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Figure 1: Popular Arbitrary Style Transfer methods suffer from under-stylization and over-stylization due to imbalanced

style transferability during training. Our new balanced loss mitigates these under- and over-stylization issues.

Abstract

Neural Style Transfer (NST) has quickly evolved from

single-style to infinite-style models, also known as Arbi-

trary Style Transfer (AST). Although appealing results have

been widely reported in literature, our empirical studies

on four well-known AST approaches (GoogleMagenta [14],

AdaIN [19], LinearTransfer [29], and SANet [37]) show

that more than 50% of the time, AST stylized images are

not acceptable to human users, typically due to under- or

over-stylization. We systematically study the cause of this

imbalanced style transferability (IST ) and propose a sim-

ple yet effective solution to mitigate this issue. Our stud-

ies show that the IST issue is related to the conventional

AST style loss, and reveal that the root cause is the equal

weightage of training samples irrespective of the proper-

ties of their corresponding style images, which biases the

model towards certain styles. Through investigation of the

theoretical bounds of the AST style loss, we propose a new

loss that largely overcomes IST . Theoretical analysis and

experimental results validate the effectiveness of our loss,

with over 80% relative improvement in style deception rate

and 98% relatively higher preference in human evaluation.

*This work was completed during his internship at Amazon.

1. Introduction

Neural style transfer (NST) refers to the generation of a

pastiche image P from two images C and S via a neural

network, where P shares the content with C but is in the

style of S. While the original NST approach of Gatys [13]

optimizes the transfer model for each pair of C and S, the

field has rapidly evolved in recent years to develop models

that support arbitrary styles out-of-the-box. NST models

can, hence, be classified based on their stylization capacity

into models trained for (1) a single combination of C and

S [13, 23, 28, 32, 39], (2) one S [21, 27, 47, 48], (3) multiple

fixed S [2, 9, 24, 30, 42, 55], and (4) infinite (arbitrary) S
[4, 14, 15, 17, 19, 20, 25, 29, 31, 37, 43, 44]. Intuitively, the

category (4) of arbitrary style transfer (AST) is the most

advantageous as it is agnostic to S, allowing trained models

to be adopted for diverse novel styles without re-training.

Although superior in concept, current AST models are

plagued by the issue of imbalanced style transferability

(IST), where the stylization intensity of model outputs

varies largely across styles S. More importantly, besides the

nice results shown in previous works [14,19,29,37], a large

number of stylized images suffer under-stylization (e.g.,

only the dominant color is transferred) or over-stylization

(i.e., content is barely visible) for various S, making them
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visually undesirable (see samples in Figure 1). This is vali-

dated by our user-study described later in Section 3.2, with

more than 50% of stylized images found to be unacceptable,

irrespctive of the used AST model. Hence, we are still far

from the AST goal — successfully transferring style from

an arbitrary image to another. This urges us to systemati-

cally study the underlying reasons for IST and find potential

solutions to further boost AST performance in order to gen-

erate better stylized images for diverse styles.

In this paper, we make the following contributions.

Firstly, we systematically study the IST problem in AST

and discover that the AST style loss is problematic as it fails

to reflect human evaluation scores. Secondly, we investigate

the AST style loss function, and locate the core reason for

IST to be the way sample-wise style loss is aggregated into

a batch loss. Thirdly, we derive the theoretical expectation

of a sample-wise style loss as well as its bounds, and use

it to propose a new style loss that enables more balanced

training across styles. Finally, we conduct extensive AST

benchmarking experiments as well as human evaluation to

validate the effectiveness of the proposed solution. Results

show that IST issue is indeed greatly mitigated for all tested

AST approaches by incorporating the proposed style loss.

The rest of the paper is organized as follows. Section 2

briefly reviews related AST works. Section 3 discusses two

AST style loss related studies and shows that IST is re-

lated to the loss. Section 4 identifies style-agnostic sam-

ple weighting in training loss aggregation as the real cul-

prit, derive our new style-aware loss, and validate its effec-

tiveness by repeating the aforementioned two studies. Sec-

tion 5 provides further results of application of the proposed

loss to four well-known AST approaches and shows that the

IST issue is largely overcome for all the approaches. Fi-

nally, Section 6 provides concluding remarks.

