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Abstract

In monocular video 3D multi-person pose estimation,

inter-person occlusion and close interactions can cause hu-

man detection to be erroneous and human-joints grouping

to be unreliable. Existing top-down methods rely on hu-

man detection and thus suffer from these problems. Ex-

isting bottom-up methods do not use human detection, but

they process all persons at once at the same scale, caus-

ing them to be sensitive to multiple-persons scale varia-

tions. To address these challenges, we propose the integra-

tion of top-down and bottom-up approaches to exploit their

strengths. Our top-down network estimates human joints

from all persons instead of one in an image patch, making it

robust to possible erroneous bounding boxes. Our bottom-

up network incorporates human-detection based normal-

ized heatmaps, allowing the network to be more robust in

handling scale variations. Finally, the estimated 3D poses

from the top-down and bottom-up networks are fed into our

integration network for final 3D poses. Besides the inte-

gration of top-down and bottom-up networks, unlike exist-

ing pose discriminators that are designed solely for a sin-

gle person, and consequently cannot assess natural inter-

person interactions, we propose a two-person pose discrim-

inator that enforces natural two-person interactions. Lastly,

we also apply a semi-supervised method to overcome the

3D ground-truth data scarcity. Quantitative and qualitative

evaluations show the effectiveness of the proposed method.

Our code is available publicly. 1

1. Introduction

Estimating 3D multi-person poses from a monocular

video has drawn increasing attention due to its importance

for real-world applications (e.g., [32, 28, 2, 7]). Unfortu-

nately, it is generally still challenging and an open prob-

1https://github.com/3dpose/3D-Multi-Person-Pose
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Figure 1. Incorrect 3D multi-person pose estimation from ex-

isting top-down (2nd row) and bottom-up (3rd row) methods.

The top-down method is RootNet [32], the bottom-up method is

SMAP [53]. The input images are from MuPoTS-3D dataset [29].

The top-down method suffers from inter-person occlusion and the

bottom-up method is sensitive to scale variations (i.e., the 3D

poses of the two persons in the back are inaccurately estimated).

Our method substantially outperforms the state-of-the-art.

lem, particularly when multiple persons are present in the

scene. Multiple persons can generate inter-person occlu-

sion, which causes human detection to be erroneous. More-

over, multiple persons in a scene are likely in close con-

tact with each other and interact, which makes human-joints

grouping unreliable.
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Although existing 3D human pose estimation methods

(e.g., [31, 52, 35, 13, 36, 8, 7]) show promising results

on single-person datasets like Human3.6M [16] and Hu-

manEva [40], these methods do not perform well in 3D

multi-person scenarios. Generally, we can divide exist-

ing methods into two approaches: top-down and bottom-

up. Existing top-down 3D pose estimation methods rely

considerably on human detection to localize each person,

prior to estimating the joints within the detected bounding

boxes, e.g., [36, 8, 32]. These methods show promising

performance for single-person 3D-pose estimation [36, 8],

yet since they treat each person individually, they have no

awareness of non-target persons and the possible interac-

tions. When multiple persons occlude each other, human

detection also become unreliable. Moreover, when target

persons are closely interacting with each other, the pose es-

timator may be misled by the nearby persons, e.g., predicted

joints may come from the nearby non-target persons.

Recent bottom-up methods (e.g., [53, 24, 22]) do not

use any human detection and thus can produce results with

higher accuracy when multiple persons interact with each

other. These methods consider multiple persons simulta-

neously and, in many cases, better distinguish the joints of

different persons. Unfortunately, without using detection,

bottom-up methods suffer from the scale variations, and the

pose estimation accuracy is compromised, rendering infe-

rior performance compared with top-down approaches [5].

As shown in Figure 1, neither top-down nor bottom-up ap-

proach alone can handle all the challenges at once, partic-

ularly the challenges of: inter-person occlusion, close in-

teractions, and human-scale variations. Therefore, in this

paper, our goal is to integrate the top-down and bottom-up

approaches to achieve more accurate and robust 3D multi-

person pose estimation from a monocular video.

