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Abstract

Deep learning provides a new avenue for light field

super-resolution (SR). However, the domain gap caused by

drastically different light field acquisition conditions poses

a main obstacle in practice. To fill this gap, we propose

a zero-shot learning framework for light field SR, which

learns a mapping to super-resolve the reference view with

examples extracted solely from the input low-resolution

light field itself. Given highly limited training data under

the zero-shot setting, however, we observe that it is difficult

to train an end-to-end network successfully. Instead, we

divide this challenging task into three sub-tasks, i.e., pre-

upsampling, view alignment, and multi-view aggregation,

and then conquer them separately with simple yet efficient

CNNs. Moreover, the proposed framework can be read-

ily extended to finetune the pre-trained model on a source

dataset to better adapt to the target input, which further

boosts the performance of light field SR in the wild. Exper-

imental results validate that our method not only outper-

forms classic non-learning-based methods, but also gener-

alizes better to unseen light fields than state-of-the-art deep-

learning-based methods when the domain gap is large.

1. Introduction

The 4D light field that records both angular and spatial

information of light has been playing an increasing role in

computer vision [33,36,43]. The commercialized light field

cameras generally adopt micro-lens-array in front of the

sensor, which poses an essential trade-off between the angu-

lar and spatial resolutions [16, 24]. The limited spatial res-

olution restricts the capability of light field in practical ap-

plications. Therefore, light field super-resolution (SR) has

been an important and popular topic in the research com-

munity and attracts a lot of attention since the emergence

of light field cameras [1, 2]. Recently, due to the prosper-

ity of deep learning techniques, convolutional neural net-

work (CNN) based methods have demonstrated promising

performance for light field SR [10, 13, 23, 38, 39, 44, 45, 46,
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49,52], and the state-of-the-art methods exceed classic non-

learning-based methods [4,18,30] with notable gains. Such

performance boost is obtained by training well-engineered

CNNs on a large external dataset to explore the 4D light

field structures. However, these deep-learning-based meth-

ods inevitably face the domain shift problem [6], which hin-

ders their capability of generalizing to unseen light fields

with a large domain gap from the training set.

Domain shift, which means the performance drop when

a deep neural network is trained on one dataset (source) but

tested on another dataset (target), is much more severe in

light field SR than that in single image SR. The underlying

reason is that, light field SR exploits not only the 2D spatial

correlation within each view, but also the 2D angular corre-

spondence among different views (also called across-view

redundancy). Such a 4D spatio-angular structure varies a lot

between light fields captured by different acquisition sys-

tems and configurations. Take cameras using micro-lens-

array for example, the baselines between the micro lens can

be quite different in different types of cameras, resulting in

distinct angular correspondences. Therefore, the network

trained with a certain light field dataset could easily overfit

to the spatio-angular structure within the given dataset and

thus may not perform well on light fields in the wild.

To address this problem, we propose a zero-shot learn-

ing framework for light field SR, which learns a mapping to

super-resolve the reference view with examples extracted

solely from the input low-resolution (LR) light field it-

self. This work is inspired by the recently proposed zero-

shot single image SR (ZSSR) method [34], which exploits

across-scale recurrence within a single image and trains an

SR network with paired examples extracted from the in-

put LR image and its downscaled version. In this way,

the input-specific model can generalize well on real images

with unknown acquisition process, where abundant data for

external training are not available. However, given highly

limited training data under the zero-shot setting, we ob-

serve that it is difficult to train end-to-end SR networks

successfully. Through a comparative study, we then find

that a divide-and-conquer strategy, which explicitly divides

the SR task into several sub-tasks and conquers them sepa-

rately, can facilitate the learning of the SR mapping.
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Specifically, our proposed zero-shot light field SR frame-

work consists of three sub-tasks, i.e., pre-upsampling, view

alignment, and multi-view aggregation. We select the

VDSR [15] network pre-trained on a 2D image dataset for

preliminary upsampling. For view alignment, we design

an alignment-oriented disparity estimation network follow-

ing a plane-sweep volume generator, which can be readily

trained in an unsupervised manner. After disparity-guided

warping, an aggregation network is designed to aggre-

gate the aligned views for high-frequency detail restoration,

which can be trained with light field patch pairs extracted

from the input LR light field and its downscaled version

in a self-supervised manner. In this way, an input-specific

SR model can be trained given an LR light field without

any external light field dataset. Thanks to the divide-and-

conquer strategy, the obtained model produces impressive

high-resolution (HR) results even with highly limited train-

ing data, which outperforms state-of-the-art light field SR

models when the domain gap is large.

