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Abstract

Few-shot class incremental learning (FSCIL) portrays

the problem of learning new concepts gradually, where only

a few examples per concept are available to the learner.

Due to the limited number of examples for training, the tech-

niques developed for standard incremental learning cannot

be applied verbatim to FSCIL. In this work, we introduce

a distillation algorithm to address the problem of FSCIL

and propose to make use of semantic information during

training. To this end, we make use of word embeddings as

semantic information which is cheap to obtain and which

facilitate the distillation process. Furthermore, we propose

a method based on an attention mechanism on multiple par-

allel embeddings of visual data to align visual and semantic

vectors, which reduces issues related to catastrophic forget-

ting. Via experiments on MiniImageNet, CUB200, and CI-

FAR100 dataset, we establish new state-of-the-art results by

outperforming existing approaches.

1. Introduction

In a real world scenario, we may not get access to in-

formation about all possible classes when the system is first

trained. It is more realistic to assume that we will obtain

class-specific data incrementally as time goes by. There-

fore, in such a scenario, we require that our model can be

adapted with new information made available without ham-

pering the performance on what has been learnt so far. Al-

though a natural task for human beings, it is a difficult task

for an intelligent machine due to the possibility of catas-

trophic forgetting [17]. A trained model tends to forget old

tasks when learning new information. There are three dif-

ferent streams of work in the literature addressing such an

*denotes equal contribution.
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Figure 1: (a) Knowledge distillation as described in [16] does

not work on few-shot class-incremental learning [32] since adding

new tasks appends new trainable weights (Wn) to the network in

addition to base weights (Wb). (b) The impact of using only a

few instances of novel classes. As few samples are not sufficient

to learn new parameters, the network gets biased towards base

classes, overfitted on few examples of novel classes, and not well-

separated from base classes. (c) Our semantically guided network

does not add new parameters while adding new classes incremen-

tally. We only include word vectors of new tasks (sn) in addition

to the base classes (sb) and keep fine-tuning the base network (F )

(d) As a result, the knowledge distillation process can help the net-

work, remembering base training, generalizing to novel classes,

and finding well-separated representation of classes.

incremental or continual learning paradigm [33]. Firstly,

task-incremental learning divides all classes into different

tasks, where each task contains a few classes, and then

learns each task individually. The task labels of the test in-

stances are made available during testing which means the

model does not need to predict the correct label between

all classes but only between classes that are defined for a

specific task. Secondly, domain-incremental learning does
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not reveal the task label at test time, but the model always

solves the current task at hand without inferring the true

class label. Thirdly, class-incremental learning predicts the

class label between all classes during test time as the output

of all tasks are merged into one unified classifier without

having access to the task label. Being the most realistic of

the three, in this paper, we are interested in this third setting.

Furthermore, in many applications, new tasks (a set of novel

classes) come with only a few examples per class, making

the class-incremental learning even more challenging. This

setting is called few-shot class-incremental learning (FS-

CIL) [32]. The main challenges in FSCIL are catastrophic

forgetting of already acquired knowledge and overfitting the

network to novel classes. Challenges of that nature are ad-

dressed by the work on knowledge distillation in [11]. How-

ever, [32] showed that knowledge distillation is not the pre-

ferred approach for FSCIL due to class imbalance in the

few-shot scenario and the performance trade-off between

novel classes and base classes. In this paper, we propose an

augmented knowledge distillation approach suitable for the

case of few-shot incremental learning.