2. Related Work

Arbitrary style transfer methods can be classified as ei-

ther non-parametric [10, 11, 15, 26, 31, 50, 51, 54] or para-

metric [14,19,20,25,29,37,43,44,46,49]. Non-parametric

methods find similar patches between content and style im-

ages, and transfer style based on matched patches. Early

methods popularly performed texture synthesis [10, 11, 26,

51]. However, Neural Style Transfer (NST) methods have

become mainstream since their inception in [13]. Improve-

ments in the NST framework include multi-level whitening

and coloring [31] on VGG [45] features, and feature reshuf-

fling based on patch-based feature similarity [15].

Parametric AST [14, 19, 20, 25, 29, 37, 43, 44, 46, 49, 52]

involves optimizing a target function that reflects visual

similarity of (1) content between content and stylized im-

ages, and (2) style between style and stylized images. This

class of AST methods [14, 19, 20, 29, 37, 43] typically uses

a Gram matrix-based VGG perceptual loss [13, 21] with a

Table 1: The four studied AST methods with model links.

AST Method Net Architecture w/ Unique Feature

GoogleMagenta [14] ConvNet w/ meta-learned instance norm

AdaIN [19] Enc.&Dec. w/ adaptive instance norm

LinearTransfer [29] Enc.&Dec. w/ linear transform matrix

SANet [37] Enc.&Dec. w/ style attention

few modifications to the training procedure. AdaIN [19] ap-

plies an adaptive instance normalization layer on image fea-

tures. Meta-learning is incorporated for learning style rep-

resentation in GoogleMagenta [14] and [43]. LinearTrans-

fer [29] learns a linear transform function from content

and style features for stylization. Attention mechanism has

also been integrated with content and style feature fusion

in SANet [37] and other works [46, 52]. Light-weight effi-

cient style transfer has been explored through instance nor-

malization and dynamic convolution [20]. Gram matrix-

based loss is also widely used in arbitrary video style trans-

fer [1, 3, 18, 29, 40, 41]. Methods without Gram matrix-

based losses use adversarial [25] or reconstruction [44] ob-

jectives. This paper studies parametric AST methods in-

volving Gram-matrix based losses as listed in Table 1.

3. Analysis of the AST Style Loss

3.1. AST Training Loss

A number of loss functions have been proposed re-

cently for AST training, e.g., discriminator-based adver-

sarial losses [25] and reconstruction-based loss terms [44].

However, the original [13] NST loss LNST is still the one

that is the most popularly employed [14, 19, 20, 29, 37, 43].

As described in Equation (1), it is composed of two terms:

LNSTc
(C,P ) for learning content from C and LNSTs

(S, P )
for deriving style from S, with a trade-off factor β.

LNST = LNSTc
(C,P ) + βLNSTs

(S, P ) (1)

One typically needs an ImageNet [8] pretrained VGG [45]

network F for extracting features from C, S, and P . Next,

the content loss is calculated by comparing the features of

P and C, and the style term is calculated by comparing

the Gram matrices G of the features of P and S, as G is

known [13, 32] to be effective in deriving style informa-

tion. In practice, the style and content terms are calcu-

lated for features from several layers and aggregated using

a weighted sum (weights wl are typically set as ones) across

layers. The following equations summarize the loss calcu-

lation, where MSE is the mean squared error.

Ll
NSTc

(C,P ) = MSE(F l(C),F l(P )) (2)

Ll
NSTs

(S, P ) = MSE(G ◦ F l(S),G ◦ F l(P )) (3)

LNSTc
(C,P ) =

∑
l∈LNSTc

wl
c · L

l
NSTc

(C,P ) (4)

LNSTs
(S, P ) =

∑
l∈LNSTs

wl
s · L

l
NSTs

(S, P ) (5)
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Under-stylized samples Over-stylized samplesProperly stylized samples

Content Style
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Figure 2: Distribution of classic Gram matrix-based style losses for four AST methods [14,19,29,37]. Smaller loss does not

guarantee better style transfer (left two images) while high quality transferred images can have larger style losses (middle

two images), with over-stylized images counter-intuitively attaining the highest losses. Zoom in for a better view.

