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Abstract

Video snapshot compressive imaging (SCI) captures a se-

quence of video frames in a single shot using a 2D detector.

The underlying principle is that during one exposure time,

different masks are imposed on the high-speed scene to

form a compressed measurement. With the knowledge of

masks, optimization algorithms or deep learning methods

are employed to reconstruct the desired high-speed video

frames from this snapshot measurement. Unfortunately,

though these methods can achieve decent results, the

long running time of optimization algorithms or huge

training memory occupation of deep networks still pre-

clude them in practical applications. In this paper, we

develop a memory-efficient network for large-scale video

SCI based on multi-group reversible 3D convolutional

neural networks. In addition to the basic model for the

grayscale SCI system, we take one step further to combine

demosaicing and SCI reconstruction to directly recover

color video from Bayer measurements. Extensive results

on both simulation and real data captured by SCI cam-

eras demonstrate that our proposed model outperforms

previous state-of-the-art with less memory and thus can

be used in large-scale problems. The code is at https:

//github.com/BoChenGroup/RevSCI-net.

1. Introduction

Computational imaging (CI) [1, 34] introduces modu-

lation (coding) in the optical path to advance the capabil-

ity of traditional cameras. Snapshot compressive imaging

(SCI) [11, 25, 40, 43, 51] is a promising CI technique that

indirectly captures 3-dimensional (3D) data using a 2D de-

tector, i.e., the original 3-dimensional data (videos or hy-
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Figure 1. Principle of grayscale or color video SCI system. The

original scene is modulated by dynamic masks and then is inte-

grated by the camera to obtain a snapshot measurement. Note that

for the color video SCI system, the camera captures the modulated

scene through the Bayer-filter not directly collecting the bright-

ness. Having obtained measurements, the reconstruction algo-

rithm recovers the desired video from it.

perspectral images) are coded by different masks and then

integrated into a single frame (measurement). As shown in

Fig. 1, in video SCI, the temporal dimension is modulated

and compressed, which avoids large memory storage and

transmission bandwidth during imaging. To make the SCI

system practical, an efficient reconstruction algorithm, i.e.,

recovering the desired images from the compressed mea-

surement is critical. In this work, we focus on the practical

video SCI reconstruction algorithm that can scale to large

data.

The mainstream of reconstruction methods is the model-

based optimization problems with various prior knowl-

edge, e.g., total variation (TV) used in GAP-TV [50] and

TwIST [2], and non-local low-rank [9] used in DeSCI [24].

These methods can provide usable results in an unsuper-

vised manner but cannot balance the reconstruction quality

and speed (hours for DeSCI to reconstruct a 256× 256× 8
video from a single measurement), which makes them un-
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Figure 2. Reconstruction results using the proposed RevSCI-net

on large scale (512×512×50) real data captured by [39]. Note that

this is the first deep learning model can perform a compression rate

at B=50. Videos are shown in the supplementary material (SM).

realistic for real applications. Inspired by deep learning

and rich datasets, some researchers develop deep neural

networks (DNNs) [4, 13, 33, 39, 47] or combine DNN

with optimization methods, such as deep unfolding tech-

nique [21, 27, 30] and plug-and-play algorithms [52, 56], to

reconstruct desired 3D data from SCI measurements. Bene-

fiting from the efficient feed forward networks, DNN-based

algorithms significantly decrease the inference time to less

than one second. Most recently, BIRNAT [4], which de-

velops a bidirectional recurrent neural network, has led to

state-of-the-art reconstruction results. Most researches on

video SCI reconstruction usually verify the performance on

a low-resolution situation (less than 512 × 512). With the

high-resolution images widely used in our daily life (HD

with 1280 × 720 and FHD with 1920 × 1080), however,

the squarely increasing pixels will significantly increase the

running time and training memory consumption for DNNs.

Although some methods can provide superior reconstruc-

tions, e.g., DeSCI and BIRNAT, unpractical running time

or GPU memory consumption still precludes them in the

practical large-scale SCI system applications.