The proposed zero-shot framework paves a way for light

field SR in the wild, where abundant external training data

that match the target input are not available. Moreover,

this framework can be readily extended to finetune the pre-

trained model on a source dataset to better adapt to the tar-

get input. Specifically, we propose an error-guided finetun-

ing algorithm to handle the regions where the pre-trained

model is less effective by selecting complementary training

samples from the target input. In this way, new state-of-

the-art results are generated for light field SR in the wild,

which again validates the effectiveness of our method in

closing the domain gap. We believe the zero-shot frame-

work introduced in this paper could also inspire other in-

verse problems where high dimensional data acquiring with

customized hardware are involved.

2. Related work

Classic light field SR. Light field SR aims to enhance

the spatial resolution of the reference view from an LR light

field by exploiting redundant information across different

views. Classic non-learning-based methods utilize projec-

tion and optimization techniques to super-resolve the ref-

erence view, relying on geometric [18, 30] and mathemati-

cal [4, 41] modeling of the 4D light field structure. All of

these classic light field SR methods are input-specific and

will not have the domain shift problem. As a new input-

specific solution, however, the proposed zero-shot frame-

work achieves notably improved light field SR performance

with deep internal learning.

CNN-based light field SR. CNN-based methods now

dominate light field SR due to their promising perfor-

mance. Yoon et al. [45] proposed the first light field SR

network LFCNN, by reusing the SRCNN architecture [8]

with multiple channels. After that, a number of CNNs

have been designed to exploit across-view redundancy in

the 4D light field, either explicitly [7, 13, 38, 49] or implic-

itly [23,39,44,46,52]. Although these well-designed CNNs

outperform classic methods by a large margin, they always

rely on an external training dataset, which inevitably suffer

from the domain shift problem [6] for light field SR in the

wild. In contrast, the proposed zero-shot framework uses

the input light field only for training, or adapts to the input

by finetuning a pre-trained model. In either way, the domain

shift problem can be well addressed.

Domain adaptation. A popular solution for solving

the domain shift problem is domain adaptation. By extract-

ing shared features between source and target datasets with

adversarial training at certain layers of the CNNs, domain

adaptation has demonstrated promising performance for a

number of tasks, e.g., image classification [9, 20], semantic

segmentation [17] and person re-identification [19]. How-

ever, such a technique needs sufficient training data for both

source and target domains, which is not always feasible for

light fields due to the acquisition cost in the unknown target

domain. Instead, our zero-shot framework can be regarded

as an efficient adaptation.

3. Divide-and-conquer strategy

Zero-shot SR uses the input LR image and its down-

scaled version as training pairs, which makes the amount of

training data highly limited in nature. A question is brought

out here: with such limited amount of training data, how to

learn a better SR mapping?

To simplify the discussion, we start from the single im-

age SR task. Specifically, we investigate three representa-

tive network architectures that are generally used for single

image SR (network details are provided in the supplemen-

tary document). Bic-Res explicitly divides the SR task into

two sub-tasks, i.e., low-frequency information preservation

and high-frequency detail restoration, and conquers them

with bicubic interpolation and a residual learning CNN, re-

spectively. SPconv denotes the network built with the pop-

ular learnable upsampling module, i.e., sub-pixel convolu-

tion [32], in the tail of the network. SPconv is a typical

end-to-end network, which directly takes the LR image as

input and predicts the HR image as output. Compared with

Bic-Res, SPconv enjoys higher efficiency due to learning in

the LR feature space. SPconv-Res can be regarded as an up-

dated version of SPconv, which further introduces residual

learning by predicting the difference between the bicubic

interpolated result and the groundtruth. Note that, however,

SPconv-Res still takes the LR image as input and is thus an

end-to-end network. The number of parameters in the three

SR networks are set the same.