In order to apply knowledge distillation to novel tasks,

scores of the previously trained model are needed as well as

many instances of the new classes to be learned. Those new

instances help to learn the new trainable weights that are

added while learning novel tasks. For incremental learn-

ing with few-shot data, we can preserve previous scores but

cannot provide enough samples to learn the corresponding

weights for novel classes. For this reason, knowledge dis-

tillation [32] becomes a difficult problem in our case. Ad-

dressing this issue, we take advantage of a semantic word

vector (word2vec [18] or GloVe [22]) which provides a

semantic representation for each class as auxiliary knowl-

edge. Being inspired by the literature on zero-shot learn-

ing [7, 6, 5, 20, 37, 24, 25], given an image as input, we

estimate the semantic word vectors for the input instead of

directly predicting its class label. Then, we measure the

similarity of the predicted word vectors with the word vec-

tors from the set of possible class labels, followed by a soft-

max layer applied to the similarity values to get the final

score of the classes. One key benefit of this approach is

that adding new classes while training on novel tasks does

not come with new weights to train because the model at-

tempts to predict fixed-length word vectors as an intermedi-

ate representation. No matter how many classes are present

during fine-tuning, the network continues with its previous

task of estimating the word vectors. In this new set-up, the

distillation loss can easily accommodate new classes. One

challenge of this approach is to obtain a good alignment of

visual and semantic word vectors of few-shot instances. To

address this issue, we employ automatically assigned su-

perclass information of classes to train multiple embedding

modules in parallel after the backbone network. The set

of superclasses is attained from the semantic word vector

space representations of the base task, and are then held

fixed for the novel classes that follow. We determine an em-

bedding for each superclass during training such that each

embedding sees only the superclass set of classes. Hence,

given a novel class, there is a selection of embeddings that

each may be more or less suited. We employ an attention

module [8] to merge multiple embedding outputs and a loss

to train the alignment appropriately with few-shot instances.

It helps the network not to overfit on the few-shot instances

as well as not becoming biased to the base classes. Figure 1

describes the key differences between conventional works

and our method. With our proposed approach, we suc-

cessfully beat the current state-of-the-art [32] on MiniIm-

ageNet, CUB200, and the CIFAR100 datasets thanks to the

combined effect of using the auxiliary semantic information

from word vectors and knowledge distillation in concert.

In summary, the contributions of this paper are: (1) A

semantically-guided knowledge distillation approach for

few-shot class-incremental learning using semantic word

vectors, (2) A new visual-semantic alignment strategy for

few-shot class-incremental learning using automatically as-

signed superclass annotations, (3) Extensive experiments

validating the approach on MiniImageNet, CUB200, and

CIFAR100 while achieving new state-of-the-art results.

2. Related work

Incremental learning: Incremental learning means learn-

ing from a sequence of data which appear over time. In

the literature [33], incremental learning techniques are cat-

egorized into three groups, task-incremental learning [4,

28, 21], domain-incremental learning [39, 29], and class-

incremental learning [26, 1, 13, 36, 31]. In this paper, we are

only concerned with the third category, class-incremental

learning, as we consider a unified output where the task la-

bel is not available during test time. Rebuffi et al. [26] keeps

an “episodic memory” of the samples and incrementally

adapts the nearest-neighbor classifier for the novel tasks.

Castro et al. [1] proposed an end-to-end incremental learn-

ing method. In this method, a knowledge distillation loss is

used to keep information about previously seen classes, and

a classification loss is employed to learn the new classes.

Hou et al. [13] introduced a novel approach for incremen-

tally learning a unified classifier that reduces the imbalance

between old and new classes by cosine similarity, which

excludes the bias in the classifier. Wu et al. [36] proposed

a method for large scale incremental learning, where they

correct the bias in the output of the model with the help of a

linear model. Simon et al. [31] propose a novel approach to

the arsenal of distillation techniques. They construct low-

dimensional manifolds for previous and current responses

and minimize the dissimilarity between the geodesic re-

sponses connecting the manifolds.
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Few-shot incremental learning: There are not many

works addressing the FSCIL setting. Tao et al. [32] pro-

posed this setting for the first time. They utilize a neural

gas (NG) network to learn and maintain the topology of

the feature manifold produced by various classes. Specif-

ically, they introduce a method that alleviates the forgetting

of the old classes by stabilizing the topology of the NG and

enhancing the representation learning for few-shot novel

classes by expanding and modifying NG to novel training

samples. There is another category, called dynamic few-

shot learning (DFSL) [9, 27, 38, 12], which is similar to

FSCIL. Some works call this setting incremental few-shot

learning but for clarity, in this work, we call this setting

DFSL. The only difference is that in DFSL, there are only

two sequences of tasks, in comparison to FSCIL, which

contains several tasks. The first task containing many train-

ing samples is called base task, and the second task con-

taining only a few training samples is called a novel task.

