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Figure 1: From a small set of input multi-view image (left), our

method recovers the dense 3D object (middle) and its unknown

generic surface reflectance (right).

Abstract

Recovering the 3D geometry of a purely texture-less ob-

ject with generally unknown surface reflectance (e.g. non-

Lambertian) is regarded as a challenging task in multi-

view reconstruction. The major obstacle revolves around

establishing cross-view correspondences where photomet-

ric constancy is violated. This paper proposes a simple

and practical solution to overcome this challenge based on

a co-located camera-light scanner device. Unlike existing

solutions, we do not explicitly solve for correspondence.

Instead, we argue the problem is generally well-posed by

multi-view geometrical and photometric constraints, and

can be solved from a small number of input views. We for-

mulate the reconstruction task as a joint energy minimiza-

tion over the surface geometry and reflectance. Despite this

energy is highly non-convex, we develop an optimization al-

gorithm that robustly recovers globally optimal shape and

reflectance even from a random initialization. Extensive ex-

periments on both simulated and real data have validated

our method, and possible future extensions are discussed.

1. Introduction

3D reconstruction from multi-view images is one of

the central problems in computer vision. Most traditional

multi-view reconstruction methods such as SFM (structure

from motion) often assume the scene or object to be recon-

structed have distinctive features that are view-independent,

so that cross-view feature correspondences can be read-

ily established. However, this is not the case for many

commonly-seen real-world objects or surfaces manifest-

ing non-Lambertian reflectance. Traditional SFM meth-

ods are unable to reconstruct such texture-less surfaces with

glossy appearance. The problem is even more challenging

if the generic surface reflectance is unknown, in which case

there is no apparent way to model how object’s appearance

changes with viewpoint.

Figure 2: Two experiment setups: Hardware used for capturing

images under a co-located setup. A point light source is rigidly

attached to camera lens with a small displacement.

By marrying photometric stereo with traditional multi-

view methods, many papers have succeeded in overcom-

ing parts of these challenges. Most of these methods are

reliant on an external initialization of the 3D shape (e.g.

[27, 6, 24]) to establish initial correspondences. Typically,

finer-grained details are added incrementally to the recov-

ered geometry. However, good initialization is not of-

ten guaranteed (e.g. many require initial shape from SFM

pipelines, which are already vulnerable to textureless sur-

face or specular highlights), and a large number of input

images are often required. Additionally, many methods re-
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sort to restrictive assumptions about the setup, objects and

scenes. Common assumptions include e.g., purely/almost

Lambertian reflectance [15, 7, 8, 39, 3, 29, 19], planer ob-

ject shape [9], known depth via an RGB-D sensor [31], or

stereo vision with semi-static viewpoint but varying illumi-

nation [41, 13]. So far, direct multi-view reconstruction of

textureless, glossy objects remains an open challenge that

no method addresses well.

This paper presents a simple and practical solution to

jointly recover high-fidelity surface geometry as well as un-

known generic reflectance of a purely texture-less object.

We advocate a co-located camera and light-source config-

uration, as shown in Fig. 2, where a point light source is

rigidly and closely attached to the camera. Such scanner

device is easily accessible with commodity hardware (e.g. a

mobile phone camera with built-in flash).

Unlike existing photometric 3D reconstruction methods

under fixed viewpoint, we allow the camera to move freely

to leverage multi-view constraints. Our method is also dif-

ferent from existing multi-view methods mentioned above,

in that we do not intend to establish explicit cross-view cor-

respondences, either by feature matching or through shape

initialization, since both are hard to obtain for a purely

texture-less surface with arbitrary BRDF. Instead, we show

that given a small number of views, shape and reflectance

are already well-constrained by a physically-based image

formation model. With this observation, we formulate re-

construction task as an energy minimization problem in-

volving a single, unified objective. While this problem is

still highly non-convex, we propose an effective optimiza-

tion based approach that robustly reconstructs complex ge-

ometry as well as general reflectance without initial shape.

