In this section, we illustrate the loss function used train-

ing our model. Let (i, j) denote the point in the feature map,

and ri,j is the relation score that to be regressed. (gxc
, gyc

),
(gx0

, gy0
), (gx1

, gy1
), (gw, gh) represent the center position,

left-top position, right-bottom position, and size of the tar-

get box respectively.

Classification and Regression Branches. Followed by

Chen et al. [6], we use the ellipse figure region to design the

label. There are two ellipses namely E1 and E2. The cen-

ter and axes length of E1 are set to (gxc
, gyc

) and ( gw2 , gh
2 )

while that of E2 are set to (gxc
, gyc

) and ( gw4 , gh
4 ). Thus the

two ellipse are,

(pi − gxc
)2

( gw2 )2
+

(pj − gyc
)2

( gh2 )2
= 1, (1)

(pi − gxc
)2

( gw4 )2
+

(pj − gyc
)2

( gh4 )2
= 1, (2)

For the classification branch, the location (pi, pj) falling

within the ellipse E2 is defined as positive, and the one

which falls outside the ellipse E1 is considered as negative,

if (pi, pj) falls between the ellipse E1 and E2, we ignore

it. Cross-entropy loss is used for calculate the loss func-

tion (referred as Lcls) of the classification branch. For the

regression branch, the positive location (pi, pj) is used to

regress target box. The ground truth denoted as dli,j for the

regression branch is defined as,

dl(i,j) = pi − gx0
, dt(i,j) = pj − gy0

, (3)

dr(i,j) = gx1
− pi, d

b
(i,j) = gy1

− pj . (4)

We adopt IoU(Intersection over Union) loss for regres-

sion, which is defined as,

Lreg = 1− IoU. (5)

Relation Detector. The label yi,j for training Relation

Detector depends on training pairs mentioned in section

3.3. We adopt MSE loss for our matching score regression,

which is formed as,

Lmatching = (ri,j − yi,j)
2 (6)

Our model is set to train end-to-end and the total loss

function is defined as,

L = λ1 ∗ Lcls + λ2 ∗ Lreg + λ3 ∗ Lmatching, (7)

we empirically set the λ1, λ2, λ3 as 1 without hyper-

parameter searching.

3.6. Training and Inference

Training. We train our Siamese relation network

on large-scale datasets, including ImageNet VID [39],

YouTube-BoundingBoxes [37], COCO [32], ImageNet

DET [40], GOT10k [18] and LaSOT [11]. The training in-

put is an image triplet, including a template patch and a

search patch extracted from the same sequence with size of

127×127 pixels and 255×255 pixels respectively [3], and

a negative search patch which is extracted from another se-

quence sized as 255×255. We first select two patches from

the same sequence in the triplet, and collect at most 16 posi-

tive samples and 48 negative samples on it to train the classi-

fication branch and the regression branch [27, 26, 6]. Then,

the negative search patch in the triplet is used to generate the

training input of our Relation Detector, as mentioned in 3.3.

In addition, we start using online hard negative mining at

epoch 5 and epoch 15 for offline. Our entire network can be

trained end-to-end and doesn’t need any further fine-tuning.

Inference. During inference, the patch of the target in

the first frame is used as the template and fed it into the

backbone to extract the template feature fz . We cache it

during tracking to avoid duplicating computation in subse-

quent tracking. Besides, we also generate and cache the
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Search Image w/o RD w/ RD Search Image w/o RD w/ RD

Figure 4. Visualization of confidence maps. In left part, the 1
st

column represents the search images with ground truth during

tracking. The 2
nd column means the confidence maps without

our Relation Detector (RD). The 3
rd shows the confidence maps

that are equipped with Relation Detector (RD), right part is the

same. Our Relation Detector (RD) uses the gained meta knowl-

edge to filter the distractors from the target region and advances

the discriminability of our tracker.

ROI feature froi
z of the template via precise ROI pooling

[20]. For subsequent frames, we crop the search patch based

on the tracking result in the previous frame and extract its

feature denoed as fx. Then we perform the prediction in the

search region to get the regression map P reg−all
w×h×4 and gener-

ate proposals. Next, features of proposals are cropped and

concatenated with the cached target ROI feature froi
z . The

obtained features are fed in RD to measure the relations be-

tween proposals and the target. We convert this relationship

to a matching score smatching
w×h×1 and do the element-wise mul-

tiplication with the correlation map f corr
cls in classification

branch. In this way, we fuse the regression result into the

classification branch instead of calculating them indepen-

dently. Then we generate the classification map P cls−all
w×h×2

through the refined correlation map f∗corr
cls . Finally, we can

get predicted boxes by P reg−all
w×h×4 and P cls−all

w×h×2.