Gidaris et al. [9] proposed an attention-based method that

generates a classifier for the novel task from the classifier of

the base task. Mengye et al. [27] notes that the method of

recurrent back-propagation can back-propagate within the

optimization process and helps the learning of novel tasks.

Yoon et al. [38] proposed a method which obtains a task-

adaptive representation for novel tasks based on the infor-

mation provided from the base task by an attention module.

Knowledge distillation: Knowledge distillation is a well-

known procedure that is employed in incremental learn-

ing to address catastrophic forgetting. Distillation loss was

initially introduced to convey knowledge between separate

neural networks [11]. Later, Li et al. [16] used a distillation

loss to preserve the knowledge of the old tasks while learn-

ing the new ones using a classification loss. Shmelkov et

al. [30] proposed a method where the embedding and the

classifier are trained together without the need for keeping

samples of the training data. Castro et al. [2] introduced

an end-to-end method which consists of a classification loss

for learning novel tasks and a distillation loss to retain infor-

mation of the old task. Zhang et al. [40] introduced an ap-

proach to train an individual network for the novel classes,

and then merging this new network with the network based

on previous classes using a double distillation objective.

Zhao et al. [41] employed knowledge distillation, at first, to

keep the discrimination of old classes. Next, to further keep

the balance between old and new classes, they introduced

a method to refine the bias weights in the FC layer follow-

ing the regular training. While it has been shown in [32]

that regular knowledge distillation is not working well in

the FSCIL setting, we offer, in this work, a method that en-

ables the use of knowledge distillation for this purpose.

semantic
unit

semantic vectors

Figure 2: Our simplified proposed architecture for knowl-

edge distillation. In this design, the input image x is for-

warded into the backbone B to extract a feature representa-

tion g ∈ R
u. Then, the extracted feature g is mapped into

the semantic domain via a mapping module M to form the

estimation of the semantic vector y ∈ R
d.

3. Method

3.1. Problem Formulation

Suppose, there is a sequence of disjoint tasks D = {D1,

..., DT }, where Ct = {ct1, ..., c
t
mt} is the set of classes in

the task Dt. Additionally, a set of d-dimensional semantic

class embeddings for each class label in the task Dt defined

as St is available during training. To be more specific, in

the task Dt = {(xt
i, l

t
i , sti)}

|Dt|
i=1 , xt

i is the i-th sample, lti is

its associated ground truth, and sti is its associated seman-

tic representation. There are many training samples in the

first task D1, termed the base task. However, in the fol-

lowing tasks t > 1, termed the novel task, there are only

a few training samples (5-shots per class) for each class. It

is essential to mention that the classes between all tasks are

disjoint, i.e., Ci ∩ Cj = φ, ∀i, j ∈ {1, . . . , T}, where i 6= j.

The objective of our work is to incrementally train a model

with a unified output, while only training samples of the t-th
task is available at the t-th session. At test time, we expect

the trained model on task Dt to predict the output for the

current task and all the previous tasks {D1, ... , Dt−1}.

3.2. Knowledge Distillation

Knowledge distillation is a common approach [26, 1, 13]

for incremental learning to address the catastrophic forget-

ting. Even though it has shown promising results on in-

cremental learning, it cannot be employed directly to few-

shot class incremental learning (FSCIL) due to the imbal-

anced data and trade-off issues [32]. In this paper (see Fig-

ure 2), we will show how to successfully take advantage

of knowledge distillation in the FSCIL setting. To illus-

trate our proposed method for knowledge distillation, we

use a simplified version of our proposed architecture. In

this scheme, the input image x goes into the backbone B,

which is trained on only the first task D1, as we have many

training samples in this task, and is kept frozen on other

tasks. The output of the backbone B is a feature represen-

tation g ∈ R
u. Next, the mapping network M is used to
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project the feature representation g into the semantic do-