Code and data will be available at https://github.com/

za-cheng/PM-PMVS/.

2. Related work

Multi-view Photometric stereo. Multi-view photometric

stereo (MVPS) methods often formulate the task as en-

ergy optimization, and solve it iteratively from a coarse ini-

tialization. The initialization is often obtained via SFM

3D reconstruction [36, 33] or from object’s visual hull

[12]. Many methods assume Lambertian reflectance, in

which case surface normal can be solved under a linear sys-

tem, to which specularities are simply discarded as outliers

[16, 7, 39, 29, 19]. Recovered normal field is later used

to refine the 3D shape geometry, and high-frequency shape

details can be gradually recovered in an iterative manner.

Under known global illumination, this can be further ex-

tended to analytical BRDF models, allowing recovery of

reflectance as well [27]. Another notable branch of MVPS

methods [41, 13] uses iso-depth constraints from a light

ring to propagate initial sparse correspondences from SFM.

When reflectance is Lambertian, surface details can also be

reconstructed by fusing shape-from-shading with classical

multiview stereo [11, 10, 22, 23]. However, for a textureless

surface of specular material that extends outside viewing

frustum, neither multi-view stereo nor visual hull is applica-

ble, which puts a significant challenge on initializing exist-

ing MVPS methods. Additionally, MVPS methods gener-

ally require a large number of views (often a few hundreds),

and most methods are designed for special scanner systems

that are hard to build.

Co-located Photometric stereo. Similar to our configu-

ration, Higo et al. [8] used controlled illumination consist-

ing of a perspective camera with a rigidly attached point

light source. They assume predominantly diffusive (i.e.,

Lambertian) reflectance to simplify surface normal solution,

and treat specularities as outliers. With a similar co-located

camera-light setup, Hui et al. [9] proposed a method for

general spatially-varying BRDF (SVBRDF) sampling, but

it is only applicable to planar surface where pixel correspon-

dences can be easily found (via homography). Li et al. [14]

addressed the same problem by using a single mobile phone

image with the assistance of deep learning. In addition to its

accessibility, a co-located setup can naturally reduce the 3D

input space of isotropic BRDFs to a univariate one, which

helps to improve estimation robustness even with less im-

ages. Nam et al. [24] later used a similar setup for joint

reflectance and shape recovery. However, like most multi-

view photometric methods, they require an initial shape in-

put from a large set of images and cannot handle highly

specular materials. Wang et al. [38] use a co-located light

source to decouple normal and reflectance estimation in a

standard photometric stereo setup. Schmitt and Donné et

al. [31] used a handheld RGB-D method to improve camera

pose estimation, where the depth sensor is used to provide

shape initialization.

3. Problem Setup: Image formation

The overall setup of our camera and light-source is illus-

trated in Fig. 3, where a single point light source is rigidly

attached to the camera with a small distance to the camera

centre.

We assume the object’s surface BRDF is uniform and

isotropic, which under out setup reduces to a univariate

function of incident/view angle (Fig. 4). We further assume

the surface is smooth (or at least piece-wise smooth) so that

surface normal vectors can be defined almost everywhere.

While in this paper we mostly focus on solving spatially-

uniform BRDF, our method (and its principle) can be ex-

tended to spatially-variant or SVBRDF as well. However,

this is to be thoroughly addressed elsewhere to keep this

paper concise and focused.