3.2. Analysis

The IST issue could be intuitively attributed to the “nat-

urally higher” difficulty of transferring certain styles com-

pared to others. In order to study IST systematically, we cal-

culate content and style losses for 20,000 randomly sampled

ImageNet [8] images stylized with images from the De-

scribable Textures Dataset (DTD) [7] and pretrained mod-

els listed in Table 1. Ideally, under- and over-stylized P are

those with low content and low style losses, respectively.

On analyzing the samples, however, we find that the former

relationship is valid but the latter is not — over-stylized P
typically attain (sometimes significantly) higher style losses

than understylized samples. In the following studies, we

examine the distribution of the style loss and its correlation

with visual perception of stylization quality.

Study I: AST Style Loss Distribution. We compute the

empirical distribution of style losses for the models listed

in Table 1 and inspect stylized samples belonging to differ-

ent sections of the distribution – low, moderate, and high

style losses. We use a VGG-16 model pretrained on Ima-

geNet as the feature extractor, and calculate the style loss

(see Equation (5)) using layers F l in the conventional style

layer set [21] LASTs
= {Fr2

b1 ,F
r2
b2 ,F

r3
b3 ,F

r4
b4 }, where Frj

bi

denotes the j-th ReLU layer in i-th convolutional block of

VGG-16. The AST style loss is thus restated as below.

Ll
ASTs

(S, P ) = MSE(G ◦ F l(S),G ◦ F l(P )) (6)

LASTs
(S, P ) =

∑
l∈LASTs

wl
s · L

l
ASTs

(S, P ) (7)

Figure 2 summarizes our findings. Despite large differences

among the tested methods, (1) their LASTs
distributions are

similar, and (2) LASTs
does not reflect stylization quality:

under-stylized samples attain lower loss values than over-

stylized ones. Similar conclusions can be drawn for VGG-

19-based LASTs
, as shown in the supplementary material.

Study II: Classic AST Style Loss versus Human Score.

Study I has revealed a counter-intuitive lack of relationship

between style transfer quality and conventional AST style

loss. In this study, we further investigate this issue by con-

ducting a human study to assess the correlation between

LASTs
and human perception. Specifically, we requested

five volunteers to manually annotate AST samples by par-

titioning the samples produced in Study I into five random

disjoint subsets. Each sample was presented as a tuple of

(S, P ) and had to be annotated as “Good” (-1), “OK” (0),

or “Bad” (1), in decreasing order of stylization quality. The

annotators were not given additional instructions and were

told to classify the samples based on their own perception.

23.0%

22.0%
55.0%

User 1

Good
OK
Bad

22.3%

14.7% 62.9%

User 2

20.1%

17.6% 62.3%

User 3

14.9%

17.9%

67.2%

User 4

14.6%

15.7%

69.8%

User 5

18.4%

18.0%
63.5%

Overall

Figure 3: Statistics of human perception of stylization qual-

ity as assessed in Study II.
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Figure 3 shows the statistics of the collected annotations.

We compute Pearson correlation between the human scores

and corresponding style losses. Table 2 summarizes the

results, showing that the conventional style loss not only

fails to reflect human perception but is also negatively cor-

related. Hence, LASTs
(as defined in Equation (7)) is inap-

propriate for the AST task. Furthermore, the negative cor-

relation indicates that this style loss penalizes over-stylized

samples more than under-stylized ones — contrary to what

one would expect for a good AST style loss.

Table 2: Pearson correlation between the classic AST style

loss (LASTs
) and human score (h). Frj

bi indicates the the

j-th ReLU layer in i-th convolutional block of VGG-16.

