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Abstract

Precise estimation of optical flow, stereo depth and cam-

era motion are important for the real-world 3D scene un-

derstanding and visual perception. Since the three tasks

are tightly coupled with the inherent 3D geometric con-

straints, current studies have demonstrated that the three

tasks can be improved through jointly optimizing geometric

loss functions of several individual networks. In this pa-

per, we show that effective feature-level collaboration of the

networks for the three respective tasks could achieve much

greater performance improvement for all three tasks than

only loss-level joint optimization. Specifically, we propose

a single network to combine and improve the three tasks.

The network extracts the features of two consecutive stereo

images, and simultaneously estimates optical flow, stereo

depth and camera motion. The whole network mainly con-

tains four parts: (I) a feature-sharing encoder to extract

features of input images, which can enhance features’ rep-

resentation ability; (II) a pooled decoder to estimate both

optical flow and stereo depth; (III) a camera pose estima-

tion module which fuses optical flow and stereo depth infor-

mation; (IV) a cost volume complement module to improve

the performance of optical flow in static and occluded re-

gions. Our method achieves state-of-the-art performance

among the joint unsupervised methods, including optical

flow and stereo depth estimation on KITTI 2012 and 2015

benchmarks, and camera motion estimation on KITTI VO

dataset.

1. Introduction

Optical flow, depth and camera motion estimation are

three fundamental tasks in the field of computer vision.

Deep learning methods have greatly advanced the state-of-

the-art in optical flow and stereo depth estimation [32, 13,

7]. Meanwhile, learning-based camera ego-motion predic-

tion [53, 52] has also made significant progress recently.

∗ represents the corresponding author

Jointly estimating optical flow, stereo depth and camera mo-

tion can be applied in a wide range of applications, such

as autonomous navigation [9, 42], 3D scene reconstruc-

tion [38] and robot control [1]. Many unified unsupervised

framework [6, 44, 45, 27, 2] have been proposed to jointly

optimize two or three tasks concurrently. These joint meth-

ods demonstrate that jointly tackling these tasks has a posi-

tive effect on each of them.

There is a tight geometric relationship among optical

flow, stereo depth and camera pose, due to that each one

of the three tasks can be calculated by the other two. There-

fore, previous joint methods [4, 30, 21, 45] usually estimate

them by several individual networks, and construct various

geometric consistency constraint losses to mutually guide

each other. Recently, some works [24, 27] have tried to

share the same network for stereo depth and optical flow

estimation. However, based on the epipolar constraint, the

stereo depth estimation network only needs to search pixel

correspondences in horizontal lines, while the optical flow

estimation network demands a more comprehensive search

in both horizontal and vertical directions. So these meth-

ods only treat the stereo depth and optical flow estimation

as exactly the same task, but fail to allow full play the ad-

vantage of sharing features between stereo depth and opti-

cal flow estimation. That is, most if not all, existing joint

methods [4, 30, 45, 21, 24, 27] do not take full advantage of

the feature-level collaboration to constrain each other in the

learning process of the three tasks.

In this paper, we demonstrate that effective feature-level

collaboration for the three respective tasks could achieve

much greater performance improvement for all three tasks

than loss-level joint optimization. The intuition behind this

idea is that both stereo depth and optical flow estimation

networks find pixel correspondences between two images,

sharing features between the two tasks is reasonable and

meanwhile constrain the training process of the two tasks.

In addition, camera motion can be directly calculated by

the optical flow and stereo depth, so utilizing the feature-

level information of optical flow and stereo depth could add

further geometric constraint for feature training. To this
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end, we design a single network to integrate all the three

tasks. We obtain the features of stereo images and consecu-

tive frames by a feature-sharing encoder, and then take full

advantage of the features to predict both optical flow and

stereo depth by a pooled decoder. After that, the extracted

image features are used to predict the camera motion. In

this way, we achieve the feature-level mutual leaning of the

three tasks. And to our best knowledge, our method is the

first feature-level collaboration of the three tasks. And our

experiments verify that the collaboration at feature level can

significantly improve the performance of the three tasks.

Occlusion is also a primary problem in unsupervised op-

tical flow estimation, because the occluded pixels in the for-

mer frame can not find the corresponding matching pixels

in the next frame. In terms of image, the occluded pix-

els do not obey photometric consistency hypothesis. Sev-

eral methods [27, 44, 40, 23] utilize various geometric loss

terms instead of photometric loss to guide the optical flow

estimation of the occluded pixels. In terms of features, the

cost volume stores the matching costs of corresponding pix-

els in different images, so it is obvious that the part of the

cost volume corresponding to the occlusion pixels is inac-

curate, which will degrade the performance of the network.