To achieve this goal, we introduce a top-down network to

estimate human joints inside each detected bounding box.

Unlike existing top-down methods that only estimate one

human pose given a bounding box, our top-down network

predicts 3D poses for all persons inside the bounding box.

The joint heatmaps from our top-down network is feed to

our bottom-up network, so that our bottom network can

be more robust in handling the scale variations. Finally,

we feed the estimated 3D poses from both top-down and

bottom-up networks into our integration network to obtain

the final estimated 3D poses given an image sequence.

Moreover, unlike existing methods’ pose discriminators,

which are designed solely for single person, and conse-

quently cannot enforce natural inter-person interactions, we

propose a two-person pose discriminator that enforces two-

person natural interactions. Lastly, semi-supervised learn-

ing is used to mitigate the data scarcity problem where 3D

ground-truth data is limited.

In summary, our contributions are listed as follows.

• We introduce a novel two-branch framework, where

the top-down branch detects multiple persons and the

bottom-up branch incorporates the normalized image

patches in its process. Our framework gains benefits

from the two branches, and at the same time, over-

comes their shortcomings.

• We employ multi-person pose estimation for our top-

down network, which can effectively handle the inter-

person occlusion and interactions caused by detection

errors.

• We incorporate human detection information into our

bottom-up branch so that it can better handle the scale

variation, which addresses the problem in existing

bottom-up methods.

• Unlike the existing discriminators that focus on single

person pose, we introduce a novel discriminator that

enforces the validity of human poses of close pairwise

interactions in the camera-centric coordinates.

2. Related Works

Top-Down Monocular 3D Human Pose Estimation Ex-

isting top-down 3D human pose estimation methods com-

monly use human detection as an essential part of their

methods to estimate person-centric 3D human poses [27,

34, 31, 36, 8, 9, 7]. They demonstrate promising perfor-

mance on single-person evaluation datasets [16, 40], un-

fortunately the performance decreases in multi-person sce-

narios, due to inter-person occlusion or close interactions

[31, 8]. Moreover, the produced person-centric 3D poses

cannot be used for multi-person scenarios, where camera-

centric 3D-pose estimation is needed. Top-down methods

process each person independently, leading to inadequate

awareness of the existence of other persons nearby. As a

result, they perform poorly on multi-person videos where

inter-person occlusion and close interactions are commonly

present. Rogez et al. [38, 39] develop a pose proposal net-

work to generate bounding boxes and then perform pose es-

timation individually for each person. Recently, unlike pre-

vious methods that perform person-centric pose estimation,

Moon et al. [32] propose a top-down 3D multi-person pose-

estimation method that can estimate the poses for all per-

sons in an image in the camera-centric coordinates. How-

ever, the method still relies on detection and process each

person independently; hence it is likely to suffer from inter-

person occlusion and close interactions.

Bottom-Up Monocular 3D Human Pose Estimation A

few bottom-up methods have been proposed [10, 53, 28, 22,

24]. Fabbri et al. [10] introduce an encoder-decoder frame-

work to compress a heatmap first, and then decompress it

back to the original representations in the test time for fast
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Figure 2. The overview of our framework. Our proposed method comprises three components: 1) A top-down branch to estimate fine-

grained instance-wise 3D pose. 2) A bottom-up branch to generate global-aware camera-centric 3D pose. 3) An integration network to

generate final estimation based on paired poses from top-down and bottom-up to take benefits from both branches. Note that the semi-

supervised learning part is a training strategy so it is not included in this figure.

HD image processing. Mehta et al. [28] propose to iden-

tify individual joints, compose full-body joints, and enforce

temporal and kinematic constraints in three stages for real-

time 3D motion capture. Li et al. [22] develop an integrated

method with lower computation complexity for human de-

tection, person-centric pose estimation, and human depth

estimation from an input image. Lin et al. [24] formulate

the human depth regression as a bin index estimation prob-

lem for multi-person localization in the camera coordinate

system. Zhen et al. [53] estimate the 2.5D representation of

body parts first and then reconstruct camera-centric multi-

person 3D poses. These methods benefit from the nature

of the bottom-up approach, which can process multiple per-

sons simultaneously without relying on human detection.

