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Abstract

Generative Adversarial Networks (GANs) are currently

an indispensable tool for visual editing, being a stan-

dard component of image-to-image translation and image

restoration pipelines. Furthermore, GANs are especially

advantageous for controllable generation since their latent

spaces contain a wide range of interpretable directions,

well suited for semantic editing operations. By gradually

changing latent codes along these directions, one can pro-

duce impressive visual effects, unattainable without GANs.

In this paper, we significantly expand the range of vi-

sual effects achievable with the state-of-the-art models, like

StyleGAN2. In contrast to existing works, which mostly op-

erate by latent codes, we discover interpretable directions

in the space of the generator parameters. By several sim-

ple methods, we explore this space and demonstrate that it

also contains a plethora of interpretable directions, which
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are an excellent source of non-trivial semantic manipula-

tions. The discovered manipulations cannot be achieved by

transforming the latent codes and can be used to edit both

synthetic and real images. We release our code and models

and hope they will serve as a handy tool for further efforts

on GAN-based image editing.

1. Introduction

Generative Adversarial Networks (GANs) [8] have revo-

lutionized image processing research, significantly pushing

the boundaries of machine learning for image enhancement

and visual editing. Different research lines currently exploit

GANs in several principled ways, e.g. using them as an

implicit learnable objective [20, 17, 13, 5, 18, 36, 37], em-

ploying them as high-quality image priors [35, 2, 9, 22, 23],

manipulating their internal representations for visual editing

purposes [3, 6]. Furthermore, the GAN latent spaces often
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encode human-interpretable concepts [26, 28, 7, 14, 25, 29,

10, 24, 30], which makes GANs the dominant paradigm for

controllable generation.

Since the seminal paper [26], which has demonstrated

the semantic arithmetic of latent vectors in GANs, plenty

of methods to discover interpretable directions in the GAN

latent spaces have been developed [26, 28, 7, 14, 25, 29, 10,

24, 30]. These methods successfully identify such direc-

tions across different GAN models and hold great potential

for effective image editing. These days, many impressive

visual effects can be achieved by simply moving the image

latent codes along these directions.

Our paper demonstrates that a large number of exciting

non-trivial visual effects can be produced by gradually mod-

ifying the GAN parameters rather than the latent codes. In

more detail, we show that the GAN parameter space also

contains a plethora of directions, corresponding to inter-

pretable image manipulations. Moreover, we describe sim-

ple domain-agnostic procedures that discover such direc-

tions in an unsupervised fashion. By extensive experiments,

we confirm that the discovered visual effects are substan-

tially new and cannot be achieved by the latent code ma-

nipulations. Overall, our findings significantly expand the

arsenal of GAN-based image editing techniques.

To sum up, our contributions are the following:

• We propose to use the interpretable directions in the

space of the generator parameters for semantic edit-

ing. Our approach differs from existing works, which

operate by the latent codes or the intermediate GAN

activations. Our findings demonstrate that remarkable

visual effects can be achieved by slightly changing the

GAN parameters.

• We develop the methods to discover such directions.

The proposed methods are both effective and fast and

can work on a single GPU.

• We confirm that the discovered directions are qualita-

tively new and correspond to semantic manipulations,

which existing methods cannot produce.

2. Related work

This section describes the typical ways to exploit GANs

for visual editing purposes and positions our work with re-

spect to existing literature.

GAN discriminators as learnable training objectives.

In most image generation tasks, it is challenging to ex-

plicitly define an objective term that would enforce the

produced images’ realism. Therefore, many existing ap-

proaches employ GANs as implicit learnable objectives,

making the output images indistinguishable from the real

ones. This approach has become de-facto standard for

a wide range of image processing tasks, including super-

resolution [17], texture transfer [20], image-to-image trans-

lation [13, 5, 18, 36, 37].

GANs as high-quality image priors. As the state-of-

the-art GAN models are high-quality approximations of the

real image manifold, several recent methods use these mod-

els as “hard” priors. In this case, the method’s outputs are

produced by a large-scale pretrained GAN, thus, the image

processing task is reduced to the optimization problem in

the GAN latent space. This paradigm has been successfully

used for super-resolution [22], visual editing [35, 2], image

restoration tasks [9, 23], e.g. colorization and inpainting.