Bearing the above concerns in mind, in this paper, we

propose an end-to-end reversible 3D convolutional neural

network (CNN) for SCI reconstruction named RevSCI-net,

in which 3D convolutional kernel jointly explores the spa-

tial and temporal correlation within the desired data. Mean-

while, the reversible structure allows activations not to be

stored in memory. The main contributions of our work are

summarized as follows:

• Since the desired signal of video SCI is 3D, we build

an end-to-end 3D CNN paradigm for video SCI recon-

struction which jointly explores the spatial and tempo-

ral correlation of video frames by the 3D convolutional

kernel. To our best knowledge, this is the first time that

3D CNN is applied in SCI problems.

• We propose the multi-channel reversible CNN in the

proposed network with less memory occupation during

training. Benefit by this, we can reconstruct a 512 ×

512× 50 video from a snapshot measurement, with an

example shown in Fig. 2, where a compression rate of

50 is achieved. This is the first deep learning results

that accomplish this high spatio-temporal resolution.

• We combine SCI reconstruction and demosaicing for

color SCI systems into a single end-to-end network.

• In addition to the widely used grayscale test sets, we

also conduct simulation on large-scale color datasets.

Furthermore, we verify the proposed network on the

real data (captured by SCI cameras). Only our model

can recover large scale and high compression rate SCI

measurements compared with other DNN based meth-

ods thanks to the memory-efficient structure.

The rest of this paper is organized as follows. Sec. 2

briefly reviews the related work. Sec. 3 presents the math-

ematical model of video SCI. Sec. 4 details our proposed

model for grayscale and color video SCI reconstruction.

Sec. 5 presents extensive results including simulation and

real data. Sec. 6 concludes the entire paper.

2. Related Work

Video Snapshot Compressive Imaging Many different

SCI hardware systems have been developed, by modulat-

ing the light in different approaches, e.g., usually a digi-

tal micromirror device (DMD) [11, 28, 37, 38, 39, 40, 41]

or a physical mask [25, 53]. Although hardware systems

are mature in the laboratory, existing reconstruction algo-

rithms are still far from real applications. Model-based op-

timization methods, e.g., GAP-TV [50], GMM [48, 49],

DeSCI [24], and PnP-FFDNet [52] consume high compu-

tational cost leading to long time reconstruction. Recently,

some researchers have attempted to use deep learning in

computational imaging [13, 20, 30, 33, 39, 47, 54]. Var-

ious networks have been proposed for SCI reconstruction,

and significantly reduced the running time. However, these

networks usually need a huge memory and long time for

training. For instance, state-of-the-art method BIRNAT [4]

requires more than 32GB GPU memory (batch size is 3

and costs weeks for training) to train the model of size

256× 256× 8. Such a memory unfriendly model is not sat-

isfying the increasing resolution in daily life, where HD and

UHD videos are becoming widely used. Different from pre-

vious methods, in this work, we develop a 3D CNN based

network and introduce the reversible structure to reduce the

training memory without loss of performance.

Reversible neural network Flow-based generative mod-

els, e.g., NICE [5], real NVP [6], and Glow [17] can jointly

perform generation and inference using a shared stacked re-

versible structure. This means that the generative process

can be easily inverted, and the inference process can be
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computed by the inverse of the generation function. Specif-

ically, for l-th blocks, given an input hl, divided it into two-

parts hl
1, hl

2, NICE [5] performs the simple additive affine

transformations:

hl+1
1 = hl

1, hl+1
2 = hl

2 +m(hl
1), (1)

where m( ) is an arbitrary function. The output is the con-

catenation of hl+1
1 and hl+1

2 . The inverse transformation

can be easily computed by

hl
2 = hl+1

2 −m(hl+1
1 ), hl

1 = hl+1
1 . (2)

Inspired by this simple and effective setting, Rev-Net [8] in-

troduces this idea into Res-Net [10], which has similar per-

formance with Res-Net in the classification task and each

block includes several reversible layers. The main strength

of Rev-Net is that training such a network does not need to

save the middle activation produced by each layer, which

occupies most of the memory. During back-propagation,

the previous layer activation can be easily computed by the

reversible transformation to calculate the gradient. There-

fore, saving the last activation of the stacked reversible lay-

ers allows learning the parameters, which makes the mem-

ory cost reduce from O(L) to O(1) (L is the number of the

layer). A memory-efficient learning procedure [15] inspired

by the reversible networks was proposed for unfolding net-

works, which is easy to act on the unfolding network to re-

duce the training memory without loss of accuracy. Most re-

cently, researchers [42] have proved that flow models based

on affine coupling can be universal distributional approxi-

mations.