However, existing joint unsupervised methods hardly han-

dle the inaccurate cost volume. In this study, we find that

in the real-world scenes, there are fewer occluded pixels be-

tween the left and right image captured by the stereo cam-

era. Based on the fact, we propose to leverage the cost vol-

ume of stereo images to complement the cost volume of two

consecutive frames, which can achieve a better performance

on optical flow estimation in occluded regions.

In summary, we propose a single unsupervised network

to jointly estimate optical flow, stereo depth and camera

motion, and achieve feature-level collaboration of the three

tasks. Our main contributions include: (I) We use a feature-

sharing encoder for optical flow, stereo depth and camera

motion estimation; (II) We design a pooled decoder to es-

timate both the optical flow and stereo depth; (III) We pro-

pose a novel method to estimate camera motion by using

image features which are shared with optical flow and stereo

depth. Furthermore, we also design a pose refinement mod-

ule to further improve the camera motion accuracy; (IV) We

explore the cost volumes complementary method to solve

the occlusion problem at feature level. (V) Our method

outperforms existing unsupervised joint methods. Remark-

ably, our method in optical flow estimation even outper-

forms some classic supervised methods [43, 18].

2. Related work

In this section, we introduce some deep learning methods

which are closely related to our work.

Depth estimation. DispNetC [32] is the first deep-

learning method to estimate stereo depth, which utilizes the

cost volume to assist the estimation. After that, many su-

pervised stereo depth estimation methods [3, 13, 5] make a

4D feature cost volume and incorporate 3D convolution for

further regularization. These supervised methods directly

predict depth from CNNs framework by minimizing the dif-

ference between the predicted depth and the ground truth.

Due to the scarcity of data with ground truth, [11, 51] pro-

pose unsupervised depth estimation methods by minimizing

photometric error.

Optical flow estimation. Starting from FlowNet [7],

various supervised [39, 43, 15] learning architectures of op-

tical flow estimation have been proposed. These supervised

methods significantly improve the optical flow prediction

by extracting feature pyramid and constructing cost vol-

umes at different scales. However, it is difficult to obtain

the ground truth of optical flow in the real-world scenes.

So recent works [20, 33, 47] propose unsupervised opti-

cal flow estimation methods based on the photometric con-

sistency assumption and spatial smoothness assumption.

However, the pixels in occluded regions do not obey the

brightness constancy and greatly decrease the whole per-

formance. Some works address this problem by detecting

occlusion and then excluding occluded pixels when com-

puting photometric [46, 19] constancy loss, or using the

teacher-student framework to provide more accurate con-

straint for occluded pixels [26, 28]. These methods have

definitely obtained improvement by constructing more ef-

fective losses, but ignore the degraded cost volumes.

Joint unsupervised depth and camera pose estima-

tion. Zhou et al. [53] shows that it is possible to simultane-

ously predict monocular depth and camera motion between

two consecutive video frames. After that, some works fol-

low the idea by constructing a 3D-based geometric con-

sistency loss [31] or utilizing semantic segmentation to

estimate the individual object motion to handle dynamic

scenes [6]. [12] propose a per-pixel minimum reprojection

loss to handle occlusions. These unsupervised methods use

geometric consistency to jointly predict monocular depth

and camera pose or object motions. However, due to the

limitation of monocular cameras, their performance have a

large gap with stereo depth estimation methods.

Joint unsupervised stereo matching and optical flow

estimation. Due to both stereo matching and optical flow

estimation can be modeled as the same problem to find

matching correspondence between two images, [24] firstly

use the same network to predict optical flow or stereo

matching, and introduces geometric constraints to guide the

joint estimation of the two tasks. Based on [24], [27] fur-

ther employs a Teacher-Student network to guide the oc-

cluded regions. However, in order to use a single network

for optical flow and depth estimation, [24, 27] estimate a

two-dimensional disparity and then set the vertical dimen-

sion to be zero, which may add extra error for the disparity
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Figure 1. Overview of our united unsupervised learning framework which estimates optical flow, stereo depth and camera pose. We

construct our network based on PWC-Net [43] which estimates five-scale flows. The green box 1© presents our Feature-sharing encoder

(Sec. 3.1), Pooled decoder module(Sec. 3.2) and Camera pose estimation module(Sec. 3.3). The brown box 2© illustrates Cost volume

complement(Sec. 3.4), which uses the C
′

d instead of Cd as the input of the decoder, where C
′

d is the combination of original Cd and

Cf−d whose construction process is shown in Fig. 2 in detail.