main, where the projected feature y ∈ R
d is aligned with its

associated semantic representation s ∈ R
d. Lets assume

we want to train the model with the task Dt, which has

m or |Ct| classes, and the number of classes of the previ-

ous tasks are n. Also, we choose one representation for

each class of the former tasks saved in a small memory

M, where each prototype gM ∈ R
u is the average of all

training samples from each class. The aim is to map the

input image xi into the semantic domain yi by the func-

tion yi = κθ(xi), which consists all training parameters of

the backbone B and the mapping module M . We consider

the cosine distance as the similarity between the projected

feature yi and the semantic representation sk, d(sk, yi) =
cos(sk, yi). If the output of the classifier before adding

the novel task Dt is d′ = [d′(s1, yi), ..., d
′(sn, yi)], and if

the output of the classifier after adding the novel task is

d = [d(s1, yi), ..., d(sn, yi), d(sn+1, yi), ..., d(sn+m, yi)],
the distillation loss is defined as,

Ld = −
1

Nc

Nc
∑

i=1

n
∑

k=1

pklog(qk), (1)

pk =
e−d′(sk,yi)/τ

∑n
j=1 e

−d′(sj ,yi)/τ
, qk =

e−d(sk,yi)/τ

∑n
j=1 e

−d(sj ,yi)/τ
,

where yi = M(gi), and gi ∈ B(xti) ∪M. Here, τ is the

temperature scalar. The τ is set to 2 for all experiments.

Also, Nc is the number of samples in the task Dt and mem-

oryM, i.e., Nc = |D
t|+ |M|.

Remark. In this paper, we show that knowledge distilla-

tion can be used for few-shot class incremental learning. To

this end, we use a semantic word vector in our pipeline as

additional information.

Additionally, we employ a cross-entropy loss as a classi-

fication loss,

Lc = −
1

Nc

Nc
∑

i=1

n+m
∑

k=1

1 [li == k] log(
e−d(sk,yi)

∑n+m
j=1 e−d(sj ,yi)

),

(2)

where 1 [·] is the indicator function. Then, the total loss is

defined as,

L = λ1Ld + λ2Lc,

where λ1 and λ2 are used to control the effect of each loss

in the final loss L.

This approach does not add new parameters during the

incremental learning stage. Instead, it only fine-tunes M
with newly available data incrementally. It helps the dis-

tillation process and learning without forgetting. Also, this

Hyena
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Dalmatian Saluki Meerkat

Figure 3: For a novel class, Hyena, our model finds a set of base

class (e.g., Dalmatian, Saluki, Meerkat) instances, which reside in

close proximity in the semantic embedding space. The presence

of shared semantics (e.g., face, body-shape, 4-feet, short-tail) be-

tween novel and base classes help to understand Hyena as a novel

class and not to forget base classes.

Figure 4: Our proposed architecture is designed specifically

for tasks with only a few training samples. The input im-

age x goes into the backbone B, which generates a global

representation g ∈ R
u. Then, the feature g separates into

several embedding modules E. The attention module A is

used to merge all of them to generate the final representation

e ∈ R
u.

approach reduces the data imbalance problem of few-shot

learning. The network may not have had the opportunity

to see the novel objects, however, newly discovered novel

objects may very well share semantic properties with the

objects it has already seen among the base classes. For ex-

ample, if hyena is a novel class, the network did not have

any opportunity to see any hyena. However, many typ-

ical hyena attributes like ‘face’, ‘body’, etc., are seen by

the network from other base class animals (e.g., Dalmatian,

Saluki, Meerkat). It helps the network to understand hyena

by reducing the data dependency. An intuitive illustration is

shown in Figure 3.

3.3. Multiple embeddings for few shot tasks

The main challenge with the tasks containing a few train-

ing samples is the overfitting issue, as it is difficult to learn

the distribution of a task sufficiently with only a few train-

ing data. To this end, in our proposed method (see Figure 4),

we generate multiple embeddings, where each is designed

specifically for a group of classes. We use the word vector

semantic to separate classes into several groups. We design

these groups based on the classes that we have in the first

task D1 because the first task contains more classes with

many training samples. After that, we train each embed-

ding Ei using a cross-entropy loss based on the superclass
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labels obtained in the previous stage. Each embedding ob-

serves only part of the entire set of classes, which results in

embeddings that are experts on a particular superclass. For

the novel tasks, we assign a superclass label to each class

based on the cluster that we obtained in the previous stage.