Latent manipulations in GANs. The prior literature

has empirically shown that the GAN latent spaces are en-

dowed with human-interpretable vector space arithmetic

[26, 28, 7, 14, 29]. E.g., in GANs trained on face images,

their latent spaces possess linear directions corresponding

to adding smiles, glasses, gender swap [26, 28]. Since such

interpretable directions provide a straightforward route to

powerful image editing, their discovery currently receives

much research attention. A line of recent works [7, 28] em-

ploys explicit human-provided supervision to identify inter-

pretable directions in the latent space. For instance, [28] use

the classifiers pretrained on the CelebA dataset [21] to pre-

dict certain face attributes. These classifiers are then used

to produce pseudo-labels for the generated images and their

latent codes. Based on these pseudo-labels, the separating

hyperplane is constructed in the latent space, and a normal

to this hyperplane becomes a direction, controlling the cor-

responding attribute. Another work [7] solves the optimiza-

tion problem in the latent space, maximizing the score of

the pretrained model, which predicts image memorability.

The result of this optimization is the direction “responsi-

ble” for the increase of memorability. Two self-supervised

works [14, 25] seek the vectors in the latent space that cor-

respond to simple image augmentations such as zooming or

translation. Finally, a bunch of recent methods [29, 10, 24]

identify interpretable directions without any form of super-

vision. [29] learns a set of directions that can be easily

distinguished by a separate classification model based on

two samples, produced from the original latent codes and

their versions shifted along the particular direction. [24]

learns the directions by minimizing the sum of squared off-

diagonal terms of the generator’s Hessian matrix. Another

approach, [10], demonstrates that interpretable directions

often correspond to the principal components of the acti-

vations from the first layer of the generator network. A

very recent work [30] aims to unify all unsupervised ap-

proaches above. [30] claims that these approaches can be

treated as special cases of computing the spectrum of the

Hessian for the LPIPS model [33] with respect to latent co-

ordinates. Intuitively, [30] assumes that the interpretable di-

rections correspond to the largest perceptual changes, quan-
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tified by the LPIPS model. Our work is partially inspired by

the ideas from the latent space exploration, however, we ex-

plore the space of the generator parameters rather than the

latent space.

Manipulating GAN activations. It was shown [3] that

the intermediate activations in the GAN generator often cor-

respond to various semantic concepts. [3] exploits this by

controlling the presence or absence of objects at given po-

sitions, guided by supervision from a pretrained semantic

segmentation model. Another unsupervised approach [6]

identifies semantically meaningful activations via simple k-

means clustering and makes local edits for the generated

images. In contrast to these works, we operate on the gen-

erator weights rather than the activations tensors.

Rewriting a deep generative model. The closest work

to ours is [1], which shows that a user-specified editing op-

eration can be achieved by changing the generator weights.

In a nutshell, [1] solves the optimization problem that

seeks the shift in the generator’s parameter space, such that

the modified generator would produce the images after a

needed editing operation. In contrast, our approach does

not require specifying operations a priori and discovers a

lot of unexpected non-trivial visual effects, some of which

are impossible to formulate explicitly.

3. Methods

3.1. Preliminaries

Assume that we have a pretrained GAN generator Gθ,

which maps the samples z ∼ N (0, I) from the latent

space R
d into the image space, R

W×H×3 G : z →
I , and θ ∈ Θ denotes the set of the generator’s pa-

rameters. Our goal, then, is to learn a set of vectors

ξ1, . . . , ξK ∈ Θ, such that changing the generator pa-

rameters along these vectors effectively performs contin-

ious semantic editing operations. More formally, the map-

pings Gθ(z) → Gθ+tξk(z), k=1..K have to correspond to

interpretable visual effects, consistent for all latent codes

z ∼ N (0, I). Here t ∈ [−T, T ] is a shift magnitude, which

controls the degree of the corresponding visual effect.

Note that the problem statement above resembles the es-

tablished problem of learning the interpretable latent con-

trols addressed in [28, 14, 29, 10, 30]. However, the existing

works perform the editing operations by shifting the latent

codes with a fixed generator. In contrast, we operate in a

much higher dimensional space of the generator’s parame-

ters Θ and do not change the latent codes when editing. In

the next subsections, we describe the methods that discover

the interpretable directions in Θ.