One of the bottlenecks for the SCI reconstruction net-

work applied in the large-scale scene is the huge GPU mem-

ory consumption as mentioned before, because the squarely

increasing pixel numbers (for a larger size) make it im-

possible for high-resolution scenes. Inspired by the Rev-

net [8], we propose a reversible 3D CNN for large-scale

video SCI reconstruction. Specifically, we extend the origi-

nal two branches additive affine transformations into multi-

group transformations. The 3D CNN will also capture the

spatio-temporal correlations in the desired video, and the

reconstruction results will be more consistent in different

frames.

Demosaicing For color imaging, common devices usu-

ally first capture pixels by a color filter (one pixel only sam-

pling one color energy such as red, green or blue) and then

impose an interpolation algorithm to achieve a color (usu-

ally RGB) image. This process is called demosaicing. Re-

cently, some researchs [3, 18, 23] developed an end-to-end

network to directly obtain a color image from the raw cap-

tured image. Motivated by this, we extend the proposed

RevSCI-net to joint demosaicing and reconstruction for the

color SCI system. To our best knowledge, this is the first

attempt to use a unified end-to-end deep model to directly

restore an RGB video from a compressive measurement in

SCI.

3. Video Snapshot Compressive Imaging

In video SCI, a dynamic scene consisting of B high-

speed two-dimensional frames {Xk}
B
k=1 ∈ R

nx×ny are

modulated by the coding patterns (masks) {Ck}
B
k=1 ∈

R
nx×ny , respectively. These coded frames are then inte-

grated over time on a camera, forming a compressed coded

measurement (Fig. 1). The measurement Y ∈ R
nx×ny is

given by

Y =
∑B

k=1
Xk ⊙Ck +G , (3)

where ⊙ denotes the Hadamard (element-wise) product and

G ∈ R
nx×ny represents the noise. From a pixel per-

spective, any B pixel (in the B frames) at position (i, j),
i = 1, . . . , nx; j = 1, . . . , ny are collapsed to form one

pixel in the snapshot measurement by

yi,j =
∑B

k=1
ci,j,kxi,j,k + gi,j . (4)

Define x =
[
x⊤
1 , . . . ,x

⊤

B

]
, where xk = vec(Xk); let

Dk = diag(vec(Ck)), for k = 1, . . . , B, where vec( ) vec-

torizes the matrix inside ( ) by stacking the columns and

diag( ) diagonalizes the ensued vector into a diagonal ma-

trix. The video SCI sensing process can be written as

y = Φx+ g , (5)

where Φ ∈ R
n×nB is the sensing matrix with n = nxny ,

x ∈ R
nB is the desired signal, and g ∈ R

n again denotes

the vectorized noise. Different from single-pixel imag-

ing [7], the sensing matrix Φ in (5) has a very special struc-

ture and can be written as

Φ = [D1, . . . ,DB ] , (6)

where {Dk}
B
k=1 ∈ R

n×n are diagonal matrices of masks.

Therefore, the compressive sampling rate in SCI is equal

to 1/B. Recently, researchers [14] proved that high quality

reconstruction is achievable when B > 1.