Superclass: The number of the embeddings is defined by

the superclass knowledge obtained from the semantic word

vector space. In the semantic space, there is a class em-

bedding s for each class. We apply k-means clustering of

the semantic representations of the classes of the first task

D1. In this way, similar classes fall into the same category.

After applying k-means clustering, we assign a superclass

label to each class R = {1, ..., N}. For the other tasks,

which have only a few training samples, we use the cluster

centers (obtained for the first task D1) to assign superclass

labels to the classes in these tasks. To assign a superclass

label to novel classes, we simply calculate the minimum Eu-

clidean distance between the semantic vector of novel class

and cluster centers.

Attention: For the i-th sample in the task Dt, the embed-

ding representation ei ∈ R
u is the weighted average of all

private modules eki ∈ R
u , k ∈ R , where a neural net-

work determines weights, which is an attention A module.

Furthermore, the weights must sum to 1 to stay invariant to

the number of private modules. Then, the final embedding

representation is ei =
∑N

k=1 α
keki , where αk is,

where

αk =
ewT tanh(V(eki )

T )

∑N
j=1 e

wT tanh(V(e
j

i
)T )

. (3)

Here, w ∈ R
L×1 and V ∈ R

L×d are trainable parameters.

Training: We train the attention modules A so that the final

representation e becomes similar to the corresponding em-

bedding module given the associated superclass label. To

this end, we use the following loss function,

La =
1

Nt

Nt
∑

i=1

e−d(ei,e
k
i )

∑N
j=1 e

−d(ei,e
j

i
)

(4)

where the superclass label for i-th sample is k ∈ R, and

Nt is the number of samples in the task Dt. This approach

helps to not overfit the network on only a few novel class

data. Multiple embeddings specialized on related classes,

belonging to the same superclass, describe the novel in-

stances. Combining multiple embedding features and the

global feature enables a strong generalization when classi-

fying both base and novel classes.

3.4. Model Overview

The final proposed architecture is shown in Figure 5. The

input image x goes into the backbone B, which is pretrained

on the first task D1 with a cross-entropy loss, to generate

Algorithm 1 Training procedure of the proposed method

1: function TRAIN(D)

2: Hyperparameters: λ1, λ2, λ3, N
3: M← {}
4: Train the backbone B on the first task D1

5: Apply k-means clustering, where k = N , on base

semantic vectors and assign a superclass label

6: Train N embedding Ei (Fig. 4) on the base task

D1 using superclass labels as cluster identity

⊲ Train the final architecture (Fig. 5)

7: for h = 1 to epochs do

8: Calculate the classification loss using Eq 2

9: Calculate the attention loss using Eq 4

10: L = λ1Lc + λ3La

11: Backpropagate and update A, and M
12: end for

13: M← UPDATEMEMORY(D1,M, C1)
14: for t = 2 to T do

15: Assign superclass labels to task Dt using

cluster centers obtained for the base task

16: for h = 1 to epochs do

17: Calculate the classification loss using Eq 2

18: Calculate the distillation loss using Eq 1

19: Calculate the attention loss using Eq 4

20: L = λ1Lc + λ2Ld + λ3La

21: Backpropagate and update A, M , and E
22: end for

23: M← UPDATEMEMORY(Dt,M, Ctmt)
24: end for

25: end function

26: function UPDATEMEMORY(Dt,M, Ctmt )

27: for c = 1 to |Ctmt | do

28: Calculate a prototype gM
c for each class by

averaging of all training samples from each class

29: M←M∪ (gM
c , ltc)