Consider multiple images of the surface K are given,

each from a distinct viewpoint m ∈ M with the above co-
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Figure 3: The geometric configuration of camera and light source

in our reconstruction system. A light ray emitted from the point

light oi hits surface point k. The reflected ray reaches camera, also

at oi, through projection Pi forming multi-view observation from

different viewpoints (i=1,2,...). Our task is to recover the surface

shape (normal and depth) for all k, as well as reflectance.𝑛𝜃𝑖𝑛
𝜓𝑑
𝜃𝑖𝜃𝑜

Figure 4: Left: Isotropic BRDF defined on three angular vari-

ables. Right: BRDF becomes univariate function under co-located

setup.

located system. Denote xk ∈ R
3 as the 3D world coordi-

nates of the k-th surface point. Then, its radiance observed

at view m is proportional to the corresponding raw pixel

intensity in the mth image Im. This gives our photometric

image formation equation:

αk
mIm(Pmxk) = αk

m

γρ(θkm)

d(om,xk)2
, (1)

where d(om,xk) = ‖om − xk‖ is the Euclidean distance

between om and xk, and ρ(·) is the 1D BRDF1, om is the

centre of view m in world coordinates, and θkm denotes the

incident/view angle between vector (xk − om) and surface

normal nk. Pm is the camera perspective projection matrix.

We assume all camera views (Pm,m = 1...N ) are geo-

metrically calibrated, namely they are known parameters.

This is easy to achieve in practice, by using any off-the-

shelf camera calibration software toolbox(e.g. [20]). γ is a

constant factor proportional to the brightness of light source

and the response function of the camera, and αk
m encodes

the visibility of surface point k in view m (i.e., αk
m = 1 if

k is visible in view m and αk
m = 0 if otherwise,e.g. caused

by occlusion or image boundary cropping).

To address the high dynamic range especially when

imaging a non-Lambertian (e.g. highly specular) surface,

1We assume the cosine fall-off factor is subsumed in ρ().

the above photometric image formation equation is often

rewritten in the log-space, namely,

αk
m

(

log ρ(θkm)−log Im(Pmxk)−log ‖om−xk‖
2
2+log γ

)

= 0.
(2)

This log-scale form helps to improve numeric condition of

the problem (ref. Nielsen et al. [25] for more details).

4. Energy Minimization: Joint shape and BRDF

recovery

Recall our goal is to recover the unknown BRDF and 3D

shape from multi-view observations. We use a coefficient

vector c to parameterize a BRDF function (c.f . Sec. 4.1).

The shape is represented as a set of points K indexed by

pixels in the reference frame2. The surface shape is thus

modelled as depth and normal maps in the reference frame,

i.e. zk and nk for all k ∈ K. Under perspective camera

model, the relation between world coordinates xk and depth

zk can be readily established as xk = zk(P
+
refpk − o1) + o1

where P+
ref is the inverse projection that maps reference

frame pixel pk in image coordinates onto the unit depth

plane in world coordinates.

Our energy function is defined as a weighted sum of

three energy terms: photometric term Ep, shape term Es

and BRDF term Ec.

E(n, z, c) = Ep(n, z, c) + λsEs(n, z) + λcEc(c). (3)

The first term represent the photometric constraint Eq. (2),

and the latter two can be viewed as regularizers on shape

and reflectance respectively.

4.1. BRDF parameterization (Ec)

Before we introduce our energy model, let us first de-

fine our non-parametric BRDF representation. Recent work

on BRDF parameterization [25, 40] suggested that a wide

range of real-world BRDFs can be approximated by a lin-

ear combination of a compact set of BRDF bases with high

accuracy in the log space. Specifically, log ρ(·) is approxi-

mated by

log ρ(·) ≈ D(·)c+ µ(·) (4)

where c ∈ R
N is the linear mixing coefficients, and µ is

the average log-BRDF. D = [d1, d2, .., dN ] is a set of pre-

learned BRDF basis functions.

Given a collection of real BRDFs (e.g. MERL [21]), one

can learn the bases as the leading N eigenfunctions. We fur-

ther weight basis di by its square-rooted eigenvalues to im-

prove conditioning, as suggested by [25]. Overall the BRDF

term becomes:

Ec(c) = ‖ log ρ− Dc− µ‖2 + ‖c‖2 ≈ ‖c‖2. (5)

2without loss of generality, the first input image is used as the reference
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This term effectively encourages c to follow a spherical

Gaussian prior in our non-parametric BRDF space. A simi-

lar Tikhonov regularizer has been used to reduce the BRDF

sampling as well [40].