We then conduct a comparative study by training the

above SR networks with different amounts of external train-

ing data: from zero (only the input LR image itself, i.e.,
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(a) Scale 2 (b) Scale 3

Figure 1. PSNR results on the BSD100 dataset of different single

image SR networks w.r.t the number of external training samples

from the DIV2K dataset.

zero-shot learning) to the whole DIV2K dataset (800 im-

ages in total) [3]. The averaged testing PSNR over the

BSD100 dataset (100 images in total) [22] against the num-

ber of images used for training is shown at three representa-

tive points in Fig. 1, at two typical scaling factors. As can be

seen, Bic-Res performs notably better (>0.5 dB at the scal-

ing factor of 2) in comparison with SPconv and SPconv-Res

under the zero-shot setting. Meanwhile, this performance

superiority diminishes with the increasing amount of train-

ing data. When a total of 800 external images are used for

training, Bic-Res loses its advantage and is less competitive

to SPconv and SPconv-Res.

Through the above study, we can observe that, when the

amount of external training data is large, end-to-end net-

works (SPconv and SPconv-Res) do provide more favorable

SR results than the network requiring pre-upsampling (Bic-

Res), in addition to their higher efficiency. This is in line

with the established experience, as end-to-end networks are

now the mainstream for single image SR. However, the ob-

servation reverses when abundant data for external training

are not available, especially under the zero-shot setting. In

this case, it is better to divide the SR task into a few eas-

ier sub-tasks (i.e., low-frequency information preservation

and high-frequency detail restoration here). Such a strat-

egy, named as divide-and-conquer, may narrow the space of

parameter search, and thus facilitates the learning of the SR

mapping compared to end-to-end networks.

The task of light field SR is more complicated than sin-

gle image SR since it needs to take across-view redundancy

into account. Therefore, we divide the light field SR task

into three sub-tasks: pre-upsampling, view alignment, and

multi-view aggregation. The three sub-tasks, with respec-

tive CNN backbones and corresponding operations, are uni-

fied to form a zero-shot learning framework. It is worth

mentioning that, however, the CNN backbones we deploy

in the three sub-tasks as in this paper are not the only pos-

sible embodiments. That is to say, they could be replaced

by more advanced structures. Instead of paying attention

to explore complicated networks, our focus is to realize a

feasible zero-shot SR framework with highly limited train-

ing data from the input light field itself. To this end, we

prefer simple structures that are more friendly to zero-shot

learning in implementation.

4. Zero-shot light field SR

Fig. 2 illustrates our proposed zero-shot light field SR

framework. Without loss of generality, we take SR on the

central view as an example, which can be readily applied to

other reference views. ZLR ∈ R
U×V×X×Y denotes the in-

put LR light field with angular resolution of U×V and spa-

tial resolution of X×Y . The superscript LR can be replaced

by LLR to denote the downscaled version of the LR input.

U = {u|u = [u, v], 1 ≤ u ≤ U, 1 ≤ v ≤ V } denotes the

set of 2D angular coordinates in ZLR and uc = [uc, vc] in-

dexes the central view. α denotes the scaling factor. In the

testing phase, the input is ZLR and the expected output is

the super-resolved central view SLR[uc] ∈ R
αX×αY . As

aforementioned, the SR process consists of three sub-tasks:

pre-upsampling, view alignment, and multi-view aggrega-

tion. The implementation details of each sub-task are given

below.

4.1. Pre­upsampling

Pre-upsampling is used to upsample the LR light field

in the first place to preserve the low-frequency information

and provide an initial super-resolved light field that matches

the target resolution. The up-sampled light field is further

used for view alignment and multi-view aggregation. While

bicubic interpolation is a straightforward operation for pre-

upsampling, we find that a simple single image SR network,

e.g., VDSR [15], is a better choice. On the one hand, this

network can be pre-trained on a 2D image dataset, which

will not suffer from domain shift caused by light field acqui-

sition. On the other hand, the single image SR result pro-

vides a more favorable initialization than the interpolated

ones. While we use VDSR for pre-upsampling throughout

this paper, we also conduct ablation study when this sub-

task is realized by bicubic interpolation (Sec. 7).

4.2. View alignment

View alignment in either feature or image space has been

exploited for multi-view image SR, which can be divided

into two categories: implicit methods and explicit methods.

The former regard the redundancy as latent features, e.g.,

attention [35] and deformable offsets [37], while the lat-

ter cast the redundancy as geometry correspondences, e.g.,

disparity [12] and optical flow [31]. To make the learn-

ing easier, we follow the explicit way and introduce an

alignment-oriented disparity estimation network (AlignNet)

with a trainable parameter set Θ1 for view alignment.
As shown in Fig. 2, given an LR light field ZLR and

a training patch size M , we extract 4D light field patches
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Figure 2. Our proposed zero-shot light field SR framework. During the training phase, we extract patches solely from the input LR light

field to train both AlignNet and AggreNet using Lalign and Laggre, respectively. Then in the testing phase, we use the trained networks to

inference an HR central view from the input LR light field. Details of the CNN backbones can be found in the supplementary document.