30: end for

31: returnM
32: end function

the global feature representation g ∈ R
u. When training

the other tasks Dt, t > 1, the backbone network B is kept

frozen to prevent overfitting to classes with only a few train-

ing samples. Then, the extracted feature g is fed into N em-

bedding modules Ei, i = 1, . . . , N , where they are trained

on the first task based on the superclass information and are

updated for the novel tasks. To this end, the output of all

embedding ek ∈ R
u are fused based on the weights gen-

erated by an attention module A. Then, the global feature

g is concatenated with the feature generated from the em-

bedding modules e to form the feature f ∈ R
2u. In the next

stage, the feature f is projected from the visual domain to

the semantic domain by the mapping module M to form
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Figure 5: The proposed architecture. The image x is forwarded to the Backbone B to obtain the global feature representation

g ∈ R
u. The feature g is fed into several embedding modules to get a representation e ∈ R

u based on the superclass

information obtained from the word vector semantic space. After this stage, the feature vector f ∈ R
2u is obtained by

concatenating the global and embedding representations. In the next stage, the f is projected via a mapping module M from

the visual space into the semantic space y ∈ R
d to align the visual information with their associated semantic representation.

feature y ∈ R
d, where it is aligned with its associated se-

mantic representation s ∈ R
d. In order to train our proposed

architecture, we use the following loss function,

L = λ1Lc + λ2Ld + λ3La, (5)

where λ1, λ2, and λ3 are used to control the effect of each

term in the final loss function. The pseudo code of the train-

ing procedure is shown in Algorithm 1.

4. Experiments

This section contains two parts. In the first part, we

evaluate our method on FSCIL [32], and we conduct a

set of ablation studies to investigate the recommended ap-

proach. Next, we investigate the dynamic few-shot learn-

ing [9] (DFSL) setting to demonstrate the capability of our

proposed method in a different setting.

4.1. Experiments on FSCIL

Datasets: We evaluate our proposed method on three well-

known datasets, MiniImageNet [34], CUB200 [35], and CI-

FAR100 [15]. MiniImageNet contains 100 classes, where

each class include 500 training samples and 100 testing

samples. The size of each image is 84× 84. CUB200 con-

tains 200 fine-grained classes, separated into 6000 training

images, and 6000 testing images. The image size in this

dataset is 224×224. CIFAR100 includes 100 classes, where

each class has 600 images, separated into 500 training im-

ages and 100 test images. Each image has a size of 32×32.

In this paper, we follow the setting proposed by [32]. In this

setting, for MiniImageNet and CIFAR100, 60 and 40 are se-

lected as the number of base and novel classes. For novel

classes, a 5-way 5-shot setting is considered. There are nine

sessions for MiniImageNet and CIFAR100 datasets (1 base

session + 8 novel sessions). For the CUB200 dataset, a 10-

way 5-shot setting is considered, where 100 classes are se-

lected as base classes, and the remaining 100 classes are

split into 10 sessions.

Semantic Features: We use unsupervised word vectors

trained on an unannotated text corpus as a class semantic

embedding. For MiniImageNet, CUB200, and CIFAR100,

we employ 1000, 400, and 300 dimensional word2vec [18],

respectively. For the ablation study, we also use the 300

dimensional GloVe [22] for the CUB200 dataset.

Validation: To find hyperparameters, we conducted a grid

search. The ranges we consider, λ1,λ2, λ3 ∈ [0, 2], # of

embedding modules E ∈ [1, 10], and the temperature τ ∈
[0, 5] value. We split the training set into two sets: base set,

which consists 60% of the training classes, and validation

set which consists rest of the classes added incrementally.

Implementation details1: We employ ResNet18 [10] for

the backbone B, where features of the input image are de-

rived from the final pooling layer with 512 dimensions. The

backbone B is trained on the first/base task, and kept fixed

for the following tasks. For the embedding modules Ei,

we use a fully connected layer with 512 dimensions. More-

over, we utilize a few fully connected layers for the attention

module A. Ultimately, for the mapping module M , we used

three fully-connected layers with 512, 728, and d, which is

the dimension of the semantic word vector, hidden units,

where all layers have a ReLU function. In all experiments,

we utilize the Adam optimizer [14], where the learning rate

and batch size were set to 0.001 and 128, respectively. The

number embedding modules for MiniImageNet, CUB200,

and CIFAR100 are selected as 3,5, and 3 respectively. Also,

the value of λ1, λ2, and λ3 are 0.7 , 1.1 , and 0.6 respectively

1Code is available at: https://github.com/ali- chr/

Semantic- aware- Knowledge- Distillation- for- Few-

ShotClass-Incremental-Learning
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Table 1: CUB200 results with ResNet18 based on the 10-way 5-shot setting.