Figure 2. Overview of Cost volume complement. Given the re-

fined camera pose and camera intrinsics, the estimated optical flow

F 1 can be converted into the disparity DF1→D1
by Triangulation

Algorithm [14]. Then the disparity DF1→D1
is used to warp the

feature fR1
to the coordinate system of L1, and then the warpped

f̃L1
and the feature fL1

are used to construct the cost volume

Cf−d. Finally, the Cf−d is added to the Cd which is constructed

by the estimated disparity D1, feature fL1
and fR1

.

compared with our method which directly estimates one-

dimensional disparity. That is because that disparity can be

modeled as a task to search pixel correspondence only in

the horizontal lines.

Joint unsupervised optical flow, depth and camera

pose estimation. GeoNet [48] is the first to jointly esti-

mate depth, pose and optical flow. Following that, some

methods [54, 4, 30, 45] use three individual networks to

predict the three tasks respectively, and encourage geomet-

ric consistency between the rigid flow (computed from es-

timated disparity and camera motion) and the predicted op-

tical flow in static regions. To better exploit geometric rela-

tionship in the real-world scenes with multiple moving ob-

jects, [44, 40, 23] use semantic information to segment the

scene into static and moving regions. Then some works ob-

tain moving objects motion by proposing a residual flow

module [25] or estimate a 6-DOF rigid-body transforma-

tion for each dynamic object [6]. All these joint methods

use several individual networks, which is computationally

expensive and difficult to train simultaneously due to the

inherent conflict. Though some of them exploit semantics

to exclude or address dynamic objects, the predicted camera

motion and dynamic objects motion are still far from ideal.

Different from these joint methods, in this paper, we pro-

pose a single feature-level collaboration network jointly es-

timate these three tasks which can greatly improve the per-

formance of each task.

3. Method

The inputs of our network are two pairs of consecutive

stereo images (L1, L2, R1, R2), where (L1, R1) and (L2,

R2) indicate the left and right image at time t and t+ 1
respectively. Then the network can estimate the optical flow

F t→s (from target to source image), the disparity Dt→s

and the camera motion ξt→s ∈ se(3). For concision, in

this section, we denote F 1 as the optical flow from L1 to

L2, while D1 as the disparity from L1 to R1. We introduce

our whole architecture in Sec. 3.1 and several losses for the

unified learning in Sec. 3.2.

The whole network architecture shown in Fig. 1 includes

four components: 1) feature-sharing encoder, 2) pooled op-

tical flow and disparity decoder, 3) camera pose estimation,

4) cost volume complement.
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3.1. Feature­sharing encoder

We adopt the feature extractor of PWC-Net [43] to ex-

tract the 5-scale feature pyramid of L1, L2, R1 and R2.

And we denote f l
t as the lth-level feature of image t. These

extracted features are integrated together for the following

optical flow and stereo depth estimation. Meanwhile, the

shared features can be further used to predict camera mo-

tion. In addition, this weight-sharing feature extractor mod-

ule reduce the number of network parameters.

3.2. Pooled optical flow and disparity decoder

In order to fully leverage the features of the four images

and simultaneously decode both optical flow and disparity,

we make two modifications to the original PWC-Net de-

coder: 1) inputting two cost volumes instead of original

one cost volume. The whole estimation of optical flow and

disparity is a coarse-to-fine process. Taking the lth-level

decoder for example, one of the two cost volumes is con-

structed by the lth-level image features f l
L1

, f l
L2

and the

upsampled optical flow up2(F
l+1
1

), the other is constructed

by the lth-level image features f l
L1

, f l
R1

and upsampled

disparity up2(D
l+1
1

). 2) increasing the number of output

channels of the decoder from 2 to 3, to simultaneously de-

code both optical flow and disparity (i.e., the first 2 channels

are for the optical flow and last 1 channel is for disparity).

The whole process is shown in Fig. 1.

The pooled decoder module can integrate the features of

optical flow and stereo depth, which can benefit both tasks.

Compared with constructing only one cost volume as the

input of the decoder in PWC-Net, the combination of the

flow and disparity cost volumes can significantly enhance

the features’ representation ability of the feature-sharing en-

coder. In addition, this method also helps the network learn

the inherent relationships between the two tasks, which can

improve the performance of the decoder.