ZLR
n ∈ R

U×V×M×M , n = 1, 2, · · · , N for training Align-
Net. Instead of feeding the light field into the network di-
rectly, we generate a plane-sweep volume (PSV), which is
proved to be efficient for scene geometry inference [25, 26,
27, 51], as the input of AlignNet. As the output, we get an
estimated disparity map via

d
LR
n = AlignNetΘ1

(PSV (ZLR
n )). (1)

The backbone of AlignNet follows the one proposed in

[27] (details are provided in the supplementary document),

which is quite simple and can be trained in an unsupervised

manner. For further operations in the HR space, we then

upsample the LR disparity map to the target resolution as

DLR
n = dLR

n ↑α, where ↑α denotes the bicubic interpola-

tion with the scaling factor of α.

On the other hand, we already obtain the pre-upsampled
LR light field as PLR

n = V DSR(ZLR
n , α). Having DLR

n ,
we can warp each view in PLR

n to the central view and get
an aligned light field at the target resolution. This process
can be represented as

W
LR
n = Warp(PLR

n , D
LR
n ). (2)

Each view in this warped light field WLR
n should be as sim-

ilar as the pre-upsampled central view PLR
n [uc]. Therefore,

the loss function for training AlignNet is defined as

Lalign =
1

N

N∑

n=1

∑

u∈U

‖WLR
n [u]− P

LR
n [uc]‖

2

2. (3)

Since neither HR light field nor HR disparity is involved

in Lalign, AlignNet can be trained with patches ZLR
n that

are extracted solely from the input LR light field. Mean-

while, the trained AlignNet naturally adapts to the geomet-

ric structure of the input light field, which provides an effi-

cient and domain-shift-free solution for the view alignment

sub-task. As demonstrated in the ablation study (Sec. 7),

the view alignment plays an essential role in our zero-shot

learning framework.

4.3. Multi­view aggregation

In the aligned light field WLR
n , pixels in different views

sampled from neighboring scene points become much

closer in the spatial dimension due to the disparity-guided

warping. It thus facilitates the exploitation of complemen-

tary information from these pixels and their local neighbors

to enrich the high-frequency details in the pre-upsampled

result. This sub-task is fulfilled by a multi-view aggrega-

tion network (AggreNet) with a trainable parameter set Θ2,

which can be trained in a self-supervised manner.
As shown in Fig. 2, we extract 4D light field patches

from both ZLLR and ZLR to form the LLR-LR pairs
{ZLLR

n , ZLR
n }, n = 1, 2, · · · , N for training AggreNet.

We first feed ZLLR
n into the pretrained AlignNet, which

generates the aligned light field WLLR
n . Take WLLR

n as
input, AggreNet predicts the residual between the pre-
upsampled LLR central view PLLR[uc] and the LR central
view ZLR[uc]. Here we adopt a simple structure previously
used in [14] as the backbone of AggreNet (details are pro-
vided in the supplementary document). The SR result of the
LLR central view can be represented as

S
LLR
n [uc] = AggreNetΘ2

(WLLR
n ) + P

LLR
n [uc]. (4)

Following zero-shot single image SR [34], an L1 loss be-
tween the SR results of LLR inputs and the LR labels is
adopted for training AggreNet as

Lrecur =
1

N

N∑

n=1

‖SLLR
n [uc]− Z

LR
n [uc]‖1. (5)

In this way, AggreNet can be trained without the need of HR

light field. However, as analyzed in [53], in a natural image,

the more gradient contents are within a patch, the less this

patch recurs across scales. For regions with abundant gra-

dient contents, which are always high-frequency textures
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or edges, there may not be enough LLR-LR pairs to train

the network. Therefore, AggreNet trained with only the re-

currence loss Lrecur could overfit to the regions with less

gradient contents, resulting missing high-frequency details

in the super-resolved image. To alleviate this problem, we

propose an additional back-projection loss.