Method
Sessions

1 2 3 4 5 6 7 8 9 10 11

iCaRL [26] 68.68 52.65 48.61 44.16 36.62 29.52 27.83 26.26 24.01 23.89 21.16

EEIL [1] 68.68 53.63 47.91 44.20 36.30 27.46 25.93 24.70 23.95 24.13 22.11

NCM [13] 68.68 57.12 44.21 28.78 26.71 25.66 24.62 21.52 20.12 20.06 19.87

AL-MML [32] 68.68 62.49 54.81 49.99 45.25 41.40 38.35 35.36 32.22 28.31 26.28

Ours 68.23 60.45 55.70 50.45 45.72 42.90 40.89 38.77 36.51 34.87 32.96
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Figure 6: Results on MiniImageNet and CIFAR100 based

on the 5-way 5-shot FSCIL setting.

for all datasets. Since we use semantic word vectors in our

pipeline, we get slightly different result on the first task in

comparison to the setting proposed by [32].

4.1.1 Results

In this part, we compare our proposed method with state-

of-the-art [26, 1, 13, 32] on the 5/10-way and 5-shot set-

ting. Figure 6 presents our results on MiniImageNet and

CIFAR100 using the 5-way 5-shot setting. Moreover, we

show the result on the CUB200 dataset in Table 1. Over-

all, on these three datasets, our method beats all state-of-

the-art methods. As additional sequences of new tasks ar-

rive, our approach shows its advantages to the other meth-

ods. To be more specific, in MiniImageNet, in the last ses-

sion, we get 39.04% accuracy, while the second-best one

(TOPIC) achieves 24.42% accuracy which demonstrates

that our method surpasses the state-of-the-art by a large

margin (more than 14%). On CIFAR100, our method

reaches the absolute accuracy of 34.80%, while the second-

best (TOPIC) one accuracy is 29.37%. Also, on CUB200,

our approach achieves 32.96% in the last session, which is

superior to the other approaches.

4.1.2 Ablation study

Impact of loss function and embedding module: In this

part, we report the individual effect of the distillation loss

Ld and attention loss La functions in the total loss. As can

be seen in Figure 7, where only the accuracy of the last

session is shown, Ld is more effective than La, as Ld helps

the model to remember the previously seen tasks, while La

helps the model to generate a richer feature representation

for the novel tasks, which have only a few training samples.
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Figure 7: (Left) The influence of Ld and La losses, and (Right)

the impact of using multiple embedding

We also evaluate the effect of multiple embedding mod-

ules in our proposed algorithm. To understand the influ-

ence of these in our design, we utilise a baseline architec-

ture which does not include the multiple embedding module

and has only the backbone B. As presented in Figure 7, our

proposed method exceeds the baseline, which indicates the

value of the embedding module inside our architecture.

Impact of different backbones and semantic informa-

tion: In this ablation study, we evaluate the influence

of the alternative semantic word vector, GloVe. We also

conduct this analysis using two backbones, ResNet18 and

ResNet101, to understand the effect of different backbones.

The accuracy of our approach is evaluated on test samples

of the base task and the novel tasks. The accuracy of the

base task Accb is the performance of our model on the

first/base task D1, and the accuracy of the novel task Accn
is considered the performance on the test samples of the cur-

rent task and all previous novel tasks
{

D2, ...,Dt
}

. To eval-

uate the contribution of the base and novel instances in the

final accuracy, we also report the Harmonic Mean (HM) [3]

of the accuracy of the base and novel classes.

The values for Accb, Accn, and HM are shown in Fig-

ure 8. As can be seen, the combination of GloVe and

ResNet101 forget less of the base classes, which is followed

by better learning on novel classes. As a result, it provides a

greater HM value. It reveals that having a different type of

semantic vector is valuable in our suggested pipeline. Ad-

ditionally, a deeper backbone (ResNet101) is useful in FS-

CIL as it generates more valuable feature representations.