3.3. Camera pose estimation

This module includes two sub-modules: camera pose

prediction module and refinement module.

Camera pose prediction module: This module esti-

mates the relative camera pose ξt→s between two frames.

When predicting the relative camera motion ξL1→L2
, the

module inputs are the 2nd-level flow and disparity, the 2nd-

level image features, and the fused features of the pooled

decoder in 2nd-level, and the output is a 6-DOF cam-

era pose. Compared with previous learning-based meth-

ods [54, 4, 30, 45] which directly regress the camera pose

from original images, our method utilizes the feature-level

information of optical flow and depth, which can achieve

better performance on camera motion estimation.

Camera pose refinement module: To further improve

the camera pose estimated by CNNs, we propose a pose re-

finement module. The initial estimated ξt→s may have a

slight deviation, which can be seen as a slight camera pose

perturbation ∆ξt→s. So like RDVO proposed in [45], our

pose refinement module aims at finding the ∆ξt→s to ob-

tain a more accurate camera pose. First, we show several

conversion formula among flow, depth and disparity.

The disparity D and the depth Z can converted to each

other by,

Z = −fx ∗ b/D (1)

where fx and b is the focal length and the baseline of stereo

cameras, respectively.

Given the camera pose ξt→s and the depth Zt, the rigid

flow from t to s can be calculated as,

F
rig
t→s = π(Kexp(ξ)ZtK

−1pt)− π(pt) (2)

where K is the given camera intrinsic and pt is homoge-

neous coordinates in pixel plane. π([x, y, z]) = [x/z, y/z]T

returns 2D non-homogeneous coordinates.

Like [45], we obtain a mask M s of static regions by the

flow consistency check, and the non-occluded region mask

Mnoc by the forward-backward consistency prior [33].

Then a static and non-occluded region mask M s−noc
t→s can

be computed by

M s−noc
t→s = M s ·Mnoc (3)

Our basic assumption is that the estimated optical flow

and stereo depth in non-occluded regions are accurate

enough. So the ∆ξt→s can be computed by minimizing the

reprojection error of N pixels which are randomly chosen in

static and non-occluded regions,

∆ξ∗ = argmin
∆ξ∗

1

N

∑
||π(KP s)− π(ps)||

2
(4)

P s = exp(∆ξt→s)exp(ξt→s)ZtK
−1pt (5)

where pt ∈ M s−noc
t→s , and ps is the corresponding pixel co-

ordinate in the image s which is computed by pt and the

estimated optical flow. Now Eq(4) can be seen as a sim-

ple Bundle Adjustment(BA) problem which can be solved

by Levenberg-Marquardt(LM) algorithm [35, 29] to get the

optimal ∆ξ∗t→s. Then, finally, we can obtain a more accu-

rate camera pose exp(ξ
′

t→s) = exp(∆ξ∗t→s)exp(ξt→s).

3.4. Cost volume complement

As analyzed in Sec. 1, existing joint methods usually fo-

cus on the loss-level jointly optimization, but not handle the

degraded cost volume. In this section, based on the shared

features, we propose a cost volume complement module to

further utilize the image features to reinforce the flow and

disparity cost volumes. This module mainly contains four

parts: cost volume enhancement, cost volume interaction,

iterative optimization and moving objects handling.
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Figure 3. Qualitative results of our method. We compare each of our optical flow to previous methods, UnOS [45] and Geo-Net [48].

Figure 4. Qualitative results of our method. We compare each of our depth to previous methods, UnOS [45] and Bridging-Net [24].

Significantly improved regions are highlighted with dash circles. In the first and third rows, UnOS [45] estimate a disconnected handrail

and telegraph pole, but our estimation is better.

Cost volume enhancement: As shown in Fig. 2, given

the camera pose ξL1→L2
and the optical flow F 1, we build

the cost volume Cf−d . In most real-world datasets, most of

the occluded pixels are invisible in the L2, but visible in the

R1. So the cost volume Cf−d is a powerful enhancement

for the cost volume Cf .

Cost volume interaction: As shown in Fig. 1, we com-

bine the Cd and Cf−d to get C
′

d. Because the estimated

disparity is more accurate than optical flow, especially in

occluded regions, the combination of Cf−d and Cd would

further improve the optical flow estimation performance.