However, since all persons are processed at the same scale,

these methods are inevitably sensitive to human scale vari-

ations, which limits their applicability on wild videos.

Top-Down and Bottom-Up Combination Earlier non-

deep learning methods exploring the combination of top-

down and bottom-up approaches for human pose estima-

tion are in the forms of data-driven belief propagation, dif-

ferent classifiers for joint location and skeleton, or proba-

bilistic Gaussian mixture modelling [15, 48, 21]. Recent

deep learning based methods that attempt to make use of

both top-down and bottom-up information are mainly on

estimating 2D poses [14, 43, 3, 23]. Hu and Ramanan [14]

propose a hierarchical rectified Gaussian model to incor-

porate top-down feedback with bottom-up CNNs. Tang et

al. [43] develop a framework with bottom-up inference fol-

lowed by top-down refinement based on a compositional

model of the human body. Cai et al. [3] introduce a spatial-

temporal graph convolutional network (GCN) that uses both

bottom-up and top-down features. These methods explore

to benefit from top-down and bottom-up information. How-

ever, they are not suitable for 3D multi-person pose esti-

mation because the fundamental weaknesses in both top-

down and bottom-up methods are not addressed completely,

which include inter-person occlusion caused detection and

joints grouping errors, and the scale variation issue. Li et

al. [23] adopt LSTM and combine bottom-up heatmaps with

human detection for 2D multi-person pose estimation. They

address occlusion and detection shift problems. Unfortu-

nately, they use a bottom-up network and only add the de-

tection bounding box as the top-down information to group

the joints. Hence, their method is essentially still bottom-up

and thus still vulnerable to human scale variations.

3. Proposed Method

Fig. 2 shows our pipeline, which consists of three major

parts to accomplish the multi-person camera-centric 3D hu-

man pose estimation: a top-down network for fine-grained

instance-wise pose estimation, a bottom-up network for

global-aware pose estimation, and an integration network

to integrate the estimations of top-down and bottom-up

branches with inter-person pose discriminator. Moreover,

a semi-supervised training process is proposed to enhance

the 3D pose estimation based on reprojection consistency.

3.1. TopDown Network

Given a human detection bounding box, existing top-

down methods estimate full-body joints of one person. Con-

sequently, if there are multiple persons inside the box or par-

tially out-of-bounding box body parts, the full-body joint

estimation are likely to be erroneous. Figure 3 shows

such failure examples of existing methods. In contrast,

our method produces the heatmaps for all joints inside the
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Figure 3. Examples of estimated heatmaps of human joints. The

left image shows the input frame overlaid with inaccurate detec-

tion bounding box (i.e., only one person detected). The middle

image shows the estimated heatmap of existing top-down meth-

ods. The right image shows the heatmap of our top-down branch.

bounding box (i.e., enlarged to accommodate inaccurate de-

tection), and estimate the ID for each joint to group them

into corresponding persons, similar to [33].

Given an input video, for every frame we apply a human

detector [12], and crop the image patches based on the de-

tected bounding boxes. A 2D pose detector [5] is applied to

each patch to generate heatmaps for all human joints, such

as shoulder, pelvis, ankle, and etc. Specifically, our top-

down loss of 2D pose heatmap is an L2 loss between the

predicted and ground-truth heatmaps, formulated as:

LTD
hmap = |H − H̃|22, (1)

where H and H̃ are the predicted and ground-truth

heatmaps, respectively.

Having obtained the 2D pose heatmaps, a directed GCN

network is used to refine the potentially incomplete poses

caused by occlusions or partially out-of-bounding box body

parts, and two TCNs are used to estimate both person-

centric 3D pose and camera-centric root depth based on a

given sequence of 2D poses similar to [6]. As the TCN

requires the input sequence of the same instance, a pose

tracker [45] is used to track each instance in the input video.

We also apply data augmentation in training our TCN so

that it can handle occlusions [8].