3.2. Optimizationbased approach

The first approach is inspired by the recent unsupervised

technique [29], which discovers the interpretable latent di-

rections. Intuitively, [29] assumes that interpretable direc-

tions are the ones that are easy to distinguish from each

other, observing only the results of the corresponding im-

age manipulations. Here, we build on this intuition to ex-

plore the parameter space Θ. While many parts of our pro-

tocol have been used in [29], we still present them for self-

containedness.

Figure 1 demonstrates our training scheme. It includes

two learnable modules:

1. Direction matrix Ξ= [ξ1, . . . , ξK ] ∈ R
dim(Θ)×K .

2. Reconstructor R, which recieves the results of edit-

ing operations represented by pairs of the form

{Gθ(z);Gθ+tξk(z)}, and predicts both k and t from

its input. More formally, R is a function (I1, I2) −→
({1, . . . ,K}, R) parameterized by a deep convolu-

tional network.

z ∼ N (0, I) I1

I2

R(I1, I2) k̂, t̂
θ

ξ1
ξ2 Gθ+t·ξk

Gθ

Θ

Figure 1. Our learning protocol that discover the interpretable

shifts in the space of the generator’s parameters Θ. A training

sample consists of two images, produced by the generators with

original and shifted parameters. The images are given to a recon-

structor R that predicts a direction index k and a shift magnitude t.

The learning is performed by minimizing the expected

reconstructor’s prediction error:

min
[ξ1,...,ξK ],R

E
z∼N (0,I)
k∼U{1,K}
t∼U [−T,T ]

[
Lcl(k, k̂) + λLr(t, t̂)

]

(1)

where k̂ and t̂ denote the reconstructor’s output:

(k̂; t̂) = R (Gθ(z);Gθ+tξk(z)) (2)

For the classification objective term Lcl(·, ·) we use

cross-entropy, and for the regression term Lr(·, ·) mean ab-

solute error is used. Since all the components of our scheme

are differentiable, it can be optimized jointly by stochastic

gradient descent.

Reducing the dimensionality of the optimization

space. State-of-the-art generators (e.g., StyleGAN2) typ-

ically have millions of parameters θ, making it infeasible

to learn the full Ξ ∈ R
dim(Θ)×K matrix. To simplify the

optimization, in experiments, we minimize (1) considering

only the shifts ξ1, . . . , ξK applied to a particular generator’s

layer, with all other parameters being fixed. Namely, we

add a shift to the convolutional kernel of one StyleGAN2
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block (see Figure 2). This design choice is motivated by the

evidence from [3] that different generator layers typically

affect the different aspects of the image.

Conv 3×3

wk

A Mod

Demod +ξ

Figure 2. The additive shift ξ is added to the convolutional kernel

weight in the StyleGAN2 demodulation block.

However, only considering a single layer does not fully

solve the problem of high dimensionality. To reduce the

optimization space even further, we perform the following.

Inspired by the recent work on few-shot GAN adaptation

[27], we compute the SVD decomposition of the chosen

convolutional layer, flattened to a 2D matrix, as in [27].

Then we optimize over the shifts ξ1, . . . , ξK applied only to

the singular values of the diagonal matrix from SVD. Such

parametrization makes the optimization problem feasible

but is also expressive enough to represent various visual ef-

fects, as shown experimentally. While we tried some al-

ternative parameterizations, they typically resulted in worse

visual performance.

Practical details.

1. In all experiments we use the Resnet-18 architecture

[11] for the reconstructor, with two heads, predicting

t and k respectively. We downscale the input images

to the resolution 256 × 256 to decrease memory con-

sumption.

2. Assuming that SVD of a flattened convolutional ker-

nel equals U · diag(σ1, . . . , σn) · V , we apply an ad-

ditive shift ξ = (ξ(1), . . . .ξ(n)) to the singular values,

mapping diag(σ1, . . . , σn) to diag(σ1+ξ(1), . . . , σn+
ξ(n)). We also normalize the shift ξ to a unit length to

avoid parameter explosion.

3. In all experiments we use K=64, λ=2.5 · 10−3 and

T=3500. For optimization, we use Adam with a con-

stant learning rate 0.0001 and perform 105 learning it-

erations with a batch size 32.