We present our results starting from session 2 to 11 because

there is no novel task in session 1.

Impact of Temperature, τ : We notice that the method is

robust to τ in a wide range. Figure 9 (left) shows the ef-
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Figure 8: The results of our method on base (left), novel tasks (middle), and their harmonic mean (right) in different incremental sessions.

Table 2: miniImageNet 64+5-way results

Method
1-shot 5-shot

accuracy ∆ accuracy ∆
Imprint [23] 41.34 ± 0.54% -23.79% 46.34 ± 0.54% -25.25%

LwoF [9] 49.65 ± 0.64% -14.47% 59.66 ± 0.55% -12.35%

AA [27] 54.95 ± 0.30% -11.84% 63.04 ± 0.30% -10.66%

XtarNet [38] 55.28 ± 0.33% -13.13% 66.86 ± 0.31% -10.34%

Ours 58.07 ± 0.27% -10.83% 68.03 ± 0.44% -8.25%
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Figure 9: Impact of (left) Temperature, τ and (right) num-

ber of Supercluster (N ) on the last task of MiniImageNet.

fect of τ on MiniImageNet on the last task. Increasing τ is

helpful for the forgetting issue until τ = 2 by balancing the

contribution of pk and qk, after that the accuracy decreases.

Impact of number of Supercluster (N ): In the Figure 9

(right), we present the performances on MiniImageNet on

the last task when N varies. When N is very small (e.g.,

1 or 2), it seems that our method only extracts global in-

formation, merging semantics of different super-categories,

thus failing to encode local information and subtle differ-

ences within each super-category. Conversely, when N is

very high (e.g., ≥ 7), fewer classes fall into the same super-

category, which leads to indistinguishable information. As

we concatenate both global and local information, with high

N , local information does not help. Thus, using N = 10,

we got a similar performance to only global, N = 1. Em-

pirically, 3 ≤ N ≤ 5 both global and local information

work together for MiniImageNet.

4.2. Experiments on DFSL

To further evaluate our proposed method, we apply our

design to the DFSL setting. As discussed in the related work

section, DFSL is similar to FSCIL, though the only differ-

ence is that we have only two sequences of tasks in DFSL

whereas there are various sequences of tasks in FSCIL. In

this section, we use the setting introduced by [9]. In this

experiment, we use miniImageNet, which is split into two

tasks, a base task and a novel task. The base task consists

of 64 classes, while the novel task has five classes which

are randomly selected in an episode way from 20 classes.

It is necessary to mention that the classes in the base and

novel tasks are disjoint. In each episode, the training (sup-

port) set is built by selecting 1 or 5 examples of the novel

classes, representing a 1-shot or 5-shot scenario. The test

(query) set consists of examples of the base and novel tasks.

In this experiment, we use ResNet12 as adopted in [19] as

the backbone. The forgetting in the DFSL setting is calcu-

lated as the gap between joint and individual performances

for base and novel classes. Individual performances for the

base/novel task is calculated when only the base/novel clas-

sifier is used. ∆b and ∆n are used to indicate the gap be-

tween the base and novel tasks, respectively. The average

of these gaps is represented as ∆ = (∆b + ∆n)/2, which

show the amount of forgetting,

We compare our method with state-of-the-art methods in

Table 2. As can be seen, our method outperforms all other

methods on joint accuracy and forgetting ∆ on both the 1-

shot and 5-shot settings.

5. Conclusion

We proposed a semantic-aware knowledge distillation

method for few-shot class incremental learning (FSCIL).

Due to a limited amount of training data for the novel

classes, the knowledge distillation technique as previously

used did not work well in this problem domain. In this pa-

per, using auxiliary information from class semantics (word

vectors), we propose a new FSCIL method where knowl-

edge distillation can indeed perform learning without for-

getting. Moreover, we offer an attention mechanism based

on multiple embedding representations of visual data to de-

scribe the novel classes that also demonstrates better gen-

eralization. Three well-known datasets, MiniImageNet,

CUB200, and CIFAR100, are used to show that class se-

mantics can be a useful source of information for knowl-

edge distillation. We outperform state-of-the-art methods

of FSCIL by a large margin.
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