Iterative optimization: For achieving the cost volume

complement, The 2nd-level pooled decoder has been iter-

ated three times with the same weights but different inputs

and losses. Firstly, input original Cd and Cf to estimate

optical flow and disparity. And the camera pose estimation

model is only trained once at the first iteration. After the

1st iteration, we get the initial optical flow, depth and cam-

era pose. Secondly, input C
′

d and Cf , and only constrain

the static regions with the static mask. After the 2nd iter-

ation, we get more accurate optical flow in static regions.

Thirdly, input C
′

d and Cf , and constrain non-occluded re-

gions by photometric loss and static occluded regions by the

flow consistency loss. In the 3rd iteration, we further refine

the optical flow and disparity. As shown in Fig. 1.

Moving objects handling: In theory, our cost volume

complement module can also be applied in moving objects

by using the different moving objects’ poses instead of the

camera pose. But due to that it is extremely difficult to es-

timate the accurate poses of moving objects, here, we in-

troduce a novel method to handle moving objects. We re-

extract the features from original input images, and copy

the 2nd-level pooled decoder to predict the optical flow and

disparity of dynamic objects. To this end, only the photo-

metric constraints are provided for the training of this mini-

module. The process is similar with the 1st iteration.

3.5. Training losses

In this section, we introduce several losses we designed

for our joint unsupervised architecture.

Photometric losses. [30, 45, 48] use the linear com-

bination of SSIM and L1 norm as their photometric loss.

To better eliminate the negative influence of illumination

variation, we add an extra Census loss [33]. Formally, our

photometric loss can be written as,

L∗p(O) =
∑

pt

V∗(pt,O) · s(It(pt), Ĩt(pt)), (6)

where, s(It(pt), Ĩt(pt)) = (1− α)|It(pt)− Ĩt(pt)|+

α · (1−
1

2
SSIM(It(pt)− Ĩt(pt)))+

β · Census(It(pt)− Ĩt(pt))

(7)

2467



KITTI 2012 KITTI 2015

Method United Stereo Supervised train train train test train train train train test

EPE-noc EPE-all EPE-occ EPE-all EPE-noc EPE-all EPE-occ Fl-all Fl-all

SpyNet-ft [39] X – (4.13) – – – – – – –

FlowNet2-ft [18] X – (1.28) – 1.8 – (2.30) – – 11.48%

PWC-Net-ft [43] X – (1.47) – 1.7 – (2.16) – – 9.60%

UnFlow [33] 1.26 3.29 – – – 8.10 – 23.27% –

DDFlow [26] 1.02 2.35 11.31 3.0 2.73 5.72 24.68 – 14.29%

SelFlow [28] 0.91 1.69 6.95 2.2 2.40 4.84 19.68 – 14.19%

UFlow [22] – 1.68 – 1.9 [1.88] [2.71] – – 11.13%

Geonet [48] X – – – – – 10.81 – – –

Jiang et al. [21] X 0.94 1.56 – 1.9 – – – – –

DF-net-ft [54] X – 3.54 – 4.4 – [8.98] – [26.01%] [22.82%]

Bridging-Net [24] X X 1.39 2.56 – – 4.30 7.13 17.79 27.13% –

EPC++ [30] X X – 1.91 – 2.2 3.83 5.43 – – 20.52%

UnOS [45] X X 1.04 1.64 5.30 1.8 3.79 5.58 22.01 – 18.00%

Flow2Stereo [27] X X 0.82 1.45 5.52 1.7 2.12 3.54 12.58 10.04% 11.10%

Matteo et al. [44] X – – – – 3.29 5.39 – 20.00% 19.47%

Junhwa et al. [17] X – – – – – 7.51 – 23.49% 23.54%

Our(full) X X 0.82 1.25 3.88 1.5 1.57 2.35 6.68 9.09% 9.70%

Table 1. Quantitative evaluation on the optical flow task. EPE means average end-point-error where the postfix ’-noc’ and ’-all’ only

accounts for non-occlusion regions and all regions, respectively. Fl is the percentage of erroneous pixels. A pixel is considered to be

correctly estimated if the EPE is <3px or <5%. ’()’: trained on the labeled evaluation set, ’[]’ trained on the unlabeled evaluation set.

Here, α and β are the balancing hyper-parameter which are

set to be 0.85 and 0.5 repectively. O represents the type

of the inputs for obtaining the matching pixel, which can

be optical flow, rigid flow or disparity. Ĩt is the warped

image from Is to target image plane by O. V∗ indicates the

visible regions mask relying on the matching images. For

the optical flow, VOF is computed by forward-backward

consistency check [16].