In terms of color video SCI system, we consider the

Bayer pattern filter sensor, where each pixel only captures

the red (R), green (G) or blue (B) channel in a spatial lay-

out such as ‘RGGB’. Note that two green channels are used

due to the sensitivity of the human eyes. In this case, Xk is

a mosaic frame and since the neighbouring pixels are sam-

pling different color components, the values are not neces-

sarily continuous. To cope with this issue, previous stud-

ies [24, 52, 53] usually divide the original measurement Y

into four-channel sub-measurements corresponding to the

Bayer-filter {Yr,Yg1,Yg2,Yb} ∈ R
nx

2
×

ny

2 for the R, G1,
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Figure 3. Proposed reconstruction pipeline. Left: the preprocessing stage to obtain the estimate of the modulated frames as the network

input, which includes the information of coding masks and the normalized measurement. Middle: the RevSCI-net which concludes three

parts, feature extraction, reversible non-linear mapping, and reconstruction. Right: the reconstruction video.

G2 and B components. Similarly, the mask and desired sig-

nal are also divided into four components. They reconstruct

each sub-signal separately using the corresponding mea-

surement and mask and then perform demosaicing (using

off-the-shelf tools) in the recovered sub-videos to generate

the final color (RGB) video.

4. The Proposed Model

Given the compressed measurement Y and coding pat-

tern {Ck}
B
k=1 captured by the SCI system, the goal of the

proposed model RevSCI-net is to predict the desired high-

speed frames {Xk}
B
k=1, in other words, to learn a mapping

from Y to {Xk}
B
k=1. In this section, the details of the model

will be described. Overall, our proposed model consists of

three parts as shown in the middle of Fig. 3: 1) The fea-

ture extractor FF uses several 3D CNN layers to capture the

high-dimensional features from the input. 2) Feature level

nonlinear mapping employs several reversible blocks FR to

transform the input features into the desired reconstruction

domain. 3) The reconstructor FM integrates the features to

reconstruct the final video.

4.1. Model for Grayscale SCI system

4.1.1 Feature Extraction

Considering the measurement Y being a 2D matrix, we

first normalize the original measurement and then combine

masks and the normalized measurement to produce coarse

estimates of modulated frames as follows:

Y = Y ⊘
∑B

k=1
Ck, XCE = Y ⊙C, (7)

where ⊘ denotes the matrix dot (element-wise) division,

and coarse estimates XCE ∈ R
B×nx×ny .

After obtaining XCE , we employ four 3D convolutional

layers expressed as FF (the kernel size is 5×5×5, 3×3×
3, 1× 1× 1, and 3× 3× 3) to extract the feature as:

Hf = FF (XCE), (8)

where Hf ∈ R
c1×B×nx×ny is a 4D tensor and c1 is the

channel number. Here, we set the stride of the final layer

to 2, which reduces the resolution of the feature map by

half to reduce the computational complexity. We apply the

LeakyReLU [29] on each convolutional layer, and do not

use the batch normalization following previous research on

image deburring [35, 22] and video SCI [4]. After the fea-

ture extraction operation, we obtain the coarse features of

the input modulated frames.

4.1.2 Reversible Non-linear Mapping

Having obtained the features of the input, we use stacked re-

versible blocks to transform them to the video domain fea-

tures. The original reversible block in Rev-Net [8] splits the

input features into two parts by channel, and the transfor-

mation is:

hl+1
1 = hl

1 + F(hl
2), hl+1

2 = hl
2 + G(hl+1

1 ), (9)

where hl
1,h

l
2,h

l+1
1 ,hl+1

2 ∈ R
c1

2
×B×nx×ny , and F and

G are arbitrary functions. Inspired by the group convo-

lution [19, 46], we modify the formulation and extend it

to a multi-group reversible transformation. As shown in

Fig. 4(c), we split the feature into multiple parts, and the
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Figure 4. (a) and (b) are the forward and the reverse computations of the original reversible layer in Rev-Net [8], respectively. (c) and (d)

are the forward and the reverse process of the proposed multi-group reversible block, respectively.

forward function is now:

hl+1
1 = hl

m + F1(h
l
1),

hl+1
2 = hl

m−1 + F2(h
l+1
1 ),

...

hl+1
m = hl

1 + Fm(hl+1
m−1),

(10)

where m is the number of groups, and F∗ can be an arbi-

trary function. In our experiments, we set it to two 3D con-

volutional layers with the kernel size of 3× 3× 3. With the

additional dimension on the group, we extend the original

reversible form, and experimental results show that these

changes have improved the performance. The inverse of the

multi-group reversible transformation is thus

hl
1 = hl+1

m −Fm(hl+1
m−1),

hl
2 = hl+1

m−1 −Fm−1(h
l+1
m−2),

...

hl
m = hl+1

1 −F1(h
l
1).