4.2. Photometric term Ep

From image formation model Eq. (2), a multi-view ‘ren-

dering loss’ of point cloud K could be straightforwardly

derived as

Erender =
1

|K||M |

∑

k,m

αk
mLδ

(

Φm(nk, zk, c)
)

, (6)

where Lδ(·) denotes the robust Huber loss (with clipping

parameter δ), αk
m ∈ {0, 1} is the visibility of point k in view

m and Φm(nk, zk, c) measures the log-scale difference be-

tween expected scene radiance and true pixel intensities

Φm(nk, zk, c) = D(θkm)c+ µ(θkm)

− log
( 1

γ
Im(Pmxk)‖om − xk‖

2
2

)

. (7)

A major challenge for computing Eq.(6) revolves around

the visibility mask αk
m, which depends not only on view-

point but also the unknown shape to be solved for, hence

cannot be computed a priori. To overcome this difficulty,

we use a simple heuristic to select for each surface point k
a subset of M images with the smallest photometric errors.

We assume every surface points k should be visible in at

least M out of M views (i.e. ∀k ∈ K
∑

m αk
m ≥ M),

where M < |M | is a pre-set constant. Mathematically, we

define our photometric energy term as

Ep(n, z, c) =
1

|K|M

∑

k∈K

min
|Mk|=M

∑

m∈Mk

Lδ

(

Φm(nk, zk, c)
)

.

(8)

Notably, the min-sum selector Mk, in its way of handling

occluded or out-of-view points, is analogue to least trimmed

squares — an objective function commonly seen in robust

regression.

4.3. Shape term Es

A prerequisite for image formation model is the surface

should be smooth, hence its normal can be defined almost

everywhere and is perpendicular to tangent vectors. We de-

sign Es following this observation, to encourage surface

smoothness and local integrity:

Es(n, z) =
1

|K||Nk|

∑

k

∑

j∈Nk

(

nT
k (xk − xj)

)2
, (9)

where Nk is the 4-neighbor of pixel k in the reference

frame.

5. Solving the energy minimization

The above energy function is highly non-convex due to

the view-dependent non-Lambertian BRDF and the arbi-

trary image measurements in the scene. Previous photo-

metric methods tackled this non-convexity either by using

overly simplistic reflectance model (e.g. pure Lambertian)

or by assuming the availability of high quality initialization,

if not both.

In this paper, we do not rely on above assumptions.

Our energy minimization algorithm is based on coordi-

nate descent, alternating between two sub-problems of solv-

ing BRDF and solving shape parameters respectively (see

Sec. 5.1 and Sec. 5.2). Therefore it can be initialized from

an inexact estimation of either shape or BRDF. In fact, we

show it can converge quickly and correctly even from a null

initialization, namely, starting from the triviality of c = 0
with no initial shape.

5.1. Solve for BRDF, fixing Shape

Suppose a current 3D shape estimation is given and

fixed, we solve for the BRDF by minimizing Eq. (3), i.e.,

min
c,γ

Ep(n, z, c) + λcEc(c). (10)

Here we keep the minimum set Mk constant during the op-

timization, in which case Ep(n, z, ·) becomes convex and

can be globally minimized. We note that in practice such

approximation has minimal impact on the estimation due to

problem being well-constrained on c, and the approxima-

tion is indeed an upper bound of true energy. We employ a

standard L-BFGS optimizer [26] and solve the camera re-

sponse rate γ together with c.

5.2. Solve for Shape, fixing BRDF

With fixed BRDF, surface shape is solved by minimiz-

ing Eq. (3) w.r.t. n, z. This is a highly challenging min-

imization problem due to the non-convexity of the image

formation function Im(Pm·) and BRDF ρc(·). In our exper-

iments we found that conventional optimization algorithms

(e.g. gradient-descent or quasi-Newton) almost always fail

unless provided with a high quality initialization.