4. Experiments

4.1. Implementation Details

We adopt ResNet-50 [16] which is pre-trained on Ima-

geNet [25] as the backbone, and freeze the weights of the

first two layers for stable training. We optimize the model

with stochastic gradient descent (SGD) and set the batch

size to 28. Our model is trained for 20 epochs, and at the

first 5 epochs, we use a warm-up strategy to set the learn-

ing rate from 0.001 to 0.005. For the last 15 epochs, the

learning rate decays exponentially from 0.005 to 0.00005.

The weights of the backbone are only released in the last 10

epochs and tuned with the learning rate at a one tenth level

of current. Weight decay and momentum are set as 0.0001
and 0.9. Our approach is implemented in Python using Py-

torch with 4 NVIDIA TITAN V GPUs.

4.2. Comparison with the stateoftheart

We evaluate the proposed algorithm against state-of-the-

art methods on five tracking benchmarks.

VOT2018 [22] benchmark consists of 60 sequences with

different challenging factors. The overall performance of

the tracker is evaluated using the EAO (Expected Average

Overlap), which takes both accuracy (average overlap dur-

ing successful tracking periods) and robustness (failure rate)

into consideration. The detailed comparisons with the top-

performing trackers are reported in Table 1. Among previ-

ous approaches, Ocean [61] (offline version) achieves the

best EAO value and SiamRPN++ [26] gets the highest ac-

curacy. These two methods are both based on the Siamese

network. Compared with DiMP [4], our model achieves

a performance gain of 2.9%. When compared to Ocean,

our model achieves the same EAO value that is the highest

value among the proposed state-of-the-art trackers. In com-

parison with the baseline tracker SiamBAN [6], we have a

substantial improvement of 4.7% in robustness. These re-

sults prove that our Siamese Relation Network has learned

the strong ability to filter the distractors as expected. Fur-

thermore, we conduct a comparison with the sate-of-the-art

trackers in term of EAO on different visual attributes and

the result is shown in Figure 6. On attributes of camera

motion and illumination change our tracker ranks first, and

ranks second and third on attributes of occlusion and size

change. This shows our tracker are capable to tackle above

challenges.

VOT2019 [23] public dataset is one of the most recent

datasets for evaluating single object trackers. Compared

with VOT2018, the video sequences in VOT2019 have a

20% difference and more challenging videos which contain

fast motion and similar distractors. Table 2 shows that our

tracker achieves the optimal performance in EAO, which

is 1.2% higher than that of Ocean which ranked at sec-

ond place. In addition, in comparison with the baseline

SiamBAN, we achieve a 9.0% improvement of robustness,

which proves the strong discriminability of our tracker.

OTB100 [54] is one of the most widely used benchmarks

for visual object tracking and consists of 100 well-annotated

video sequences. Different from VOT settings, it has a reg-

ulation known as one-pass evaluation (OPE) and evaluates

the tracker on two basic indications: a precision score and

an area under curve (AUC) of success plot. Compared with

the top-performing trackers as shown in Figure 8, our model

has a good performance in challenging videos and achieves

the leading position among sate-of-the-art trackers.

LaSOT [11] is a large-scale dataset with 1400 sequences

in total. The video sequences in LaSOT have an average se-

quence length of more than 2500 frames, which is much

longer than previous datasets. We conduct one-pass eval-

uation with success and precision scores to evaluate our

tracker. The result is shown in Figure 10. Compared with

nine methods [9, 4, 6, 20, 26, 12, 35, 43, 7], our approach

achieves the fourth place in terms of AUC and precision

without any long-term strategies, which is 1.3% and 1.0%
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ECO UPDT SiamRPN LADCF ATOM SiamRPN++ DiMP SiamBAN Ocean
Ours

[8] [5] [27] [57] [20] [26] [4] [6] [61]

EAO↑ 0.281 0.379 0.384 0.389 0.401 0.417 0.441 0.452 0.470 0.470

Accuracy↑ 0.484 0.576 0.586 0.503 0.590 0.604 0.597 0.597 0.598 0.595

Robustness↓ 0.276 0.184 0.276 0.159 0.204 0.234 0.152 0.178 0.169 0.131

Table 1. Detail comparisons on VOT2018 with the state-of-the-art in terms of EAO, acccuracy and robustness. The best three results are

shown in red, blue and green colors, respectively. DiMP is the ResNet-50 version (DiMP-50), and Ocean is the offline version, the same

below.