3.2. BottomUp Network

Top-down methods perform estimation inside the bound-

ing boxes, and thus are lack of global awareness of other

persons, leading to difficulties to estimate poses in the

camera-centric coordinates. To address this problem, we

further propose a bottom-up network that processes multi-

ple persons simultaneously. Since the bottom-up pose esti-

mation suffers from human scale variations, we concatenate

the heatmaps from our top-down network with the original

input frame as the input of our bottom-up network. With

the guidance of the top-down heatmaps, which are the re-

sults of the object detector and pose estimation based on the

normalized boxes, the estimation of the bottom-up network

will be more robust to scale variations. Our bottom-up net-

work outputs four heatmaps : a 2D pose heatmap, ID-tag

map, relative depth map, and root depth map. The 2D pose

heatmap and ID-tag map are defined in the same way as in

the previous section (3.1). The relative depth map refers to

the depth map of each joint with respect to its root (pelvis)

joint. The root depth map represents the depth map of the

root joint.

In particular, the loss functions LBU
hmap and LBU

id for the

heatmap and ID-tag map are similar to [33]. In addition,

we apply the depth loss to the estimations of both the rel-

ative depth map hrel and the root depth hroot. Please see

supplementary material for example of the four estimated

heatmaps from the bottom-up network. For N persons and

K joints, the loss can be formulated as:

Ldepth =
1

NK

∑

n

∑

k

|hk(xnk, ynk)− dnk|
2, (2)

where h is the depth map and d is the ground-truth depth

value. Note that, for pelvis (i.e., the root joint), the depth is

a camera-centric depth. For other joints, the depth is relative

with respect to the corresponding root joint.

We group the heatmaps into instances (i.e., persons), and

retrieve the joint locations using the same procedure as in

the top-down network. Moreover, the values of the camera-

centric depth of the root joint zroot and the relative depth for

the other joints zrelk are obtained by retrieving from the cor-

responding depth maps where the joints (i.e., root or others)

are located. Specifically:

zrooti = hroot(xroot
i , yrooti ) (3)

zreli,k = hrel
k (xi,k, yi,k) (4)

where i, k refer to the ith instance and kth joint, respec-

tively.

3.3. Integration with InteractionAware Discrimi
nator

Having obtained the results from the top-down and

bottom-up networks, we first need to find the correspond-

ing poses between the results from the two networks, i.e.,

the top-down pose PTD
i and bottom-up pose PBU

j belong

to the same person. Note that P stands for camera-centric

3D pose throughout this paper.

Given two pose sets from bottom-up branch PBU and

top-down branch PTD, we match the poses from both sets,

in order to form pose pairs. The similarity of two poses is

defined as:

Simi,j =

K∑

k=0

min(cBU
i,k , cTD

j,k )OKS(PBU
i,k , PTD

j,k ), (5)

where:

OKS(x, y) = exp(−
d(x, y)2

2s2σ2
), (6)
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OKS stands for object keypoint similarity [49], which mea-

sures the joint similarity of a given joint pair. d(x, y) is

the Euclidean distance between two joints. s and σ are two

controlling parameters. Simi,j measures the similarity be-

tween the ith 3D pose PBU
i from the bottom-up network

and the jth 3D pose PTD
j from the top-down network over

K joints. Note that both poses from top-down PTD and

bottom-up PBU are camera-centric; thus, the similarity is

measured based on the camera coordinate system. The cBU
i,k

and cTD
j,k are the confidence values of joint k for 3D poses

PBU
i and PTD

j , respectively. Having computed the simi-

larity matrix between the two sets of poses PTD and PBU

according to the Simi,j definition, the Hungarian algorithm

[20] is used to obtain the matching results.

Once the matched pairs are obtained, we feed each pair

of the 3D poses and the confidence score of each joint to our

integration network. Our integration network consists of 3

fully connected layers, which outputs the final estimation.