Edge-aware smoothness. We use similar image gradi-

ent based edge-aware smooth loss L∗s(O) like [30].

Camera pose loss. Based on [45], we add the extra pixel

loss between L1 and R2 by leveraging the fixed camera pose

between the left and right camera ξL→R.

exp(ξ
′

L1→R2
) = exp(ξL→R) · exp(ξ

′

L1→L2
) (8)

Given the refined camera pose ξ
′

L1→L2
and the estimated

disparity, we can obtain the ξ
′

L1→R2
by Eq(8), and they

can be used to compute F
rig
L1→L2

and F
rig
L1→R2

by Eq(2).

And we can obtain the static non-occluded masks M s−noc
L1→L2

and M s−noc
L1→R2

using Eq(3). Then we can use the two rigid

flows and the two masks to compute two photometric losses,

which can be added together to get the final camera pose

loss Lpose.

Flow consistency loss. In static occluded regions, the

rigid flow is more accurate than predicted optical flow. So

we construct a flow consistency loss between the optical

flow and rigid flow in the regions, which can be written as,

Lro =
∑

pt

M s−occ
t→s ρ(F rig′

t→s(pt)− F t→s(pt)) (9)

where F
rig′

t→s(pt) is computed by refined camera pose

ξ
′

L1→L2
and depth Zt according Eq(2), the M s−occ

t→s is the

static and occluded mask, which can be computed as,

M s−occ
t→s = M s(̇1−Mnoc) (10)

and ρ is the generalized Charbonnier loss [49], ρ(x) = (x+
ǫ)α1 . In our experiment, the ǫ and α1 are set to be 0.001 and

0.5 respectively.

Total loss. In summary, our total loss function is,

Ltotal = (Lfp+Ldp)+λs(Lfs+Lds)+λposeLpose+λroLro

(11)

where λs, λpose and λro are the balanced weights.

4. Experiment

In this section, we first introduce the datasets, and then

describe our training details, and compare our results with

other SOTA methods on the tasks of optical flow, stereo

depth and visual odometry.

4.1. Datasets

For the optical flow and stereo depth tasks, we use

the first 11 sequences of KITTI Visual Odometry (VO)

dataset and raw multi-view extension of KITTI 2012[10]

and KITTI 2015 [34] excluding neighboring frames(frames

9-12) as [41, 46, 27, 26, 28] as the training set. And as

most previous methods, we evaluate the optical flow and

stereo depth on KITTI 2012 benchmark(194 training im-

age pairs and 195 test image pairs) and KITTI 2015 bench-

mark(200 training image pairs and 200 test image pairs).

For the odometry task, we use the official odometry data
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Method Train Test Lower the better

Stereo Stereo Abs Rel Sq Rel RMSE RMSE log EPE-noc EPE-all EPE-occ

Geonet [48] 0.153 1.328 5.737 0.232 – – –

Ranjan et al. [40] 0.140 1.070 5.326 0.217 – – –

Matteo et al. [44] 0.118 0.748 4.608 0.186 – – –

EPC++ [30] X 0.109 1.004 6.232 0.203 – – –

Godard et al. [11] X 0.097 0.896 5.093 0.176 – – –

Zhou et al. [51] X X – - - - 8.35 9.41 –

Godard et al. [11] X X 0.068 0.835 4.392 0.146 – – –

Bridging-Net [24] X X 0.087 0.765 4.380 0.184 1.47 1.55 1.98

UnOS [45] X X 0.049 0.515 3.404 0.121 1.22 1.28 1.62

Flow2Stereo [27] X X – - - - 1.31 1.34 2.56

Our(Depth-only) X X 0.063 0.662 4.312 0.140 1.30 1.42 1.85

Our(full) X X 0.047 0.394 3.358 0.119 1.16 1.22 1.50

Table 2. Quantitative evaluation of the stereo depth task on the KITTI 2015 training set. Abs Rel, Sq Rel, RMSE, RMSE log, EPE are

standard metrics for depth evaluation [24, 45]. We capped the depth to be between 0-80 meters to compare with existing methods. Using

stereo pairs during training/testing is also indicated in the table.