3.3. Spectrumbased approach

Our second approach originates from an alternative

premise presented in [30], which claims that the inter-

pretable directions in the latent space should correspond to

as large perceptual changes of the generated images as pos-

sible. [30] formalizes this intuition by the following. They

calculate the latent directions that are the eigenvectors of

the Hessian of the LPIPS model [33] computed with respect

to the latent codes z. [30] also proposes an efficient way

to compute top-k eigenvectors, corresponding to the largest

eigenvalues, avoiding the explicit computation of the whole

Hessian, which is impractical.

Our second approach exploits the same intuition as in

[30] but operates with the Hessian of LPIPS computed with

respect to the generator’s parameters. For completeness,

we briefly describe the main steps to compute the Hes-

sian’s top-eigenvectors, though they are almost the same

as in [30]. Let us denote by d(·, ·) the LPIPS model,

which is shown to capture the perceptual distance be-

tween two images [34]. Let θ be the weights of the pre-

trained GAN generator . Then, we consider the quantity

Ezd
2(Gθ(z), Gθ+α(z)), which is the expected perceptual

change induced by shifting the generator parameters by α.

Assuming the LPIPS smoothness, we can write

Ezd
2(Gθ(z), Gθ+δα(z)) =

Ezd
2(Gθ(z), Gθ(z)) +

∂d2(Gθ(z), Gθ+α(z))

∂α
|α=0 · δα+

δαT ·
∂2d2(Gθ(z), Gθ+α(z))

∂α2
|α=0 · δα+ ō(‖δα‖22) (3)

The first two terms from the right side of (3) are equal to

zero since d2 achieves its global minimum at α = 0. Thus,

we focus on the eighenvectors of the Hessian

H =
∂2

Ezd
2(Gθ(z), Gθ+α(z))

∂α2
|α=0

For efficient computation, define the gradient function

g(a) = ∂Ezd
2(Gθ(z),Gθ+α(z))

∂α
|α=a. Following [30], we sam-

ple v ∼ N (0, I) and iteratively update it by the rule:

v 7→
g(εv)− g(−εv)

2ε‖v‖
(4)

where ε is a small constant set to 0.1. This process con-

verges to the leading eigenvector of the hessian H [19].

Once the top k − 1 eigenvectors are found, we repeat this

procedure, restricted to their orthogonal complementary, to

obtain the k-th eigenvector. Namely, on every step of (4)

we project v into the orthogonal complement of the already

found top-(k − 1) eigenvectors.

In the experiments, we compute the top-64 eigenvectors.

We approximate the expectation of the gradient function g

with a minibatch of 512 randomly sampled z ∼ N (0, I).
We always perform ten iterations of (4) since it is sufficient

for convergence. As in the optimization-based approach, we

explore the parameter subspaces corresponding to different

layers separately and compute the eigenvectors only with

respect to parameters from a particular layer.

3.4. Hybrid scheme

We also propose a simple hybrid scheme that combines

both the optimization-based and the spectrum-based ap-

proaches in a single procedure. First, we compute the top-k
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eigenvectors of the LPIPS Hessian v1, . . . , vk, as described

in Section 3.3. Then we solve the optimization problem (1)

considering only the shifts ξ applied to v1, . . . , vk. Infor-

mally, this hybrid scheme is equivalent to the optimization-

based approach that operates in the parameter subspace that

captures the maximal perceptual differences in the gener-

ated images. For the hybrid scheme, we use the same hy-

perparameter values as in Section 3.2 except for T , which

was set to 80 and batch size 16 in purpose to be able to run

on a single Tesla V100. This change is due to the Hessian

directions produce more noticeable visual effects compared

to SVD.

3.5. Inspecting directions.

The methods from Section 3.2, Section 3.3, Section 3.4

all produce a set of directions ξ1, . . . , ξK . These K di-

rections are then inspected manually by observing the im-

age sequences {Gθ+tξk(z)|t ∈ [−T, T ]}, for several latent

codes z. If a particular sequence maintains the image real-

ism and corresponds to interpretable manipulation, it then

can be used in editing applications. Since K is typically

small (e.g., 64), this procedure takes only several minutes

for a single person.

4. Experiments

In this section, we evaluate the proposed techniques on

the state-of-the-art StyleGAN2 generators [16] pretrained

on the FFHQ [15], LSUN-Cars [32], LSUN-Horse [32] and

LSUN-Church [32] datasets. Our goal is to demonstrate that

the StyleGAN2 parameter space contains the linear direc-

tions that can be exploited for high-fidelity image editing.