Formally, we seek to solve the following minimization

problem:

min
n,z

Ep(n, z, c) + λsEs(n, z). (11)

To do this, we introduce a set of auxiliary variables

z̃ = [z̃1, ..., z̃K ]T to decouple Ep and Es, and employ a

quadratic penalty method (QPM) [35] to relax the ‘hard’

constraint z̃− z = 0

EQPM(n, z, z̃) = Ep(n, z, c)+λsEs(n, z̃)+σ(i)‖z̃− z‖2,
(12)
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where σ(i) = κσ(i−1) is a penalty coefficient that increases

exponentially w.r.t. i by some factor κ > 1. As i grows,

violations of z̃−z = 0 are penalized with increased severity

until the constraint is satisfied. In this paper we use fixed

κ = 1.3.

The purpose for above relaxation is that unlike Eq.(11),

Eq.(12) is now convex (quadratic) w.r.t. z̃, and k-separable

w.r.t. n, z. In other words, the objective w.r.t. n, z can be re-

written as a summation over K mutually independent sub-

energy terms 3

EQPM(n, z, z̃) =
∑

k∈K

Ek
QPM(nk, zk, z̃), (13)

where each term Ek
QPM(·, ·, z̃) has a small input space that

can be directly searched. Therefore EQPM(·, ·, z̃) as a whole

can be globally minimized by e.g. exhaustive search within

complexity O(K)4. This is a crucial step as it allows one

to overcome the non-convexity of original energy (most of

which is in n, z dimensions) in a tractable manner.

We solve the QPM optimization by alternating coordi-

nate descent between {n, z} and z̃, as listed in Alg. 1. Sim-

ilar to the arguments made above, the optimal z̃ is amenable

to closed-form solution by the sparse least square LSQR al-

gorithm [28]. Conversely, optimization of {n, z} is non-

convex, but can be decomposed into K independent sub-

problems.

Here we solve the latter using a randomized search ap-

proach inspired by PatchMatch [1, 2], which iterates be-

tween two steps: propagation and randomized search. Dur-

ing propagation step, for every k we attempt to improve

Ek
QPM using its neighbors’ normal and depth {nj , zj |j ∈

Nk} as candidates. During the randomized search, we at-

tempt to improve Ek
QPM with random candidates of nk, zk.

In both steps, the best candidate is kept and carried to the

next iteration. In practice, we found PatchMatch to be sig-

nificantly more efficient than exhaustive search, thanks to

the spatial smoothness of shape variables. An optimal solu-

tion can often be found in just 10 to 15 iterations. Note that

PatchMatch does not need an initialization. Rather it starts

from a random initial point. We refer the readers to Barnes

et al. [1, 2] for details about PatchMatch.

An overview of relaxed minimization is presented in

Alg. 1. Note the solution at least converges to a local mini-

mum, as eventually neither PatchMatch nor LSQR increases

energy when σ no longer changes. In practice, we found the

solution turned out to be almost always globally optimal.

3See supplemental for proof.
4Global optimality is guaranteed under the weak assumption that the

depth zk is bounded and energy is bounded Lipschitz continuous, see sup-

plemental for proof.

Algorithm 1 Solution for Eq. (11) by solving a series of

quadratic coupling sub-problems.

function SOLVESHAPE(n, z, σ(0))

z̃ = 0

σ = σ(0) ⊲ initially very small

repeat

n, z = PATCHMATCH(min func=EQPM(·, ·, z̃))
z̃ = LSQR(min func=EQPM(n, z, ·))
if ‖z− z̃‖ is not sufficiently small then

σ = κσ
continue

end if

until Energy converges

return n, z
end function

5.3. Analysis

Before presenting our experiment results,let us analyze

the existence of optimal solution. Specifically, we will show

that ground-truth (shape and BRDF) is indeed a valid opti-

mizer for the energy function, and conversely, minimizing

this energy to its optimum will lead to the true solution. We

do so by considering two reflectance estimations: one is the

ground-truth BRDF itself, and the other is inferred from the

estimated shape {zk,nk} by solving Eq. (2), as illustrated

in Fig. 5. The equality of Eq. (2) states that the two esti-

mations must agree with each other. Otherwise a discrep-

ancy generally exists between the two, which contributes to

a non-minimum energy value. By minimizing the energy,

such discrepancy is also reduced, eventually leading to the

true BRDF and true shape. (The reader is also referred to

the curves obtained in our real experiments in Fig .9 for a

better visualization.)
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Figure 5: Shape and BRDF visualized in θ-reflectance domain.