Integration Network Training To train the integration net-

work, we take some samples from the ground-truth 3D

poses. We apply data augmentation: 1) random masking

the joints with a binary mask Mkpt to simulate occlusions;

2) random shifting the joints to simulate the inaccurate pose

detection; and 3) random zeroing one from a pose pair to

simulate unpaired poses. The loss of the integration net-

work is an L2 loss between the predicted 3D pose and its

ground-truth:

Lint =
1

K

∑

k

|Pk − P̃k|
2, (7)

where K is the number of the estimated joints. P and P̃ are

the estimated and ground-truth 3D poses, respectively.

Inter-Person Discriminator For training the integration

network, we propose a novel inter-person discriminator.

Unlike most existing discriminators for human pose es-

timation (e.g. [47, 7]), where they can only discrimi-

nate the plausible 3D poses of one person, we propose an

interaction-aware discriminator to enforce the interaction

of a pose pair is natural and reasonable, which not only

includes the existing single-person discriminator, but also

generalize to interacting persons. Specifically, our discrim-

inator contains two sub-networks: D1, which is dedicated

for one person-centric 3D poses; and, D2, which is dedi-

cated for a pair of camera-centric 3D poses from two per-

sons. We apply the following loss to train the network,

which is formulated as:

Ldis = log(C̃) + log(1− C) (8)

where:

C = 0.25(D1(P
a) +D1(P

b)) + 0.5D2(P
a, P b)

C̃ = 0.25(D1(P̃
a) +D1(P̃ b)) + 0.5D2(P̃

a, P̃ b)
(9)

where P a, P b are the estimated poses of person a and per-

son b, respectively. P̃ are the estimated and ground-truth

3D poses, respectively.

3.4. SemiSupervised Training

Semi-supervised learning is an effective technique to im-

prove the network performance, particularly when the data

with ground-truths are limited. A few works also explore to

make use of the unlabeled data [4, 45, 51]. In our method,

we apply a noisy student training strategy [50]. We first

train a teacher network with the 3D ground-truth dataset

only, and then use the teacher network to generate their

pseudo-labels of unlabelled data, which are used to train

a student network.

The pseudo-labels cannot be directly used because some

of them are likely incorrect. Unlike in the noisy student

training strategy [50], where data with ground-truth labels

and pseudo-labels are mixed to train the student network by

adding various types of noise (i. e., augmentations, dropout,

etc), we propose two-consistency loss terms to assess the

quality of the pseudo-labels, including the reprojection error

and multi-perspective error [4, 36].

The reprojection error measures the deviation between

the projection of generated 3D poses and the detected 2D

poses. Since there are more abundant data variations in 2D

pose dataset compared to 3D pose dataset (e.g., COCO is

much larger compared to H36M), the 2D estimator is ex-

pected to be more reliable than its 3D counterpart. There-

fore, minimizing a reprojection error is helpful to improve

the accuracy of 3D pose estimation.

The multi-perspective error, Emp, measures the consis-

tency of the predicted 3D poses from different viewing an-

gles. This error indicates the reliability of the predicted 3D

poses. Based on the two terms, our semi-supervised loss,

LSSL, is formulated as,

LSSL = w(Erep + Emp) + Ldis, (10)

where w is a weighting factor to balance the contribution of

the reprojection and multi-perspective errors. In the train-

ing stage, w first focuses on easy samples and gradually

includes the hard samples. The weight, w, is formulated as:

w = softmax(
Erep

r
) + softmax(

Emp

r
), (11)

where r is the number of training epochs. More details re-

garding to the reprojection and multi-perspective errors and

the self-training process are discussed in the supplementary

material.