(11)

The input feature Hf will be transformed by FR (stacking

L reversible blocks) into the reconstruction domain feature

Hr as:

Hr = FR(Hf ). (12)

Note that during the back-propagation, we only save the

last activation in FR, and activations of others can be com-

puted by the (11) so that calculate the gradient to update

the network parameters by the chain rule. For traditional

convolutional layers, adding more layers to a certain extent

is beneficial for the non-linearity and the performance, but

it will significantly increase the activation memory of the

model. Fortunately, due to the reversible structure, adding

the number of layers will not increase the memory cost of

activations in RevSCI-net.

4.1.3 Reconstruction

After the reversible non-linear transformation, the goal of

the reconstruction stage is to integrate the features to obtain

the desired video. We utilize four 3D convolutional layers

(with the kernel size of 3× 3× 3, 3× 3× 3, 1× 1× 1, and

3×3×3) to reduce the channel to one and achieve the final

reconstruction video, i.e.,

X̂ = FM (Hr). (13)

4.2. Model for Color SCI System

As mentioned before, color SCI systems capture the mo-

saic Bayer measurement as shown in Fig. 1. Inspired by

the success of deep learning demosaicing and grayscale SCI

reconstruction respectively, we conduct joint demosaicing

and reconstruction using the proposed model.

To avoid mixture of different color channels, we first sep-

arate the coarse estimates of modulated frames obtained by

(7) into four individual parts corresponding to the Bayer-

filter, one for red, one for blue, and two for green,

X
color
CE =[Y

r
⊙C

r
1 , ...,Y

r
⊙C

r
B ;

Y
g1

⊙C
g1
1 , ...,Y

g1
⊙C

g1
B ;

Y
g2

⊙C
g2
1 , ...,Y

g2
⊙C

g2
B ;

Y
b
⊙C

b
1 , ...,Y

b
⊙C

b
B ]3,

(14)

where X
color
CE ∈ R

4×B×
nx

2
×

ny

2 includes four color channel

modulation information and superscripts r, g and b denote

the red, green and blue channels, respectively.

These color independent estimates X
color
CE , are fed into

the network. Because of the differences on the channel

and the spatial resolution of the input compared with the

grayscale SCI, we change the number of kernels on the first

convolutional layer, and set the stride to 1 on the feature ex-

traction stage to keep the resolution unchanged. For recon-

struction, because the color image is 3 channels, we mod-

ify the number of the kernel on the last convolutional layer.

In this manner, we extend RevSCI-net to directly obtain an

RGB color video from the Bayer measurement.
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4.3. Training

4.3.1 Loss Function

We jointly train our proposed model with mean square error

(MSE) loss, i.e.

LMSE = 1

cBnxny

∑B

k=1
||X̂k −Xk||

2
2 , (15)

where X̂k is the final reconstruction from RevSCI-net, and

Xk is the ground-truth; c is the channel number of X̂k, one

for grayscale image and three for RGB image.

4.3.2 Back-propagation

Note that we do not directly use the automatic differentia-

tion routine, e.g., Loss.backward() in PyTorch, to cal-

culate the gradient of parameters because this will save all

activations during the forward propagation and thus costs

a huge memory. Instead, for the forward pass, we directly

obtain the desired reconstruction without storing the activa-

tions of reversible blocks except the last one. As mentioned

before, for back-propagation, due to the reversible block,

we calculate the previous layer activation to compute the

gradient of the parameters using the chain rule; for the fea-

ture extraction and reconstruction stage, we calculate the

gradient as usual. Thereby, during training, we only save

the full activations of the feature extraction stage and the re-

construction stage (each has only four layers), and the last

layer of reversible blocks whatever the number of blocks.

5. Experiments

In this section, we compare RevSCI-net with several

state-of-the-art methods on both simulation datasets and

real data captured by two different video SCI cameras.