The green curve is the ground truth BRDF and red points are in-

ferred from shape under Eq. (2). The latter is nonconforming to

any BRDF if shape is given wrong values (5a). On the other hand,

the ground-truth shape corresponds to a true minimizer as shown

in (5b).

6. Experiments

To validate the proposed method, we conducted experi-

ments on both synthetic and real images of multi-view pho-

tometric observations.
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Figure 6: Results on Synthetic objects. See supplemental for more visual results.
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[32] G.T. [29] [13] Ours

Figure 7: Comparison on Diligent-MV dataset [13] with

normal errors listed on top. Note our method received far

less images than the other two methods, and does not re-

quire high quality initial shape.

6.1. Synthetic experiments

For synthetic experiments, our aim is to quantitatively

verify the effectiveness of our method under different imag-

ing conditions. Throughout our experiments, we use the

same and fixed set of parameter settings, i.e., N = 15,

δ = 0.1, λs = 106, λc = 0.005, suggesting the method

is rather agnostic or robust to meta-parameters. Our en-

ergy minimization algorithm was always initialized from

null BRDF i.e. c = 0 and without initial shape.

We render multiple 3D mesh models with BRDFs sam-

pled form the MERL database [21]. To validate the BRDF

models, we perform multiple rounds of cross validation

where 95 out of the 100 materials in MERL were used to

learn the bases (or dictionary) D and the remaining five

BRDFs for rendering and testing. We position the virtual

camera approximately one world unit (metre) away from

mesh in reference frame, and all objects (except the open

surface) are scaled so that they span 0.25 unit length (25

centimetres) in whichever is the greatest of its X, Y and Z

dimensions. We render only 10 views of the target objects

with co-located point light source.

Some reconstructions obtained from our method are vi-

sualized in Fig 6, where we test the performance on four

models ‘buddha, bunny, armadillo, teapot’ from Stanford

dataset [4] and Diligent dataset [34]. Additionally, we ren-

der an open and smooth surface ‘himmelblau’ (refer to sup-

plemental for details). In table-1 we list quantitative perfor-

mance w.r.t. ground truth shape and BRDF. We measure the

mean errors for recovered surface normal in degrees, depth

map (in world units), and log-BRDF (absolute difference

averaged over input angles in [0, π/2)). Note the mean nor-

mal and depth errors are mostly caused by heavy occlusion

on objects’ boundaries where the shape cannot be exactly

recovered, while the median errors are mush smaller.

6.2. Comparison

To the best of our knowledge, our method is original and

few previous paper had attempted at this challenging task

in the same setting. This makes a direct and fair compari-

son difficult. However, to provide the reader a sense of the

performance of our 3D reconstruction, we offer comparison

with two state-of-the-art methods – Park et al. [29] and Li et

al. [13] – on Diligent-MV dataset [13]. We note that this re-
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quires us to modify our method for a detachable light source

(i.e. a non-co-located setup), and model a higher dimen-

sional BRDF. In this experiment, we follow the bi-variate

BRDF approximation, and incorporate a second difference

angle in our BRDF formulation [30].

Furthermore, we note following differences between our

methods and [29, 13]: (1) our method is based on 21 in-

put images from 3 viewpoints, while [29, 13] received 1920

images from 20 viewpoints (2) we reconstruct an oriented

point cloud indexed by reference pixels, while [29, 13] out-

puts a water tight triangle mesh (3) our method is randomly

initialized, while [29, 13] received high quality initial shape

from MVS pipeline [5] with human correspondence label-

ing involved.