Correlation Score ρ(h,Ls)

Volunteer L
F

r2

b1
s L

F
r2

b2
s L

F
r3

b3
s L

F
r4

b4
s LASTs

1 -0.166 -0.153 -0.186 -0.114 -0.167

2 -0.163 -0.141 -0.139 -0.074 -0.150

3 -0.184 -0.161 -0.147 -0.177 -0.163

4 -0.194 -0.147 -0.127 0.006 -0.138

5 -0.214 -0.224 -0.192 -0.070 -0.219

Average -0.184 -0.165 -0.158 -0.088 -0.167

4. A New Blalanced AST Style Loss

The conventional AST style loss defined in Equation (7)

reuses the classic NST style loss, which has been shown

to work in practice in several previous works [14, 19, 29,

37, 43]. However, results of studies I and II reveal that this

AST style loss is problematic: trained models work partially

but suffer from Imbalanced Style Transferability (IST ), i.e.,

under- or over-stylization for various styles with loss values

that do not reflect stylization quality. In this section, we first

identify the core issue in the AST style loss by viewing AST

from a multi-task learning point-of-view. We then propose

a simple yet effective solution to mitigate the problem.

4.1. Identifying the Real Problem with AST Loss

The conventional AST style loss (also the classic NST

style loss) used in studies I and II is a sample-wise loss.

However, in order to ascertain the cause of the aforemen-

tioned issue, it is important to inspect how it is used in train-

ing — it needs to be aggregated into a batch-wise loss as

LBatch
ASTs

=
∑

k∈{1,··· ,B}

1

B
· LASTs

(Sk, Pk) (8)

where B is the batch size. While it is typical to average

sample-wise losses into batch-losses in this fashion, this

protocol is not suitable for AST. This is because the AST

learning setup resembles multi-task learning, where each

batch has B tasks – one for each input style. The overall

multi-task loss can be written as

LMultitask
ASTs

=
∑

k∈{1,··· ,B}

λk · LASTs
(Sk, Pk) (9)

where λk is typically a task-specific contribution factor.

Comparing Equations (8) and (9), it is clear that the AST

style loss is a special case of the multi-task loss when

λk = 1/B for each k. However, this equal-task-weight set-

ting is known to be problematic in multi-task learning un-

less all task losses are within similar dynamic ranges [6,22].

In case of AST, style losses for different style images can

differ by more than 1,000 times for both randomly initial-

ized and fully trained AST models. Consequently, styles

with small or large dynamic loss ranges are under- or over-

stylized, respectively. Although λk = 1/B works for some

style images, generating nice stylization results for them,

this setting is unsuitable for the general AST problem and is

the root cause of the discrepancy between stylization qual-

ity and loss values. Therefore, we should neither simply

aggregate the sample-wise losses to form a batch-wise loss

nor directly compare losses from different styles.

4.2. A New Balanced AST Style Loss

The multi-task view discussed in the previous section

implies that the IST problem could be resolved by assigning

each style transfer task in a batch the “right” task weight.

Hence, we seek to formulate a balanced AST style loss as

L̂l
ASTs

(S, P ) =
Ll

ASTs
(S, P )

V l(S, P )
(10)

where V l(S, P ) is the appropriate task-dependent normal-

ization term that needs to be determined (where λk =
1/V l(S, P )). An intuitive approach to achieve this is to

adopt automatic task loss-weight tuning methods from the

multi-task literature [6, 16, 22, 34]. However, these meth-

ods require estimation of statistics (e.g., gradient norms) for

all tasks in multiple iterations (if not continuously), which

is infeasible for AST as the tasks change across batches

and the number of (S, P ) combinations is potentially in-

finite. Therefore, weight tuning approaches are not suitable

for AST. Furthermore, the choice of V l(S, P ) is limited to

something that could be computed without historical data.

We start with deriving the theoretical upper- and lower-

bounds for the classic AST layerwise style loss (Equa-

tion (6)) as shown in Equations (11) and (12), respectively:

sup{Ll
ASTs

(S, P )}=
‖G ◦ F l(S)‖2 + ‖G ◦ F l(P )‖2

N l
(11)

inf{Ll
ASTs

(S, P )}=
(‖G ◦ F l(S)‖ − ‖G ◦ F l(P )‖)2

N l
(12)
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Figure 4: Relationship between the classic AST style loss

Ll
ASTs

(S, P ) and sup{Ll
ASTs

(S, P )}. The subplots corre-

spond to the four VGG-16 style layers used in analysis.

where N l is a constant that is equal to the product of spatial

dimensions of the feature tensor at layer l. The detailed

derivations can be found in the supplementary material.