This time, we feed ZLR
n into the pretrained AlignNet,

which generates the aligned light field WLR
n . Taking WLR

n

as input, AggreNet generates the super-resolved LR central
view SLR

n [uc]. Since the ground truth HR central view is
not available under the zero-shot setting, we then calculate
the L1 distance between the downsampled SR result and the
LR central view as

Lbp =
1

N

N∑

n=1

‖SLR
n [uc] ↓α −Z

LR
n [uc]‖1, (6)

where ↓α denotes the bicubic downsampling operation. As

demonstrated in the ablation study (Sec. 7), this back-

projection loss improves the SR performance when HR la-

bels are not available. The complete loss function for train-

ing AggreNet is Laggre = Lrecur + γ1Lbp, where γ1 is a

weighting factor.

As discussed above, AlignNet and AggreNet are both

trained with patches extracted from the LR light field as

well as its downscaled version, either in an unsupervised

or in a self-supervised manner. Therefore, the whole frame-

work can be regarded zero-shot as no external light field

dataset is needed for training. For more efficient training of

the whole framework, we introduce a three-stage training

strategy. At the first stage, we train AlignNet only. Then, we

fix the parameters of AlignNet and train AggreNet only. Fi-

nally, to avoid possible error accumulation, we jointly train

all the parameters of AlignNet and AggreNet with a com-

bined loss function Ljoint = Laggre + γ2Lalign, where γ2
is a weighting factor. Ablation study (Sec. 7) validates the

effectiveness of this three-stage training strategy.

5. Zero-shot learning as finetuning

The above zero-shot SR framework adapts to the spe-

cific input light field and thus gets rid of domain shift in

nature. However, it still has certain limitations. On the

one hand, for regions that are difficult to align, such as

non-Lambertian surfaces, the learning of AlignNet could

be ineffective. On the other hand, as an inherent short-

coming of zero-shot SR, for regions without across-scale

recurrence, there lacks training data for the learning of Ag-

greNet. These circumstances hinder the performance of

zero-shot learning to a certain extent. Given a source light

field dataset with large domain gap with the target input, is

it possible for the proposed framework to exploit the use-

ful information in the source while adapting to the target?

The answer is YES: the proposed framework can be used

to pre-train a model with the source dataset firstly, and the

parameters of this pre-trained model can be then finetuned

Algorithm 1 Error-guided finetuning algorithm

Require: LLR light field ZLLR and LR light field ZLR,

Pre-trained network parameters Θ1 (AlignNet) and Θ2 (AggreNet).

1: Initialize AlignNet and AggreNet with Θ1 and Θ2, respectively;

2: Input ZLR and get aligned pre-upsampled light field WLR;

3: Calculate averaged alignment error map by

Ealign = 1

|U|

∑
u∈U |WLR[u]− PLR[uc]|;

4: Downsample Ealign to the resolution of ZLR and get ELR
align

;

5: Normalize ELR
align

by palign = ELR
align

/(sum(ELR
align

));
6: while AlignNet does not converge do

7: Choose patch ZLR
n with probability map palign;

8: Feed forward patch ZLR
n and update Θ1 with Lalign.

9: end while

10: Fix the finetuned AlignNet;

11: Input ZLLR and get the SR result SLLR[uc];
12: Calculate SR error by

Erecur = |SLLR[uc]− ZLR[uc]|;
13: Normalize Erecur by precur = Erecur/sum(Erecur);
14: while AggreNet does not converge do

15: Choose patch pair {ZLLR
n , ZLR

n } with probability map precur ;

16: Feed forward the selected patch pair and update Θ2 with Laggre.

17: end while

with the target light field by using our framework again.

Specifically, when training an initial model with a source

dataset, we do not need to fall back on LLR-LR light field

pairs for training AggreNet since LR-HR pairs are available

now. Instead, the L1 distance between the super-resolved

LR central view and the ground truth HR central view is

calculated as the loss function Laggre. Once the pre-trained

model is obtained, we apply an error-guided finetuning al-

gorithm to the target input ZLR as summarized in Algo-

rithm 1. First, by using the pre-trained AlignNet, we gener-

ate the aligned light field WLR from ZLR and calculate the

averaged absolute error map Ealign ∈ R
αX×αY between

each view of WLR and the pre-upsampled LR central view

PLR[uc]. This error map is downsampled to the input reso-

lution and normalized to range [0, 1], resulting in a probabil-

ity map palign. According to this probability map, we ran-

domly select patches from LLR for the finetuning of Align-

Net. Due to the fact that larger probability values indicate

larger alignment errors, the finetuning of AlignNet would

pay more attention to the regions that are not well-aligned

by the pre-trained model.