Fig 7 illustrates the reconstructed normal maps on two

real world models Buddha and Bear, with corresponding

mean normal error listed on top. We also include the results

from COLMAP [32] as an SFM baseline. We are able to

achieve comparable performance to [29, 13] despite using

far less images and unaided by initial geometry. Compared

to COLMAP [32], we reconstruct a dense point cloud of

arguably better quality.

Table 1: Error metrics on different target objects. Note we erode

foreground region by 2 pixels for evaluation purpose since object’s

boundaries are often heavily self-occluded.

Models
Normal in degrees Depth × 1000 BRDF × 10

median mean median mean median mean

Buddha 1.87 5.59 0.45 1.36 0.37 1.44

Bunny 1.33 5.27 0.42 0.90 0.30 2.81

Armadillo 1.40 7.81 0.35 1.57 0.66 1.33

Teapot 0.67 2.64 0.51 0.82 0.38 0.55

Himmelblau 1.45 2.06 1.28 5.40 0.67 1.94

Overall 1.36 5.65 0.59 1.40 0.69 1.56

We also present examples of recovered (non-

Lambertian) BRDFs compared with their corresponding

ground-truths, as shown in Fig-8.
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Figure 8: Recovered BRDF curves versus the ground truth

BRDFs for three different materials.

6.2.1 Convergence Analysis

As our energy model and minimization algorithm are

mostly heuristic, it is difficult to prove the convergence on

shape and BRDF metrics compared to ground truths, and

such proof is beyond the scope of this paper. Instead, we

offer to verify the convergence experimentally.

Fig. 9 depicts how well the image formation equation

(Eq. (2)) is satisfied as the energy decreases. The vertical

distances between each point and the predicted BRDF curve

contribute to the overall inequality of multi-view photomet-

ric constraint Eq. (2). As iterations increase, this distance

gradually decreases and the energy is minimized. The final

solution in Fig. 9c is well-constrained and close to the true

BRDF. Fig. 10 illustrates error metrics indeed converge as a

function of iterations.
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(a) 1st iteration
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(b) 10th iteration
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Figure 9: Visualization of how multi-view photometric con-

straints are gradually approached as the algorithm iterates. Red

points are the reflectances retrieved from current shape, and the

blue curve is the fitted BRDF curve. Both fittings gradually con-

verge to ground-truth.
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Figure 10: Left: normal angular error and Right: log-BRDF error

(averaged over input angles) versus iterations.

6.3. Tests on real images

In this subsection we qualitatively evaluate the perfor-

mance of proposed algorithm on real-world images. To

build the co-located camera and light source, we rigidly

attached a universal light source onto the camera lens, as

shown in Fig. 2. Similar to synthetic experiments, we take

20 images at varying camera positions in front of each tar-

get object. Since our method relies on photometric mea-

surements, throughout our experiments, we use RAW im-

age format and ensure that the measured image intensity is

produced from a linear response function. This is readily

accessible for commodity DSLR cameras and many smart-

phone cameras.

For obtaining extrinsic camera parameters, a standard

checkerboard is placed near the object, and intrinsic and

extrinsic parameters are solved by minimizing the reprojec-

tion error on corner points (cf. Fig. 11) [17, 18, 37]. Input
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(a) ref.view (b) est. normal (c) est. depth (d) re-rendered

Figure 11: Input real image, recovered normal map, depth map, and re-rendered shape reconstruction.

(a) real shape (b) est. normal

Figure 12: Naturally lit real world objects versus reconstructed

shapes.

images are then rectified and foreground regions are manu-

ally cropped out. More experimental results on real data are

shown in Fig. 11 and 12. It is clear that our method achieves

fine-grained reconstruction; even small details (such as the

tiny surface bumps) are recovered vividly.