4. Experiment

Datasets We use MuPoTS-3D [29] and JTA [11] datasets

to evaluate the camera-centric 3D multi-person pose estima-

tion performance by following the existing methods [32, 10]
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Method AP root

25
AUCrel PCK PCKabs

TD (w/o MP) 43.7 41.0 81.6 42.8

TD (w MP) 45.2 48.9 87.5 45.7

BU (w/o CH) 44.2 34.5 76.6 40.2

BU (w CH) 46.1 35.1 78.0 41.5

TD + BU (w/o MP,CH) 44.9 42.6 82.8 43.1

TD + BU (hard) 46.1 48.9 87.5 46.2

TD + BU (linear) 46.1 49.2 88.0 46.7

TD + BU (w/o PM) 46.0 48.6 85.5 45.3

TD + BU (IN) 46.3 49.6 88.9 47.4

Table 1. Ablation study on MuPoTS-3D dataset. TD, BU, MP, CH,

IN, and PM stand for top-down, bottom-up, multi-person pose es-

timator, combined heatmap, integration network, and pose match-

ing, respectively. Best in bold, second best underlined.

and their training protocols (i.e., train, test split). In ad-

dition, we use 3DPW [46] to evaluate person-centric 3D

multi-person pose estimation performance following [17,

42]. We also perform evaluation on the widely used Hu-

man3.6M dataset [16] for person-centric 3D human pose

estimation following [36, 47]. Details of the datasets infor-

mation are in the supplementary material.

Implementation Details We use HRNet-w32 [41] as the

backbone network for both multi-person pose estimator in

the top-down and bottom-up networks. The top-down net-

work is trained for 100 epochs on the COCO dataset [25]

with the Adam optimizer and learning rate 0.001. The

bottom-up network is trained for 50 epochs with the Adam

optimizer and learning rate 0.001 on a combined dataset of

MuCO [30] and COCO [25]. More details are in the sup-

plementary material.

Evaluation Metrics Since the majority of 3D human pose

estimation methods produce person-centric 3D poses, to

be able to compare, we perform person-centric 3D human

pose estimation. We use Mean Per Joint Position Error

(MPJPE), Procrustes analysis MPJPE (PA-MPJPE), Per-

centage of Correct 3D Keypoints (PCK), and area under

PCK curve from various thresholds (AUCrel) following the

literature [32, 36, 7]. Since we focus on 3D multi-person

camera-centric pose estimation, we also use the metrics de-

signed for evaluating performance in the camera coordinate

system, including average precision of 3D human root lo-

cation (AP root
25 ) and PCKabs, which is PCK without root

alignment to evaluate the absolute camera-centric coordi-

nates from [32], and F1 value following [10].

Ablation Studies Ablation studies are performed to val-

idate the effectiveness of each sub-module of our frame-

work. We validate our top-down network by using an ex-

isting top-down pose estimator (i.e., detection of one full-

body joints) as a baseline, abbreviated as TD (w/o MP) to

compare to our top-down network denoted as TD (w MP).

We also validate our bottom-up network by using existing

bottom-up heatmap estimation (i.e., estimate all person at

Method AP root

25
AUCrel PCK PCKabs

Rep 46.3 43.4 77.2 40.7

MP 46.3 32.2 72.8 29.5

Rep+dis 46.3 49.9 89.1 46.8

Rep+MP+dis 46.3 50.6 89.6 48.0

Table 2. Ablation study on MuPoTS-3D dataset. Rep, MP, and dis

stand for reprojection, multi-perspective, and discriminator. Best

in bold, second best underlined.

the same scale) as a baseline, named BU (w/o CH) to com-

pare to our bottom-up network, called BU (w CH). To evalu-

ate our integration network, we use three baselines. The first

is a straightforward integration by combining existing TD

and BU networks. The second is hard integration, abbre-

viated TD + BU (hard), where the top-down person-centric

pose is always used, plus the root depth from the bottom-up

network. The third is linear integration, abbreviated TD +

BU (linear), where the person-centric 3D pose from top-

down is combined with its corresponding bottom-up one

based on the confidence values of the estimated heatmap.

As shown in Table 1, we observe that our top-down net-

work, bottom-up network, and integration network clearly

outperform their corresponding baselines. Our top-down

network tends to have better person-centric 3D pose esti-

mations compared with our bottom-up network, because the

top-down network benefits from not only multi-person pose

estimator, also GCN and TCN that help to deal with inter-

occluded poses. On the contrary, our bottom-up network

achieves better performance for the root joint estimation,

because it estimates the root depth based on a full image;

while the root depth of top-down network is estimated based

on an individual skeleton. Finally, our integration network

demonstrates superior performance compared to hard or lin-

ear combining the poses from the top-down and bottom-up

networks, which validates its effectiveness.