MemDTC SPM SiamRPN++ SiamMask ATOM DCFST DiMP SiamBAN Ocean
Ours

[58] [51] [26] [52] [20] [62] [4] [6] [61]

EAO↑ 0.228 0.275 0.285 0.287 0.292 0.317 0.321 0.327 0.329 0.341

Accuracy↑ 0.485 0.577 0.599 0.594 0.603 0.585 0.582 0.602 0.590 0.593

Robustness↓ 0.587 0.507 0.482 0.461 0.411 0.376 0.371 0.396 0.376 0.306

Table 2. Detail comparisons on VOT2019 real-time experiments.
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Figure 5. Expected averaged overlap performance on VOT2018.

higher than baseline.

UAV123 [34] is an aerial video benchmark that contains

123 sequences captured from low-altitude UAVs. Different

from other benchmarks, the perspective of UAV123 is from

top to bottom, and the size of the target is relatively small.

Compared with 9 state-of-art real-time trackers [4, 20, 26,

6, 66, 8, 10, 31], our tracker ranks second in AUC and first

in precision, see in Figure 9.

4.3. Ablation Study

Discussion on Multi-level Prediction and Relation De-

tection. The multi-level feature contains different informa-

tion on the target, in order to fully exploit the potential of

them, we investigate the impact of layer-wise aggregation.

The Relation Detector performs the relation detection on a

different level as well to capture the multiple relationships

between target and proposals. From the results shown in

Table 3 we can find that when only utilizing a single-layer

feature, conv4 performs best. For different combinations

of two-level features, we can see that the combination of

conv4 and conv5 is the best. After aggregating three-level

features, our model gets the highest score on AUC.

Discussion on Different Relation Head. We test the

performance of the three kinds of relation detectors known

as Global Detector, Local Detector, and Patch Detector,

ECO UPDT SiamRPN LADCF ATOM

SiamRPNpp DiMP SiamBAN Ocean Ours

Figure 6. Comparison of EAO on VOT2018 for the following vi-

sual attributes: camera motion, illumination change, occlusion,

size change, and motion change. Frames that do not correspond

to any of the five attributes are marked as unassigned. The values

in parentheses indicate the EAO range of each attribute and overall

of the trackers.
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Figure 7. Expected averaged overlap performance on VOT2019.

which has been mentioned in 3.2. Trying to find out the

relation we need most, we conduct the experiments follow-
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Figure 8. Success and precision plots on OTB100.
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Figure 9. Success and precision plots on UAV123.
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Figure 10. Success and precision plots on LaSOT.

ing the 2-way 1-shot setting on OTB100. The results of the

ablation study are shown in Table 3. For adopting a sin-

gle head, the Local Detector gets the best score on AUC.

We infer that it can compare the ROI feature most in de-

tail. Combining two types of relation heads achievs bet-

ter performance than using the single one. The best per-

formance is achieved when utilizing all types of relations

heads. It seems that these three kinds of heads are comple-

mentary with each other for distinguishing the target from

background clutters.

Discussion on Contrastive Training Strategy and

Hard Negative Mining. During the few-shot training

phase, in order to improve the discriminability of our model,

we perform a contrastive training strategy described in sec-

tion 3.3. when conduction experiments on OTB100, we find

that if using the naive strategy (one-way one-shot learning),

the model achieves 0.688 in AUC, which drops 1.3% com-

pared to the contrastive way. It seems that our contrastive

training strategy not only learns the similarity between tar-

C3 C4 C5 Global Local Patch AUC ↑

X X X X 0.676
X X X X 0.686

X X X X 0.669
X X X X X 0.691
X X X X X 0.684

X X X X X 0.693
X X X X 0.678
X X X X 0.686
X X X X 0.672
X X X X X 0.696
X X X X X 0.683
X X X X X 0.693
X X X X X X 0.701

Table 3. Quantitative comparison results of our trackers with dif-

ferent level feature combinations and different relation heads com-

binations on OTB100. C3, C4, C5 represent conv3, conv4,

conv5. Global, Local, Patch represent three types of relation heads

proposed in 3.2.

get and proposals but also can distinguish the difference be-

tween them. Moreover, our proposed hard negative mining

technique enhances 0.3% in AUC. It maybe because that

adding hard negative samples in time will improve the ro-

bustness of the mode learned from massive simple samples.

5. Conclusions

In the paper, we propose a simple yet effective model

called Relation Detector (RD) equipped with contrastive

training strategy, which is meta trained to gain the ability to

learn to filter the distractors from the target region by mea-

suring the relationships between them. Moreover, we de-

sign a refinement module to jointly operate the classification

and regression process to localize the target, which can al-

leviate the mismatch of these two branches to get more con-

fident and accurate results. Extensive experiments are con-

ducted on five popular benchmarks and our method obtains

the state-of-the-art results with real-time running speed.
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