KITTI 2012 KITTI 2015

Method EPE EPE EPE EPE EPE EPE

noc all occ noc all occ

Flow Only 1.04 2.40 9.99 3.38 5.96 16.53

Feature Fusion 0.94 1.93 7.62 2.95 5.51 14.98

Feature Fusion + Pose 0.88 1.35 4.42 2.02 3.08 8.76

Cost Volume Fusion 0.90 1.87 7.40 2.64 5.06 12.69

Cost Volume Fusion + Pose 0.82 1.25 3.88 1.57 2.35 6.68

Table 3. Ablation study of optical flow estimation on KITTI 2012

and KITTI 2015 training split.

KITTI 2015

Method EPE EPE

static moving

Feature Fusion + Pose 2.56 4.55

Cost Volume Fusion + Pose(static) 1.84 10.05

Cost Volume Fusion + Pose(moving) 3.10 3.30

Cost Volume Fusion + Pose(full) 1.84 3.30

Table 4. Ablation study of optical flow estimation on KITTI 2015

training split.

split, i.e. using 9 sequences(Seq. 00-08) for training and 2

sequences(Seq. 09 and Seq. 10) for testing.

4.2. Implementation details

The whole training process consists of four stages. In the

first stage, we train the feature-sharing encoder and pooled

decoder on KITTI VO dataset, using our photometric losses

and edge-aware smooth losses, which λs is set to 10. Dur-

ing the training, the batch size is 2, and the initial learning

rate is 0.0001 and decreases to 0.00001 after 10 epochs. The

original images with simple color agumentation are ran-

domly cropped or resized to 320 × 896 as the inputs. In the

second stage, we use our camera pose loss Lpose to train

the camera pose prediction module on Seq. 00-08 of KITTI

VO dataset. Then in the third stage, according to the pro-

cedure metioned in Sec. 3.4, we train the the cost volume

complement module on the multi-view extension of KITTI

2012 and KITTI 2015. After the 3rd stage, we can obtain

the best static flow. In the 4th stage, we train the moving

objects handling module to get the dynamic objects’ flow.

At last, we obtain the final flow by compositing the static

flow and moving objects’ flow.

4.3. Main results

Optical flow. We evaluate our model on both KITTI

2015, KITTI 2012 training and test splits. The quantita-

tive results are shown in Tab. 1 and the visualization results

are shown in Fig. 3. The results show that our method out-

performs all current joint unsupervised estimation methods

on all evaluation metrics(EPE and Fl). Specially, on KITTI

2012, we achieve EPE-all = 1.25, which even outperforms

some SOTA supervised methods, like PWC-Net [43] (1.47).

In addition, there is also much improvement on KITTI

2015. We achieve EPE-all = 2.35, resulting in 33.6% rel-

ative improvement than previous best joint unsupervised

method Flow2Stereo [27]. And our method also performs

better than the Uflow [22], which is the current best unsu-

pervised optical flow estimation method.

• Ablation Study. We choose the training split for our abla-

tion study because the ground truth of test split is withheld.

We present 5 different variants in Tab. 3, including:

- Flow Only. We train original PWC-Net to estimate optical

flow, using our photometric and smoothness losses.

- Feature Fusion. Only the first two modules(feature-

sharing encoder and pooled decoder) are trained with the

same losses with Flow Only.

- Cost Volume Fusion. We use the cost volume C
′

d instead

of original Cd to train the network by the same losses with

Feature Fusion.

- Feature Fusion + Pose. The model is trained basing on

Feature Fusion model by adding the flow consistency loss.

- Cost Volume Fusion + Pose. The Cost Volume Fu-
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Method Stereo Seq. 09 Seq. 10

ORB-SLAM(full) [36] (0.014± 0.008) (0.012± 0.011)

Zhou et al. [53] (0.021± 0.017) (0.020± 0.015)

DF-Net [54] (0.017± 0.007) (0.015± 0.009)

Mahjourian et al. [31] (0.013± 0.010) (0.012± 0.011)

EPC++(mono) [30] (0.013± 0.007) (0.012± 0.008)

GeoNet et al. [48] (0.012± 0.007) (0.012± 0.009)

Ranjan et al. [40] (0.012± 0.007) (0.012± 0.008)

EPC++(stereo) [30] X (0.012± 0.006) (0.012± 0.008)

UnOS(MotionNet) [45] X (0.023± 0.010) (0.022± 0.016)

UnOS(Full) [45] X (0.012± 0.006) (0.013± 0.008)

Our(MotionModule) X (0.011± 0.005) (0.006± 0.003)

Our(Full) X (0.009± 0.005) (0.006± 0.003)

Table 5. Odometry evaluation on two testing sequences of KITTI

dataset using the metric of the absolute trajectory error.

sion continues to be trained basing on Cost Volume Fusion

model by adding the flow consistency loss.