4.1. Nontrivial visual effects

First, we present several visual effects induced by the

discovered directions. Figure 3 and Figure 4 present three

examples for each dataset. More examples are provided in

supplementary and at the repository.

The typical manipulations affect scales and aspect ratio

of certain object parts, like “Belly size” and “Nose length”,

or mutual arrangement of these parts, e.g., “Moving legs”

and “Wheels rotation”. In supplementary, we discuss that

shifting the parameters of various generator layers results

in different effects, i.e., earlier layers induce global geo-

metrical transformations. The middle layers correspond to

localized transformations of object parts, and the final lay-

ers are responsible for coloring manipulations.

4.2. Comparison

In this subsection, we compare different techniques of

parameter space navigation, both qualitatively and quanti-

tatively. Specifically, we compare the following methods:

https://github.com/yandex-research/navigan

-  Roof height  +

-  Trees  +

-  Thickness  +

-  Belly size  +

-  Moving legs  +

-  Head size  +

Figure 3. Visual effects achieved by navigating the StyleGAN2

parameter space. Rows 1-3 correspond to the LSUN-Horse dataset

and rows 4-6 correspond to the LSUN-Church dataset.

• SVD performs a smooth changing of a particular sin-

gular value in the SVD of a flattened generator layer.

We include this method as a baseline inspired by the

evidence from [27], which shows that varying the sin-

gular values often result in interpretable manipula-

tions.

• Optimization-based method navigates Θ along the di-

rections discovered as described in Section 3.2.

• Spectrum-based method navigates Θ along the direc-

tions discovered as described in Section 3.3.

• Hybrid method navigates Θ along the directions dis-

covered as described in Section 3.4.
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  -  Glasses size  +

  -  Eyes distance  +

  -  Ears  +

  -  Cabin size  +

-  Width  +

-  Wheels rotation  +
Figure 4. Visual effects achieved by navigating the StyleGAN2

parameter space. Rows 1-3 correspond to the FFHQ dataset and

rows 4-6 correspond to the LSUN-Cars dataset.

To compare the methods, we apply all of them to the par-

ticular layer. Interestingly, in some cases, all methods dis-

cover directions, roughly corresponding to the same visual

effect. Given such a direction, we can qualitatively com-

pare the methods by observing how this direction modifies

the images produced from the same latent noise z. The typ-

ical visualizations are presented on Figure 5 and Figure 6.

These examples show that the SVD baseline dramatically

corrupts the image realism. In contrast, the techniques de-

scribed in Section 3 produce more clear and visible effects.

For a quantitative comparison, we perform the following

experiment. For each of four methods, we consider a direc-

tion that corresponds to the “Wheel size” visual effect. This

effect is chosen since it was identified by all the methods.

Then, for the generators Gθ+tξ(z), we plot the FID curves

by varying the shift magnitudes t. For each t the FID is

Since different methods have to use different scales of t values to

H
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O
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d

Figure 5. Comparison of the “Thickness” direction discovered by

different methods applied to the 3-rd conv layer of StyleGAN2.

Figure 6. Comparison of the “Wheel size” direction discovered by

different methods applied to the 5-th conv layer of StyleGAN2.

always computed with 5 · 104 real and generated images.

The plots are presented on Figure 7. The SVD baseline is

inferior to three advanced methods from Section 3, while

there is no clear winner among them. Overall, in practice

we recommend to use all three proposed methods to explore

the parameter space of a particular GAN since we observed

that each method can reveal effects, missed by the others.

achieve the same degree of the visual effect, we first calibrate these scales

manually to guarantee that the max values of t for all methods correspond

to the same wheel size.
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Figure 7. FID plots for the “Wheel size” visual effect produced by

different methods.

4.3. Latent transformations cannot produce these
visual effects

Here, we show that the manipulations induced by param-

eter shifts cannot be achieved by changing the latent codes.

Specifically, we perform the following experiment. Given

a shift ξ modifying a generator Gθ → Gθ+ξ, we look for a

latent shift h such that Gθ(z + h) = Gθ+ξ(z). To this end,

we solve the optimization problem

min
h

Ez||Gθ(z + h)−Gθ+ξ(z)||
2
2 (5)

For G we take the StyleGAN2 pretrained on the LSUN-

Car dataset and ξ is the “Wheels size” direction. We opti-

mize over h from the input Z-space, the W-space and the

space of the activation tensors before the modified convolu-

tional layer. In all three settings, the optimization failed to

obtain a latent shift that would properly mimic the visual ef-

fect. The results of the optimization are shown on Figure 8.