In order to mitigate Imbalanced Style Transferability, we

propose a new style-balanced loss L̂l
ASTs

by normalizing the

style loss of each AST task with its supremum as:

L̂l
ASTs

(S, P ) =
Ll

ASTs
(S, P )

sup{Ll
ASTs

(S, P )}
(13)

4.3. Analysis and Validation of Effectiveness

We conduct three studies to analyze and validate the cor-

rectness and effectiveness of our new loss (Equation (13)).

Study III: Relationship between Ll
ASTs

(S, P ) and

sup{Ll
ASTs

(S, P )}. It is important to establish this rela-

tionship to ensure that sup{Ll
ASTs

(S, P )} is a suitable nor-

malization term. Specifically, the relationship has to be

close to linear to balance all the training tasks by ensuring

that all the training tasks have the same upper bound of 1.

We randomly sample 200,000 pairs of images from the

Painter by Numbers (PBN) dataset [36]. For each pair, we

compute the classic layerwise style loss Ll
ASTs

(S, P ) us-

ing the VGG-16 style layer set [21] (Equation (7)), and its

upper-bound (Equation (11)). Figure 4 provides a scatter

plot of the two terms, where each dot is a sample and the red

line is the linear fit of all samples, showing that Ll
ASTs

(S, P )

and sup{Ll
ASTs

(S, P )} are strongly correlated.

Study IV: Distribution of the New Balanced AST Style

Table 3: Pearson correlation between the new AST style

loss (L̂ASTs
) and human scores (h). Frj

bi indicates the the

j-th ReLU layer in i-th convolutional block of VGG-16.

Correlation Score ρ(h, L̂s)

Volunteer L̂
F

r2

b1
s L̂

F
r2

b2
s L̂

F
r3

b3
s L̂

F
r3

b4
s L̂ASTs

1 -0.086 0.095 0.188 0.121 0.152

2 0.002 0.001 0.098 0.122 0.124

3 -0.087 0.106 0.217 0.217 0.228

4 -0.067 -0.089 0.053 0.210 0.149

5 -0.141 -0.118 0.112 0.208 0.171

Average -0.076 -0.001 0.134 0.176 0.165

Loss. As previously noted in Study I, under-stylized sam-

ples typically attain lower loss values than over-stylized

ones in the classic AST style loss. Here we verify whether

our new AST style loss fixes this issue. We reuse the data

from Study I for the four tested AST approaches (see Ta-

ble 1), and compute the corresponding new style loss dis-

tributions as shown in Figure 5. Results show that over-

stylized samples now attain lower loss values than under-

stylized ones under the new AST style loss L̂ASTs
.

Study V: New AST Style Loss vs. Human Score. We

investigate the relationship between our new balanced AST

style loss L̂ASTs
and human scores for the samples gener-

ated in Study II. These results are presented in Table 3. Un-

like the negative correlation between the classic AST style

loss and human scores (see Table 2), the new balanced AST

style loss is positively correlated with human scores. De-

spite the treatment of “OK” annotations as zero scores in

human study analysis, this is a strong indication that the

proposed new AST style loss aligns much better with hu-

man scores than the classic AST style loss.

5. Experimental Evaluation

In this section, we provide qualitative and quantitative

evaluation of the proposed new loss and its benefits in com-

parison with the conventional AST style loss.

5.1. Experiment Settings

We reuse the pretrained models listed in Table 1 and train

additional models with either the classic or the new style

loss in order to validate the generalizability of the improve-

ments due to the latter. These models are listed in Table 4.

We use content images from MS-COCO [33] and style im-

ages from Painter by Numbers [36] to train the models. The

same four layers (LASTs
= {Fr2

b1 ,F
r2
b2 ,F

r3
b3 ,F

r4
b4 }) of the

ImageNet-trained VGG-16 model that were used in Studies

I–V were employed here to calculate style losses for train-

ing. The Fr3
b3 layer was reused to calculate content losses,

following previous works [13, 21]. In order to conduct fair
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Over-stylized samples Under-stylized samplesProperly stylized samples

Figure 5: Distribution of our style-balanced loss for four AST methods [14, 19, 29, 37]. Small loss values indicate over-

stylization while large values correspond to under-stylization, with properly-stylized samples in the middle, as expected.