The results of Flow Only and Feature Fusion validate our

insight that feature-sharing encoder and pooled decoder can

improve the optical flow estimation in non-occluded region

(from 1.04 to 0.94 on KITTI 2012, from 3.38 to 2.95 on

KITTI 2015), while the results of Flow Only and Cost Vol-

ume Fusion verify that the interactive cost volume for the

decoder can significantly improve the optical flow estima-

tion in occluded region (from 9.99 to 7.40 on KITTI 2012,

from 16.53 to 12.69 on KITTI 2015). The results of last two

rows in Tab. 3 show that the rigid flow can provide a more

accurate constraint for optical flow of occluded pixels.

We also present 4 different variants in Tab. 4 with the

metrics of the flow estimation in static and moving regions.

The results of Feature Fusion + pose and Cost Volume Fu-

sion + Pose(static) validate our assumption that the interac-

tive cost volume can significantly improve the optical flow

estimation in static regions (from 2.56 to 1.84). In addition,

the results of Feature Fusion + pose and Cost Volume Fu-

sion + Pose(moving) validate our moving objects handling

can improve the performance in moving regions.

Stereo Depth. We evaluate the depth task on the KITTI

2015 dataset, and use Abs Rel, Sq Rel, RMSE, RMSE log

and EPE as our evaluation metrics as [24, 45]. The results

are shown in Tab. 2 and Fig. 4. The Depth-only is obtained

by modifying the PWC-Net to estimate only one dimension

as the disparity. Our(full) shows that our method performs

better than existing unsupervised depth estimation methods,

especially in SqRel(0.394).

Visual Odometry. We compare our pose estimation

method with SOTA methods. ORB-SLAM [36], ORB-

SLAM2 [37] and LSD-SLAM [8] are traditional visual

SLAM system and others are unsupervised deep-learning

methods. We use two commonly adopted metrics pro-

posed in [53, 50], and use the same evaluation method

as UnOS [45]. The quantitative results are shown in Tab.

5 and Tab. 6, and the trajectory are shown in Fig. 5.

Method
Seq. 09 Seq. 10

terr% rerr(
o/100) terr% rerr(

o/100)

ORB-SLAM(full) [36] 2.51 0.26 2.10 0.48

ORB-SLAM2(stereo) [37] 0.82 – 0.58 –

LSD-SLAM(stereo) [8] 1.22 – 0.75 –

Zhou et al. [53] 30.75 11.41 44.22 12.42

GeoNet et al. [48] 39.43 14.30 28.99 8.85

Zhan et al. [50] 11.92 3.60 12.62 3.43

EPC++(mono) [30] 8.84 3.34 8.86 3.18

Jiang et al. [21] 4.36 0.69 4.04 1.37

UnOS(MotionNet) [45] 13.98 5.36 19.67 9.13

UnOS(Full) [45] 5.21 1.80 5.20 2.18

Our(MotionModule) 5.77 1.92 5.34 2.86

Our(Full) 2.02 0.54 1.81 1.03

Table 6. Odometry evaluation on two testing sequences of KITTI

dataset using the metric of average translation and rotational er-

rors.

Figure 5. Trajectories of our method, UnOS [45] and Ground

Truth in KITTI sequnences 09 and 10.

Our(MotionModule) is the results directly predicted by the

camera pose prediction module. It is even better than cur-

rent unsupervised learning-based camera motion estimation

methods. Notably, the performance on the metric of Av-

erage Translation and Rotation Errors is much more im-

pressive, which shows that our methods can obtain better

odometry performance in the long test sequences. In addi-

tion, compared with the results of UnOS(MotionNet) which

uses original images as the input of camera motion module,

Our(MotionModule) performs much better, i.e. (5.77 and

1.92) vs (13.98 and 5.36) in Seq. 09, (5.34 and 2.86) vs

(19.67 and 9.13) in Seq. 10. This validates that our idea

that the feature-level information of optical flow and depth

can help further improve the camera pose estimation.

5. Conclusion

We present a single network to jointly estimate optical

flow, stereo depth and camera pose in unsupervised manner.

We explore the feature-level collaboration of the three tasks.

And our method achieves superior performance among all

the three sub-tasks joint unsupervised methods. In the fu-

ture, we will explore how to further improve the camera

motion estimation by using multiple frames.
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