5.1. Data sets and Experimental Setting

Training and testing datasets Following [4], we choose

the data set DAVIS2017 [36] as the training set for all

experiments. DAVIS2017 has 90 different scenes in to-

tal 6208 frames with two resolutions: 480 × 894 and

1080× 1920.

To demonstrate the quantitative performance, we first

evaluate RevSCI-net on six widely used grayscale sim-

ulation data sets including Kobe, Runner, Drop,

Traffic [24], Aerial and Vehicle [52]. The reso-

lution of these test sets is 256× 256. We follow the setting

in [24], eight sequential (B = 8) frames are modulated by

the shifting binary random masks {Ck}
B
k=1 and then col-

lapsed into a single measurement Y. Under this setting, we

randomly crop patch cubes (256 × 256 × 8) from the orig-

inal scenes in DAVIS2017, and obtain 26000 training data

pairs with data augmentation.

In addition, we evaluate RevSCI-net on the RGB large-

scale scene, e.g., Messi and Hummingbird [52] with a

resolution of 1080×1920×3 (here 3 denotes the RGB chan-

nels) and 24 sequential frames are modulated and integrated

into a single Bayer measurement by the shifting binary ran-

dom masks. We generate 2000 data pairs for training from

DAVIS2017 with the resolution of 1080× 1920× 3.

Lastly, we evaluate RevSCI-net on the measurements

captured by two real SCI systems [25, 37].

Implementation details We jointly train RevSCI-net on

the RTX 2080Ti GPU for 100 epochs using PyTorch. Adam

optimizer [16] is used to minimize the loss function with

the starting learning rate of 2 × 10−4. Then, we reduce

the learning rate by 5% every 10 epochs. It takes about a

week to train the entire network. The detailed architecture

for RevSCI-net is given in the supplement material (SM).

Counterparts and Performance Metrics We compare

RevSCI-net with five competitive counterparts: two itera-

tive optimization methods – GAP-TV [50] and DeSCI [24],

and three methods using deep learning – the plug-and-play

method PnP-FFDNet [52] integrated the deep denoiser as a

prior, E2E-CNN [39] which is a deep CNN model, and BIR-

NAT [4] which builds a bidirectional RNN and produces

current state-of-the-art results. For the simulation datasets,

both peak-signal-to-noise ratio (PSNR) and structural simi-

larity (SSIM) [44] are used as metrics to evaluate the recon-

struction quality. Besides, we give the running time at the

testing stage which determines the usability of the method

in real applications.

GAP-TV PnP-FFDNet E2E-CNN BIRNATDeSCI RevSCI-net𝟓𝟎𝟖Ground Truth

Kobe
#6

Traffic
#17

Runner
#1

Drop
#6

Aerial
#4

Vehicle
#25

Figure 5. Selected reconstruction frames of six grayscale bench-

mark datasets.
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Table 1. The average results of PSNR in dB (left entry), SSIM (right entry) and running time per measurement/shot in seconds by different

algorithms on six grayscale benchmark datasets. The best results are bold, and the second best results are underline.

Algorithm Kobe Traffic Runner Drop Aerial Vehicle Average Time

GAP-TV 26.45, 0.845 20.89, 0.715 28.81, 0.909 34.74, 0.970 25.05, 0.828 24.82, 0.838 26.79, 0.858 4.2

DeSCI 33.25, 0.952 28.72, 0.925 38.76, 0.969 43.22, 0.993 25.33, 0.860 27.04, 0.909 32.72, 0.935 6180

PnP-FFDNet 30.50, 0.926 24.18, 0.828 32.15, 0.933 40.70, 0.989 25.27, 0.829 25.42, 0.849 29.70, 0.892 3.0

E2E-CNN 29.02, 0.861 23.45, 0.838 34.43, 0.958 36.77, 0.974 27.52, 0.882 26.40, 0.886 29.26, 0.900 0.023

BIRNAT 32.71, 0.950 29.33, 0.942 38.70, 0.976 42.28, 0.992 28.99, 0.927 27.84, 0.927 33.31, 0.951 0.16

RevSCI-net850 33.72,0.957 30.02, 0.949 39.40, 0.977 42.93, 0.992 29.35, 0.924 28.12, 0.937 33.92, 0.956 0.19

5.2. Results on Simulation Datasets

We first show the results of six grayscale datasets in

Table 1 and Fig. 5. Table 1 summarizes the comparisons

with previous methods on PSNR, SSIM, and running time.