Then, by fixing the finetuned AlignNet and using the pre-

trained AggreNet, we generate super-resolved LLR cen-

tral view SLLR[uc], and calculate the absolute error map

Erecur ∈ R
X×Y between SLLR[uc] and the LR central

view ZLR[uc]. This error map is normalized to range [0, 1],
resulting in a probability map precur. According to this

probability map, we randomly select patch from ZLLR and

ZLR in pair for the finetuning of AggreNet. Due to the

fact that larger probability values indicate larger aggrega-

tion errors, the finetuning of AggreNet will also pay more

attention to the regions that are not well-aggregated by the

pre-trained model. As demonstrated in the ablation study
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(Sec. 7), our proposed error-guided finetuning algorithm is

more effective compared with a plain finetuning process.

6. Experimental results

Datasets and evaluation metrics. To validate the ef-

fectiveness of the proposed method, we use a large real-

world light field dataset HFUT (640 scenes) [47] and a

large synthetic dataset SAE (180 scenes) [5] as source

datasets and other four relatively small datasets as target

datasets. The target datasets include Stanford Lytro Archive

(Stan) [28], EPFL [29], HCI old (HCI1) [42], and HCI

new (HCI2) [11]. The former two are real-world datasets

and the latter two are synthetic datasets. There exists obvi-

ous domain gap between real-world and synthetic datasets

due to their distinct imaging models, and different real-

world/synthetic datasets also have domain gap due to dif-

ferent acquisition conditions. The number of scenes in the

target datasets are 20, 20, 10, and 20, respectively. In addi-

tion, for real-world datasets, we extract central 9× 9 views

to avoid the vignetting effect. For evaluation, we use two

distortion metrics PSNR (dB) and SSIM [40] and two per-

ception metrics VGG distance [48] and Ma’s score [21].

Comparison methods. We compare the SR results

of the central view through a number of representative

methods including three categories: 1) single image SR:

bicubic interpolation (BIC), VDSR [15], and ZSSR [34],

2) classic light field SR: the method using graph-based

regularization based on geometric modeling (GBSQ [30])

and the method iteratively alternating between LFBM5D

filter and back-projection (BM5D [4]), 3) deep-learning-

based light field SR (SoTA): the multi-stream residual net-

work (ResLF [49]), the all-to-one network using combi-

natorial geometry embedding and structural consistency

(ATO [13]), and the latest network using spatial-angular in-

teraction modules (InterNet [39]). We implement all com-

parison methods with the public code provided by the au-

thors1. We train VDSR with the DIV2K dataset [3] and

ZSSR with the LR central view from the input light field.

As for deep-learning-based light field SR methods, we train

them using the source datasets and test them on the target

datasets. More implementation details are provided in the

supplementary document.

Results without source dataset. The first set of rows

in Table 1 shows the comparison results of methods with-

out using any source light field dataset. In other words,

these methods will not have the domain shift problem when

testing on the target datasets. As can be seen, our zero-

shot method (Ours-ZS) achieves the best performance on

all target datasets at different scaling factors. Specifically,

Ours-ZS has a notable improvement over our pre-upsampler

VDSR [15] and ZSSR [34] which only exploits across-scale

1ATO [13] does not provide official implementation for scale 3.

Table 1. PSNR results of different methods. In the second and third

sets of rows, (S) denotes that the source dataset is SAE and (H) de-

notes HFUT. The subscript † denotes real-world datasets while §
denotes synthetic datasets. Gray background indicates large do-

main gap. The results of SSIM [40], VGG distance [48] and Ma’s

score [21] are provided in the supplementary document, along with

angular consistency analysis.