Table 4: The AST models used in experimental evaluation.

“3P” indicates publicly available pretrained models, while

“1P” shows the settings used in our experiments. We train

all models using VGG-16-based losses for consistency.

Model Name AST Method AST Style Loss 1P/3P

GoogleMagenta GoogleMagenta Classic + VGG-16 3P

OurGM GoogleMagenta Classic + VGG-16 1P

OurBalGM GoogleMagenta Balanced + VGG-16 1P

AdaIN AdaIN Classic + VGG-19 3P

OurAI AdaIN Classic + VGG-16 1P

OurBalAI AdaIN Balanced + VGG-16 1P

LinearTransfer LinearTransfer Classic + VGG-19 3P

OurLT LinearTransfer Classic + VGG-16 1P

OurBalLT LinearTransfer Balanced + VGG-16 1P

SANet SANet Classic + VGG-19 3P

OurSAN SANet Blassic + VGG-16 1P

OurBalSAN SANet Balanced + VGG-16 1P

comparison of models, we pick style vs. content trade-off

weights β in the overall loss (Equation (1)) that ensure that

the magnitudes of the style and content losses are similar.

We use the same optimizers that were used by the authors

of the four models as reported in literature. We use “1P”

models for the classic AST style loss related comparisons.

We do not backpropagate gradient through the denominator

to obtain more stable training and better results.

5.2. Qualitative Evaluation

Comparison with Classic Loss. Figure 6 shows a few vi-

sual examples of under- and over-stylization that are miti-

gated by training models with our new balanced style loss.

As evident, our loss is effective in both cases and general-

izes across all tested AST models, providing a better trade-

off between content and style. Results of under-stylized

samples show that our loss helps in capturing both global

and low-level texture-related style information where mod-

els trained with the classic loss only contain style-color. Re-

sults also show that our loss can preserve more content in

cases of over-stylization. While content is completely un-

recognizable in over-stylized images due to the classic loss,

our loss produces both visible content and proper styliza-

tion. More results are presented in supplementary material.

Comparison with Style Interpolation. Style interpola-

tion is a common method for fusing styles by combining

style features of different images before decoding [14, 19,

29, 43]. Typically, an interpolation coefficient is employed

to control the contributions of different styles. Since over-

stylization is mainly about transferring too much style, one

plausible remedy is to apply style interpolation between the

style and content (i.e. treating the content image as a new

style). However, as shown in Figure 7, it is not very effec-

tive. In contrast, stylization using our balanced loss (Fig-

ure 7(c)) provides superior results in better preserving con-

tent while properly transferring style. Last but not least,

finding a “good” interpolation coefficient is not a trivial

task, since it will be different for different styles.

5.3. Quantitative Evaluation

AST Style Loss Comparison. We compute the classic

and the new balanced AST style losses for all the testing

samples for each AST model. Results are presented in Ta-

ble 5. As evident, our models trained with the new bal-

anced loss always attain significantly lower overall loss val-

ues. This is because the new loss allows more tasks ((S,C)
combinations) to be trained fairly, achieving lower classic

style losses for the same pairs of content and style images.

Deception Rate. Sanakoyeu et al. [42] introduced Decep-
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Figure 6: Improvements in cases that were under- or over-stylized due to the classic loss. In the former case, local and global

texture of stylized images are closer to style images when our new loss is used, e.g., columns (3) and (4) for Google Magenta.

In the latter case, original content is more visible in stylized images when our loss is used, e.g., column (1) of AdaIN.

tion Rate as a metric for evaluating style transfer quality. It

is defined as the success rate of stylized images at deceiv-

ing an artist classification model, such that the same artist is

predicted for both the style image and the stylized image.

We generate 5,000 stylized images for each AST model

with content images from the ImageNet test set and style

images from the Painter by Numbers (PBN) test set in or-

der to ensure that the images and styles used in this ex-

periment do not overlap with the training dataset. Further-

more, we exclude style images from artists who were seen

in the training data or have less than 30 paintings in the test

set. This results in 1,798 style images (paintings) from 34

artists. Content-style pairs were randomly sampled to gen-

erate the stylized images for evaluation.