RevSCI-net850 in Table 1 indicates that the number of rev-

blocks and groups in RevSCI-net are 50 and 8, respec-

tively. It can be observed that the proposed RevSCI-net

outperforms others, specifically 0.61dB in PSNR higher

than previous state-of-the-art method BIRNAT, and using

a similar testing time. Fig. 5 plots the selected reconstruc-

tion frames of different methods compared with the ground

truth. RevSCI-net provides cleaner and sharper reconstruc-

tions than other algorithms; the fine details are recovered

accurately.

GAP-TV #9

PnP-FFDNet #9 RevSCI−net #9

Ground Truth #9Messi1080 × 1920 × 24

GAP-TV #17

PnP-FFDNet #17 RevSCI−net #17

Ground Truth #17Hummingbird1080 × 1920 × 24

Figure 6. The reconstruction frames of RGB large-scale dataset

Messi and Hummingbird. 24 RGB frames of size 1080 ×
1920 × 3 are reconstructed from a single Bayer measurement of

size 1080× 1920.

Next, we show the results of RGB large-scale simulation

dataset Messi and Hummingbird (1080×1920×3×24,

where B=24) in Fig 6 and Table 2. It worth noting that

Table 2. The average results of PSNR in dB (left entry), SSIM

(right entry) by different algorithms on two color benchmark

datasets.

Algorithm Messi Hummingbird

GAP-TV 18.56, 0.7209 18.29, 0.6449

PnP-FFDNet 21.54, 0.7959 24.13, 0.8340

RevSCI-net 24.35, 0.8576 31.97, 0.8816

the proposed RevSCI-net is the first end-to-end training net-

work (joint reconstruction and demosaicing) to recover such

a large SCI scene, and the reconstruction quality of RevSCI-

net outperforms others. DeSCI will consume days to recon-

struct, and therefore we only compare with GAP-TV and

PnP-FFDNet. More analysis of memory and time is shown

in Table 3. RevSCI-net occupies 10 times lower memory

during training than the previous SOTA network BIRNAT.

Table 3. Training memory occupation (MB) and running time

(seconds) in videos of different resolution and compression ra-

tio. We only show the GPU memory occupation during training

on BIRNAT and RevSCI-net with a single sample. ‘-’ means not

available due to too long time or too big memory consumption.

Method 256×256×8 256×256×14 512×512×50 1920×1080×24

GAP-TV Time 4.2 11.6 180 524

DeSCI Time 6180 3185.8 12600 -

PnP-FFDNet Time 3.0 2.7 88 253

BIRNAT
Memory 17748 23912 >48000 >48000

Time 0.16 0.28 - -

RevSCI-net850
Memory 1350 1876 11648* 46215*

Time 0.19 0.33 3.56 12.46

* We used NVIDIA RTX8000 GPU with 48GB memory to train the model for the large-scale data.

5.3. Ablation Study

To quantitatively verify the contributions of the RevSCI-

net, we modify the number of rev-blocks and groups in

RevSCI-net with results shown in Table 4. The models

are tested on the six grayscale datasets with results in Ta-

ble 1. Note that stacking the rev-block will significantly

increase the reconstruction quality, and adding the number

of groups will help the reconstruction by more sufficiently
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affine transformations in the feature-level. As mentioned

before, adding rev-blocks will not increase the activation

memory during training, while adding parameters will only

increase a small amount of storage.

Table 4. Computational complexity and average reconstruction

quality on six grayscale test sets using RevSCI-net with different

reversible blocks and groups. MAC means Multiply Accumulate.