Method
Scale 2 Scale 3

Stan† EPFL† HCI1§ HCI2§ Stan† EPFL† HCI1§ HCI2§

BIC 33.83 31.66 36.30 34.67 30.42 28.99 32.72 31.92

VDSR 37.03 34.00 38.86 37.08 32.82 30.88 34.58 33.78

ZSSR 36.17 33.34 38.62 36.60 31.90 30.11 34.02 33.05

GBSQ 34.77 32.82 37.26 36.95 30.35 29.96 34.48 33.38

BM5D 36.44 33.39 39.43 36.99 32.38 30.66 35.02 33.99

Ours-ZS 37.91 34.51 39.74 37.75 33.27 31.09 35.15 34.04

ResLF(S§) 37.16 33.87 39.39 37.63 33.16 31.18 35.72 34.74

ATO(S§) 37.55 34.45 39.24 37.52 – – – –

InterNet(S§) 37.56 34.05 39.51 37.82 33.56 31.34 35.71 34.80

Ours-Pre(S§) 37.36 34.29 39.42 37.56 33.36 31.33 35.53 34.58

Ours-FT(S§) 37.97 34.64 39.98 37.85 33.77 31.48 35.90 34.69

ResLF(H†) 37.13 34.11 38.58 35.82 33.50 31.35 35.66 34.01

ATO(H†) 37.87 34.51 39.60 37.16 – – – –

InterNet(H†) 37.92 34.41 39.69 37.17 34.05 31.39 35.41 33.89

Ours-Pre(H†) 37.55 34.55 39.42 37.22 33.70 31.53 35.55 34.19

Ours-FT(H†) 38.27 35.21 40.38 38.22 33.85 31.57 35.71 34.47

recurrence. These results validate the effectiveness of align-

ment and aggregation in our zero-shot learning framework.

Through these two sub-tasks, across-view redundancy in

the light field is fully exploited for high-frequency detail

restoration. Such improvement on high-frequency details

can also be observed in the visual results in Fig. 3. On the

other hand, compared with classic methods GBSQ [30] and

BM5D [4], Ours-ZS also has obvious performance superi-

ority. Such superiority reflects that, with effective zero-shot

learning, the internal correspondence within a 4D light field

can be better exploited.

Results with source dataset. The second and third

sets of rows of Table 1 show the comparison results with

methods using a source light field dataset (SAE or HFUT).

Existing deep-learning-based methods inevitably face do-

main shift in this case, when testing on the target datasets

with a large domain gap. As can be seen, at the scaling

factor of 2, when the domain gap is large (i.e., source is

synthetic and target is real-world, or the opposite), Ours-

ZS gives superior performance compared with three SoTA

methods. For example, when the source is HFUT and the

target is HCI2, Ours-ZS has 1.83/0.59/0.58 dB gains over

ResLF, ATO, and InterNet, respectively. Even when the do-

main gap is not that large (i.e., source and target are both

synthetic or real-world), Ours-ZS still has better or compa-

rable performance with these SoTA methods. Such results

validate the adaptation ability of our zero-shot method with-

out the usage of a source dataset.

Performance boost with finetuning. Furthermore,

when our zero-shot learning framework is used to finetune

a pre-trained model obtained with this framework (Ours-
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Figure 3. Visual comparisons of super-resolved central view (cropped for a better visualization) through different methods at the scaling

factor of 2. The input of the first scene (Sideboard) is the downsampled light field while the input of the second scene (Origami) is the

original light field. Zoom in the figure for a better visual experience. More visual results are provided in the supplementary document.

Pre), the performance of the resulting model (Ours-FT)

can be boosted by a large margin. For example, when

the source is HFUT and the target is HCI2 (domain gap is

large), Ours-FT gains over ResLF, ATO, and InterNet with

2.40/1.06/1.05 dB. Such improvement validates the effec-

tiveness of combining our zero-shot framework and error-

guided finetuning algorithm together.

More challenging case. Under the scaling factor of 3,

Ours-ZS does not hold its performance superiority due to

extremely limited training data. For instance, the spatial

resolution of an LLR light field from the Stanford dataset is

only 40 × 60 during the training of AggreNet. With such

limited training data, although Ours-ZS still outperforms

classic light field SR methods, it loses advantage compared

with the SoTA methods using a large source dataset. How-

ever, also using the source dataset, Ours-FT makes up the

shortcomings of Ours-ZS and gives much better results.

It again outperforms the SoTA methods when the domain

gap is large. For example, when the source is SAE and

the target is Stan, Ours-FT gains over ResLF and InterNet

with 0.51/0.21 dB; when the source is HFUT and the tar-

get is HCI2, Ours-FT gains over ResLF and InterNet with

0.46/0.59 dB. On the other hand, when the domain gap is

not large, Ours-FT may not keep the best performance, e.g.,

from SAE to HCI2, and from HFUT to Stan. It is worth

mentioning that, however, the results with respect to dif-

ferent scaling factors give additional information. That is,

the performance of our zero-shot method highly depends on

the resolution of the input light field. In the above experi-

ments, for the purpose of calculating quantitative metrics,

the input light field is actually downsampled from the origi-

nal one, making it challenging for the zero-shot learning. In

other words, the resolution of the input light field could be

much higher in practical applications, which indicates more

sufficient data for training our zero-shot model and the su-

periority of our method will be highlighted.