Similar results were obtained for other generators and di-

rections reported in the paper, see supplementary. Thus, our

approach reveals new semantic manipulations unattainable

by existing methods.

4.4. Editing real images

Importantly, the discovered image manipulations can be

naturally applied to real images using the GAN inversion

techniques, which embed a given image to the latent space

of a pretrained GAN. Furthermore, the manipulations can

be applied to the images embedded into the extended W+
space of StyleGAN2. We argue that this is an appealing

feature of our transformations since the conventional la-

tent shifts require embeddings to the lower-dimensional W-

space, which can harm the inversion quality. To illustrate

how the discovered visual effects perform on real images

domain, we invert the real images with the standard Style-

GAN2 projector in the W+ space [16]. On the Figure 9

we manipulate real images via the “Nose length” direction.

Figure 10 illustrates different manipulations applied to real

car images.

Figure 8. Unsatisfactory reproduction of the “Wheel size” manip-

ulation by the shifts in the latent spaces and in the space of the

intermediate activations.

original inversion -  nose length interpolation  +

Figure 9. Interpolations along the “Nose length” direction for real

images embedded in W+ space.

4.5. Maintaining realism

To verify that modifying the generator parameters does

not significantly harm the visual quality, we compute the

Frèchet Inception Distance (FID) [12] values for the modi-

fied generators. Namely, we plot the FID for the generators

with parameters shifted with different magnitudes along the

“Nose length” and “Wheel size” directions, see Figure 11.

Notably, even under extreme shift magnitudes, the ma-

nipulated samples have high visual quality. We also observe

that the FID plot is not symmetric. We attribute this behav-

ior to the fact that the real data can be inherently asymmetric

with respect to specific attributes. For instance, the gener-

ated cars FID grows much faster once the wheels become

small rather than large, probably, because LSUN-Cars con-
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Figure 10. Manipulations of real car images embedded in

W+ space.

−75 −50 −25 50 75 1000 25 
Wheel size scale

6

8

10

12

14

16

F
ID

−75 −50 −25 0 25 50 75 100
Nose length scale

4

6

8

10

12

14

F
ID

Figure 11. FID for the generators shifted along the “Wheel size”

direction (top) and the “Nose length” direction (bottom).

tains cars with big wheels, but there are no cars without

wheels. The same behavior appears with a human nose as

tiny noses are rarer than long noses. We also present similar

plots for other directions and datasets in the supplementary.

4.6. Locality of visual effects

To illustrate that the navigation along the discovered di-

rections results in an isolated and “disentangled” effect, we

perform the following. For a particular direction ξ, we com-

pute the per-pixel differences ‖Gθ+t·ξ(z) − Gθ(z)‖
2
2 aver-

Figure 12. Averaged heatmaps of the pixel differences between the

original and the edited images for the “Eyes distance” direction

(left) and the “Nose length” direction (right).

Figure 13. Left: original image; center: a shift in the direction

“Wheel rotation”; right: the squared distances between the original

and edited image averaged over different shift magnitudes.

aged over 1600 z-samples and 20 shift magnitudes t from

a uniform grid in a range [−100, 100]. Figure 12 shows

the averaged heatmap for the “Eyes distance” and “Nose

length” directions. Notably, the “Nose length” slightly af-

fects the eyes and mouth since the extreme shift pushes the

nose to overlap these face areas.

As another example, Figure 13 shows the averaged

square distance between an image generated by the orig-

inal StyleGAN2 and its shifts along the “wheel rotation”

direction. Only the “wheel regions” are affected.

4.7. Alternative GANs models

The proposed method is model-agnostic and can be ap-

plied even to image-to-image models. In the supplemen-

tary we present qualitative results of our approach been ap-

plied to pix2pixHD [31] pretrained on Cityscapes dataset

and BigGAN [4] pretrained on Imagenet.

5. Conclusion

In this paper, we have investigated the possibilities for

GAN-based semantic editing via smooth navigation in the

space of the generator’s parameters. In particular, we have

shown that this space contains various interpretable con-

trols, which can be identified via efficient and straightfor-

ward procedures. Given the simplicity and universality of

the proposed techniques, these controls become a valuable

complement to existing visual editing tools.
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