Other than validating our top-down and bottom-up net-

works, we also perform ablation analysis on our semi-

supervised learning. We show the result of using repro-

jection loss, multi-perspective loss, reprojection loss with

our discriminator, and reprojection & multi-perspective loss

with discriminator in Table 2. We can see that the repro-

jection loss is more useful than the multi-perspective loss

because it leverages the information from the 2D pose esti-

mator, which is trained with 2D datasets with a large num-

ber of poses and environment variations. More importantly,

we observe that our proposed interaction-aware discrimina-

tor makes the largest performance improvement compared

with the other modules, demonstrating the importance of

enforcing the validity of the interaction between persons.

Quantitative Evaluation To evaluate the performance

for 3D multi-person camera-centric pose estimation in both

indoor and outdoor scenarios, we perform evaluations on

MuPoTS-3D as summarized in Table 3. The results show
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that our camera-centric multi-person 3D pose estimation

outperforms the SOTA [22] on PCKabs by 2.3%. We also

perform person-centric 3D pose estimation evaluation us-

ing PCK where we outperform the SOTA method [24]

by 2.1%. The evaluation on MuPoTS-3D shows that our

method outperforms the state-of-the-art methods in both

camera-centric and person-centric 3D multi-person pose es-

timation as our framework overcomes the weaknesses of

both bottom-up and top-down branches and at the same time

benefits from their strengths.

Following recent work [10], we also perform evaluations

on JTA, which is a synthetic dataset acquired from computer

game, to further validate the effectiveness of our method

for camera-centric 3D multi-person pose estimation. As

shown in Table 4, our method is superior over the SOTA

method [10] (e.g., our result shows 12.6% improvement

on F1 value, t = 0.4m) on this challenging dataset where

both inter-person occlusion and large person scale variation

present, which again illustrate that our proposed method can

handle these challenges in 3D multi-person pose estimation.

Human3.6M is widely used for evaluating 3D single-

person pose estimation. As our method is focused on deal-

ing with inter-person occlusion and scale variation, we do

not expect our method performs significantly better than the

SOTA methods. Table 5 summarizes the quantitative evalu-

ation on Human3.6M where our method is comparable with

the SOTA methods [19, 22] on person-centric 3D human

pose evaluation metrics (i.e., MPJPE and PA-MPJPE).

3DPW is an outdoor multi-person 3D human shape re-

construction dataset. It is unfair to compare the errors

between skeleton-based method with ground-truth defined

on SMPL model [26] due to the different definitions of

joints [44]. We run human detection on all frames and cre-

ate an occlusion subset where the frames with the large

overlay between persons are selected. The performance

drop between the full testing test of 3DPW and the occlu-

sion subset can effectively tell if a method can handle inter-

person occlusion, which is shown in Table 6. We observe

that our method shows the least performance drop from the

testing set to the subset, which demonstrates our method is

indeed more robust to inter-person occlusion.

Qualitative Evaluation Fig. 4 shows the comparison

among a SOTA bottom-up method SMAP [53], our bottom-

up branch, top-down branch, and full model. We observe

that SMAP suffers from person scale variation where the

person who is far from the camera is missing in frame 280

as well as inter-occlusion (e.g., frame 365 and 340). Our

bottom-up branch is robust to scale variance, but fragile to

the out-of-image poses as our discriminator is not used here

(e.g., frame 365 and 330). Moreover, our top-down branch

produces reasonable relative poses with the aid of GCN and

TCNs. However, there exists error of camera-centric root

depth in our top-down branch, because our top-down branch

Group Method PCK PCKabs

Mehta et al. [29] 65.0 n/a

Person- Rogez et al., [39] 70.6 n/a

centric Cheng et al. [8] 74.6 n/a

Cheng et al. [7] 80.5 n/a

Moon et al. [32] 82.5 31.8

Camera- Lin et al. [24] 83.7 35.2

centric Zhen et al. [53] 80.5 38.7

Li et al. [22] 82.0 43.8

Cheng et al. [6] 87.5 45.7

Our method 89.6 48.0

Table 3. Quantitative evaluation on multi-person 3D dataset,

MuPoTS-3D. Best in bold, second best underlined.