Visual comparison. In addition to the numerical re-

sults, we also show some visual examples in Fig. 3. Among

methods without source datasets, Ours-ZS recovers more

detailed textures and cleaner edges than others. When train-

ing with source datasets, SoTA deep-learning-based meth-

ods suffer from blurring and aliasing artifacts due to the

domain gap, while Ours-FT gets rid of these artifacts and

recovers more realistic high-frequency details. Such com-

parisons demonstrate that our zero-shot framework provides

an advanced solution for light field SR in the wild.
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Figure 4. PSNR results for ablation study. (a) Divide-and-conquer vs. End-to-end. (b) Ablations on pre-upsampling. (c) Ablations on

sub-tasks, training stages, and loss functions. (d) Ablations on finetuning methods.

7. Ablation study

To validate the effectiveness of different components of

the proposed framework, we conduct comprehensive abla-

tion studies on the Stanford and the HCI2 datasets at the

scaling factor of 2.

Divide-and-conquer vs. End-to-end. To validate the

superiority of the divide-and-conquer strategy over an end-

to-end network, we train several end-to-end models under

the zero-shot setting. Specifically, we choose LFCNN [45],

ResLF [49] and the coarse stage of ATO [13]. These net-

works take LR light field as input and predict the HR ref-

erence view as output. As can be seen in Fig. 4(a), end-

to-end networks perform much worse (e.g., PSNR drops by

2.75/1.81/1.97 dB on the Stanford dataset) than our divide-

and-conquer method under the zero-shot setting. These

results reflect that, with highly limited training data, the

divide-and-conquer strategy facilitates the learning of the

SR mapping.

Pre-upsampling. To investigate the influence of pre-

upsampling, we replace VDSR with bicubic interpolation

and keep the other parts the same. As shown in Fig. 4(b),

even using bicubic interpolation as pre-upsampler, the per-

formance of zero-shot learning is also promising. These

results not only validate the effectiveness of the alignment

and aggregation sub-tasks, but also reflect the potential of

our framework, i.e., using an even powerful pre-upsampler

than VDSR could further elevate its performance (see the

results using RCAN [50] in the supplementary document).

Alignment. To validate the necessity of view align-

ment, we remove this sub-task in our framework and feed

the pre-upsampled LR light field into AggreNet directly.

The performance comparison is shown in Fig. 4(c). We can

see that, without view alignment, PSNR drops severely by

0.73/0.62 dB on the two datasets, respectively. These re-

sults suggest that view alignment plays an important role

for zero-shot light field SR, which facilitates the aggrega-

tion of useful information from different views.

Back-projection loss. As a complement to the recur-

rence loss Lrecur, we introduce the back-projection loss

Lbp for training AggreNet. For ablation, we remove this

loss term and find in Fig. 4(c) that, without this loss, PSNR

drops by 0.22/0.25 dB on the two datasets. These results

validate the role of the back-projection loss when no HR

label is available under the zero-shot setting.

Joint training stage. For the zero-shot framework, we

conduct a three-stage training in which the joint training

stage is to avoid possible error accumulation. Fig. 4(c)

shows the performance without this stage. As can be seen,

this stage provides about 0.2 dB improvement. It suggests

that the error accumulation does exist and can be alleviated

by the joint training stage.

Error-guided finetuning. When our zero-shot frame-

work is used to finetune a pre-trained model, we propose an

error-guided finetuning algorithm instead of a plain finetun-

ing process. Fig. 4(d) shows the performances of these two

finetuning strategies. As can be seen, the plain finetuning

leads to a PSNR drop of about 0.4 dB, which validates the

superiority of our error-guided finetuning algorithm.

8. Conclusion

The main contributions of this work are summarized as

the conclusion: 1) we propose the first zero-shot learning

framework for light field SR, which learns an input-specific

SR mapping with examples extracted solely from the in-

put LR light field itself. 2) We analyze different learning

strategies under the zero-shot setting, and propose a divide-

and-conquer strategy for effective learning from highly lim-

ited training data. 3) We propose an error-guided finetun-

ing algorithm to further extend our zero-shot framework for

jointly using a source dataset and the target input. 4) We

validate the superiority of the proposed framework against

SoTA light field SR methods through comprehensive exper-

iments, both quantitatively and qualitatively.
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