7. Conclusion

This paper has presented a new multi-view photometric

3D reconstruction method built upon a simple and practi-

cal camera-light configuration. It is able to recover fine-

detailed 3D shape of a purely texture less surface with

unknown arbitrary (non-Lambertian) reflectances, from a

small set of multi-view input images. Our key contribution

is a new optimization procedure that solves the challeng-

ing (highly non-convex) energy minimization task effective

and optimally, without proper initialization. Our method

obtains visually compelling results on both synthetic data

and real images. Possible future extensions include to relax

the assumptions about the scene, such as isotropic BRDF,

uniform material, or point light source. The co-located con-

figuration may also be relaxed. One limitation of our meth-

ods is that it can only handle open smooth (or piecewise

smooth) surface visible by the reference camera view, and

assume uniform reflectance on its surface. While we are

working on relaxing these limitations, we hope this work

may inspire future researchers working in the field.
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[23] Jean Mélou, Yvain Quéau, Fabien Castan, and Jean-Denis

Durou. A splitting-based algorithm for multi-view stereopsis

of textureless objects. In International Conference on Scale

Space and Variational Methods in Computer Vision, pages

51–63. Springer, 2019. 2

[24] Giljoo Nam, Joo Ho Lee, Diego Gutierrez, and Min H. Kim.

Practical svbrdf acquisition of 3d objects with unstructured

flash photography. ACM Trans. Graph., 37(6), Dec. 2018. 1,

2

[25] Jannik Boll Nielsen, Henrik Wann Jensen, and Ravi Ra-

mamoorthi. On optimal, minimal brdf sampling for re-

flectance acquisition. ACM Transactions on Graphics

(TOG), 34(6):186, 2015. 3

[26] Jorge Nocedal. Updating quasi-newton matrices with lim-

ited storage. Mathematics of computation, 35(151):773–782,

1980. 4

[27] Geoffrey Oxholm and Ko Nishino. Multiview shape and

reflectance from natural illumination. volume 7572, pages

528–541, 10 2012. 1, 2

[28] Christopher C. Paige and Michael A. Saunders. Lsqr: An al-

gorithm for sparse linear equations and sparse least squares.

ACM Trans. Math. Softw., 8(1):43–71, Mar. 1982. 5

[29] Jaesik Park, Sudipta N. Sinha, Yasuyuki Matsushita, Yu-

Wing Tai, and In So Kweon. Robust multiview photometric

stereo using planar mesh parameterization. IEEE Transac-

tions of Pattern Analysis and Machine Intelligence (TPAMI),

2016. 2, 6, 7

16234



[30] Szymon M Rusinkiewicz. A new change of variables for

efficient brdf representation. In Eurographics Workshop on

Rendering Techniques, pages 11–22. Springer, 1998. 7

[31] Carolin Schmitt, Simon Donne, Gernot Riegler, Vladlen

Koltun, and Andreas Geiger. On joint estimation of pose,

geometry and svbrdf from a handheld scanner. In IEEE/CVF

Conference on Computer Vision and Pattern Recognition

(CVPR), June 2020. 2

[32] Johannes Lutz Schönberger and Jan-Michael Frahm.

Structure-from-Motion Revisited. In Conference on Com-

puter Vision and Pattern Recognition (CVPR), 2016. 6, 7

[33] Steven M Seitz, Brian Curless, James Diebel, Daniel

Scharstein, and Richard Szeliski. A comparison and evalua-

tion of multi-view stereo reconstruction algorithms. In 2006

IEEE Computer Society Conference on Computer Vision and

Pattern Recognition (CVPR’06), volume 1, pages 519–528.

IEEE, 2006. 2

[34] B. Shi, Z. Mo, Z. Wu, D. Duan, S. Yeung, and P. Tan. A

benchmark dataset and evaluation for non-lambertian and

uncalibrated photometric stereo. IEEE Transactions on Pat-

tern Analysis and Machine Intelligence, 41(2):271–284, Feb

2019. 6
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