Method t = 0.4m t = 0.8m t = 1.2m

[37] + [27] + [39] 39.14 47.38 49.03

LoCO [10] 50.82 64.76 70.44

Ours 57.22 68.51 72.86

Table 4. Quantitative results on JTA dataset. F1 values are reported

based on different threshold t when the point is considered ”true

positive” when the distance from corresponding distance is less

than t. Best in bold, second best underlined.

Group Method MPJPE PA-MPJPE

Hossain et al., [13] 51.9 42.0

Wandt et al., [47]* 50.9 38.2

Person- Pavllo et al., [36] 46.8 36.5

centric Cheng et al., [8] 42.9 32.8

Kocabas et al., [18] 65.6 41.4

Kolotouros et al. [19] n/a 41.1

Moon et al., [32] 54.4 35.2

Camera- Zhen et al., [53] 54.1 n/a

centric Li et al., [22] 48.6 30.5

Ours 40.7 30.4

Table 5. Quantitative evaluation on Human3.6M for normalized

and camera-centric 3D human pose estimation. * denotes ground-

truth 2D labels are used. Best in bold, second best underlined.

Dataset Method PA-MPJPE δ

Doersch et al. [9] 74.7 n/a

Kanazawa et al. [17] 72.6 n/a

Original Arnab et al. [1] 72.2 n/a

Cheng et al. [7] 71.8 n/a

Sun et al. [42] 69.5 n/a

Kolotouros et al. [19]* 59.2 n/a

Kocabas et al., [18]* 51.9 n/a

Our method 62.9 n/a

Cheng et al. [7] 92.3 +20.5

Sun et al. [42] 84.4 +14.9

Subset Kolotouros et al. [19]* 79.1 +19.9

Kocabas et al., [18]* 72.2 +20.3

Our method 75.6 +12.7

Table 6. Quantitative evaluation using PA-MPJPE on original

3DPW test set and its occlusion subset. * denotes extra 3D datasets

were used in training. Best in bold, second best underlined.

estimates root depth based on individual 2D poses and lacks

global awareness (e.g., frame 280). Finally, our full model

benefits from both branches and produces the best 3D pose

estimations among these baselines.

We also provide results of the estimated 3D poses in
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Frame 240 Frame 280 Frame 300 Frame 365 Frame 305 Frame 315 Frame 330 Frame 340

[53]

BU

TD

Full

Input

Figure 4. Examples of results from our whole framework compared with different baseline results. First row shows the images from two

video clips; second row shows the results from SMAP [53]; third row shows the result of of our bottom-up (BU) branch; fourth row shows

the results of our top-down (TD) branch; last row shows the results of our full model. Wrong estimations are labeled with red circles.

Frame 0° 90°45°

Figure 5. Qualitative results of the estimated 2D poses overlaying

on input images and the estimated 3D poses visualized in novel

viewpoints (virtual camera rotated by 0, 45, 90 degrees clockwise).

Different colors are used for different persons in both 2D and 3D

human poses for better visualization purpose.

novel viewpoints and the estimated 2D poses overlaid on in-

put images as in Fig. 5 where our estimated camera-centric

3D poses visualized from different angles further validate

the effectiveness of our method. Two failure cases are

shown in Fig. 6 where the samples are taken from MPII

dataset. The common failure cases are constant heavy oc-

clusion (left) and unusual poses (right).

Figure 6. Two representative failure cases of our method.

5. Conclusion

We have proposed a novel method for monocular-video

3D multi-person pose estimation, which addresses the prob-

lems of inter-person occlusion and close interactions. We

introduced the integration of top-down and bottom-up ap-

proaches to exploit their strengths. Our quantitative and

qualitative evaluations show the effectiveness of our method

compared to the state-of-the-art baselines.
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