We use the winning solution of the PBN challenge

(https://github.com/inejc/painters) to compute the deception

rate. First, we use the model to generate 2,048-dimensional

features for all the style images. Next, for each stylized im-
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Figure 7: Our new balanced style loss is more effective in

mitigating the over-stylization issue than the classic style

interpolation approach using the GoogleMagenta solution.

The style interpolation coefficient is presented in braces.

Table 5: Loss comparison between models trained with the

classic loss and those trained with our new loss. Models

trained with our loss always attain lower overall loss values.

Model Name Classic Loss New Balanced Loss

GoogleMagenta 4.69 ×108 0.36

OurGM 3.40 ×108 0.33

OurBalGM 3.35 ×10
8 0.22

AdaIN 7.05 ×108 0.33

OurAI 6.62 ×108 0.43

OurBalAI 6.58 ×10
8 0.31

LinearTransfer 6.11 ×108 0.33

OurLT 6.78 ×108 0.47

OurBalLT 4.27 ×10
8 0.25

SANet 5.00 ×108 0.28

OurSAN 5.25 ×108 0.41

OurBalSAN 4.03 ×10
8 0.21

Table 6: Deception Rate (%) for models trained with classic

and our balanced style losses, shown in columns “Classic

Loss” and “Bal. Loss”, respectively. “Imp.” and “RImp.”

show absolute and relative improvements, respectively.

AST Method Classic Loss Bal. Loss Imp. RImp.

GoogleMagenta 16.84% 35.38% 18.54% 110%

AdaIN 10.78% 22.18% 11.40% 106%

LinearTransfer 18.58% 39.18% 20.60% 111%

SANet 18.08% 33.16% 15.08% 83%

age, we extract its features using the same model and find

its nearest style image using L2 distance. For a successful

deception, the artist of the nearest neighbor must match that

of the style image used for generating the stylized sample.

Table 6 summarizes the results, showing large boosts in

deception rate from adopting our new loss. The improve-

ments range from a massive 83% minimum relative im-

provement for SANet to 111% (or 2.1x) for LinearTransfer.

58.3% 24.8%

17.0%

GoogleMagenta

Bal. Loss Preferred
Classic Loss Preferred
Same Quality

54.9%
23.7%

21.4%

AdaIN

59.6%
30.4%

10.1%

LinearTransfer

51.0%
33.9%

15.1%

SANet

55.9% 28.2%

15.8%

Overall

Figure 8: Human evaluation results. On all methods, users

prefer images stylized with models trained with our loss.

Human Evaluation. We further quantify improvement in

stylization quality due to our new loss through human eval-

uation. We randomly sample 5,000 content-style pairs with

content images from the ImageNet test set and style images

each from the test sets of PBN [36] and Describable Tex-

tures Dataset (DTD) [7]. For each pair and for each of the

four AST methods (Table 1), we generate two stylized im-

ages: one using the model trained with the classic loss and

another with that trained using our new loss. Random sub-

sets of images are then voted on by annotators, who are re-

quested to select one of the two stylized images for each

pair based on their preference of stylization quality. In to-

tal, 2,200 annotations were collected, and show that 28.2%

votes prefer stylized images from models trained with the

classic loss while a much larger 55.9% prefer those trained

with our new balanced loss, with 15.8% finding them of

similar quality. Figure 8 provides the breakdown for each

model, showing that models trained with our loss generate

results that are more preferred by human perception.

6. Conclusion

In this work, we systematically studied the discrepancy

between the classic AST style loss and human perception

of stylization quality. We identified the root cause of the is-

sue as the style-agnostic aggregation of sample-wise losses

during training and derived theoretical bounds of the style

loss to design a new style-balanced loss with style-aware

normalization. We showed that unlike the classic loss, our

new loss is positively correlated with human perception. Fi-

nally, experimental results show up to 111% and 98% rel-

ative improvements in Deception Rate and human prefer-

ence, respectively. Future work can adopt our new loss in

related problems, e.g., video [1, 3, 5, 12, 18, 29, 40, 41] and

photo [29, 35, 38, 53] stylization, texture synthesis [10, 11,

26, 51], etc. Future work can also derive tighter bounds for

the style loss to improve style-aware normalization.
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