Model Parameters (×106) MACs (×1011) Memory (MB) PSNR SSIM

RevSCI-net218 2.11 3.02 1283 33.11 0.947

RevSCI-net228 3.22 4.47 1301 33.34 0.951

RevSCI-net250 5.65 7.67 1350 33.62 0.954

RevSCI-net450 5.65 7.67 1350 33.76 0.955

RevSCI-net850 5.65 7.67 1350 33.84 0.956

Wheel256 × 256
GAP-TV

PnP-FFDNet

E2E-CNN

BIRNAT

DeSCI

RevSCI-net𝟓𝟎𝟖

#2 #4 #6 #8 #10 #12 #14

#2 #4 #6 #8 #10 #12 #14

#2 #4 #6 #8 #10 #12 #14

#2 #4 #6 #8 #10 #12 #14

#2 #4 #6 #8 #10 #12 #14

#2 #4 #6 #8 #10 #12 #14

Figure 7. The reconstruction frames of real data Wheel with size

256× 256× 14.

Domino512 × 512

Water 

Balloon512 × 512

GAP-TV

PnP-FFDNet

DeSCI

RevSCI-net𝟓𝟎𝟖

#1 #9 #17 #25 #33 #41 #49

#1 #9 #17 #25 #33 #41 #49

#1 #9 #17 #25 #33 #41 #49

#1 #9 #17 #25 #33 #41 #49

#1 #9 #17 #25 #33 #41 #49

#1 #9 #17 #25 #33 #41 #49

#1 #9 #17 #25 #33 #41 #49

#1 #9 #17 #25 #33 #41 #49

GAP-TV

PnP-FFDNet

DeSCI

RevSCI-net𝟓𝟎𝟖

Figure 8. The reconstruction frames of real data Domino and

Water Balloon with size 512× 512× 50.

5.4. Results on Real Datasets

We now apply the proposed RevSCI-net on real data

captured by two SCI cameras [25, 37]. The results of

Wheel with a size of 256×256×14 are shown in Fig. 7.

It can be observed that the results of RevSCI-net provide

sharper edges and clearer letter ‘D’ than others. The re-

sults of Domino and Water Balloon with a size of

512×512×50 are shown in Fig. 8. In such a large com-

pression ratio (50), the results of DeSCI are extremely over

smooth, and GAP-TV introduces significant noise. Un-

pleasant artifacts exist in the results of PnP-FFDNet. The

results of RevSCI-net have more accurate motions and con-

tours. As mentioned before, our proposed RevSCI-net is the

first end-to-end deep model that can handle such a large-

scale problem, while existing deep model will fail due to

high demands of GPU memory. Thanks to the reversible

network, we can now apply RevSCI-net to large-scale SCI

reconstruction problems in our daily life.

6. Conclusions

Efficient reconstruction algorithms for large scale prob-

lems have been a long-term challenge in inverse problems.

Inspired by the recent advances of deep learning, fast in-

ference is promising by training a deep network. However,

for real life large-scale problems, deep networks are usu-

ally starving for memory and power. In this paper, based on

the application of video snapshot compressive imaging, we

propose a novel memory efficient network for large-scale

reconstruction. Specifically, we introduce the reversible 3D

CNN in SCI reconstruction, and build the memory-efficient

RevSCI-net. For the first time, we have achieved end-to-end

training network to recover FHD SCI measurements. In ad-

dition, we combine demosaicing and SCI reconstruction to

directly obtain RGB videos from raw Bayer measurements

and thus pave the way of real applications of SCI [26]. Ex-

tensive results demonstrated that RevSCI-net has significant

improved reconstruction quality and running time. Besides

video SCI, we believe RevSCI-net will work well in other

computational imaging problems such as compressive spec-

tral imaging [31, 32, 55].

Another way to apply CNN to large scale data is to train a

small network but to adapt it to different modulation masks.

One recent work has been done in [45] demonstrating the

promise of this direction using meta learning. As mentioned

in [51], the other line of work is using deep unfolding [30].

The work in [12] unfolds the Gaussian scale mixture model

and is able to train a small-size but multi-stage network to

be used in the large scale spectral SCI problem [31, 57].
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