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Figure 1: From these unannotated images, we would like a recognition system to discover the concepts of house, grass, trees and sky, and

segment each image accordingly without any supervision.

Abstract

We present a new framework for semantic segmentation

without annotations via clustering. Off-the-shelf clustering

methods are limited to curated, single-label, and object-

centric images yet real-world data are dominantly uncu-

rated, multi-label, and scene-centric. We extend cluster-

ing from images to pixels and assign separate cluster mem-

bership to different instances within each image. How-

ever, solely relying on pixel-wise feature similarity fails

to learn high-level semantic concepts and overfits to low-

level visual cues. We propose a method to incorporate

geometric consistency as an inductive bias to learn in-

variance and equivariance for photometric and geometric

variations. With our novel learning objective, our frame-

work can learn high-level semantic concepts. Our method,

PiCIE (Pixel-level feature Clustering using Invariance and

Equivariance), is the first method capable of segmenting

both things and stuff categories without any hyperparam-

eter tuning or task-specific pre-processing. Our method

largely outperforms existing baselines on COCO [31] and

Cityscapes [8] with +17.5 Acc. and +4.5 mIoU. We show

that PiCIE gives a better initialization for standard su-

pervised training. The code is available at https://

github.com/janghyuncho/PiCIE.

1. Introduction

Unsupervised learning from a set of unlabelled images

has gained large popularity, but still is mostly limited to

single-class, object-centric images. Consider the images

shown in Figure 1 (top). Given a collection of these and

other unlabeled images, can a machine discover the con-

cepts of “grass”, “sky”, “house” and “trees” from each im-

age? Going further, can it identify where in each image each

concept appears, and segment it out?

A system that is capable of such unsupervised seman-

tic segmentation can then automatically discover classes of

objects with their precise boundaries, thus removing the

substantial cost of collecting and labeling datasets such as

COCO. It might even discover objects, materials and tex-

tures that an annotator may not know of a priori. This can

be particularly useful for analyzing novel domains: for ex-

ample, discovering new kinds of visual structures in satellite

imagery. The ability of the system to discover and segment

out unknown objects may also prove useful for robots trying

to manipulate these objects in the wild.

However, while unsupervised semantic segmentation

might be useful, it is also challenging. This is because

it combines the problem of class discovery with the chal-

lenge of exhaustive pixel labeling. Recent progress in self-
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Figure 2: PiCIE overview (left) and illustration of multi-view feature computation (right). More details in Sec. 3.3.

supervised and unsupervised learning suggests that recog-

nition systems can certainly discover image-level classes.

However, image-level labeling is easier since the network

can simply rely on just a few distinctive, stable features and

discard the rest of the image. For example, a recognition

system might be able to group all four images of Figure 1

together simply by detecting the presence of roof tiles in

each image, and ignoring everything else in the images. In

contrast, when segmenting the image, no pixel can be ig-

nored; whether it is a distinct object (thing) or a background

entity (stuff ), each and every pixel must be recognized and

accurately characterized in spite of potentially large intra-

class variation. As such, very little prior work has tried to

tackle this problem of discovering semantic segmentations,

with results limited to extremely coarse stuff segmentation.

In this paper, we take a step towards a practically use-

ful unsupervised semantic segmentation system: we present

an approach that is able to segment out all pixels, be they

things or stuff, at a much finer granularity than prior art.

Our approach is based on a straightforward objective that

codifies only two common-sense constraints. First, pixels

that have a similar appearance (i.e., they cluster together

in a learned feature space) should be labeled similarly and

vice versa. Second, pixel labels should be invariant to color

space transformations and equivariant to geometric trans-

formations. Our results show that using these two objectives

alone, we can train a ConvNet based semantic segmentation

system end-to-end without any labels.

We find that in spite of its simplicity, our approach far

outperforms prior work on this task, more than doubling

the accuracy of prior art (Figure 1, bottom). Our clustering-

based loss function (the first objective above) leads to a

much simpler and easier learning problem compared to

prior work, which instead tries to learn parametric pixel

classifiers. But the invariance and equivariance objectives

are key. They allow the convolutional network to connect

together pixels across scale, pose and color variation, some-

thing that prior systems are unable to do. This increased

robustness to invariance also allows our approach to ef-

fectively segment objects. We vindicate these intuitions

through an ablation study, where we find that each of these

contributes significant improvements in performance.

In sum, our results show that convolutional networks can

learn to not only discover image-level concepts, but also

semantically parse images without any supervision. This

opens the door to true large-scale discovery, where such a

trained network can automatically surface new classes of

objects, materials or textures from only an unlabeled, uncu-

rated dataset.

2. Related Work
Learning for clustering. Using deep neural networks to

learn cluster-friendly embedding space has been widely

studied [4, 5, 58, 57, 51, 14, 54]. DEC [51] and IDEC [14]

train embedding function by training autoencoder (AE) [49]

with reconstruction loss. DeepCluster and its variants [4,

5, 57] explicitly cluster the feature vectors of the entire

dataset using k-means [38] in order to assign pseudo-labels

to each data point, and then train an encoder network. All

these methods share a common philosophy that iterative op-

timization of clustering loss improves the feature space to

account for high-level visual similarity.

Apart from a representation learning perspective, there

have been a number of recent works that tackle classifica-

tion without labels by clustering data points [51, 18, 17, 23,

48, 55]. IIC [23], SeLa [55] and other works [48, 34, 60, 16]

maximize mutual information between two versions of soft

cluster assignments from a single image. Maximizing mu-

tual information prevents the network from falling into a

degenerate solution, but effectively enforces uniform dis-

tribution over clusters. Hence, unsupervised clustering is

expected to work only with well-balanced datasets such as

MNIST [28] and CIFAR [26]. Recent works [48, 55] tested

on larger-scale datasets such as ImageNet [9], still assume

a balanced set of single-class, object-centric images. Since

these methods do not explicitly perform clustering on data,
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they are called implicit clustering methods, contrary to ex-

plicit clustering [51, 14, 4, 5, 57, 52, 56, 42, 29].

Segmentation without labels. In clustering, each data

point is assumed to be semantically homogeneous. This

condition is invalid when images contain more than one se-

mantic class, such as scene-centric datasets [11, 31, 8, 15].

In fact, the majority of common images are not object-

centric, and therefore one cannot simply use off-the-shelf

clustering methods to obtain semantic understanding of an

arbitrary dataset. The problem reduces to semantic segmen-

tation by clustering pixel-level features.

There has been a number of recent attempts to seman-

tic segmentation without labels. IIC [23] simply extends

mutual information-based clustering to pixel-level repre-

sentation by outputting a probability map over image pix-

els. AC [37] uses an autoregressive model [47] to obtain

probabilities of pixels over categories, which then maxi-

mizes mutual information across two different “orderings”

of autoregression. Both works are limited to stuff cate-

gories due to the following two reasons. First, a mixture

of stuff and things categories introduces severe data imbal-

ance since there are far more stuff pixels than things pix-

els in real-world images. Such imbalance leads the mu-

tual information maximization to forcibly balance the size

of clusters and hence leads to noisy representation as ma-

jor classes (stuff categories) subsume minor classes (things

categories). Second, each method exploits the local spatial

consistency condition; a pixel needs to be semantically (and

visually) consistent with its neighboring pixels. This condi-

tion is only valid with stuff categories (e.g., sky) and not of-

ten true with things categories. Other methods [6, 2] based

on GANs [12, 25] learn to generate foreground masks of

a given image, but are limited to a single-category setting.

Our method is free from such assumptions and the results

show that our method is capable of segmenting both stuff

and things categories together well with uncurated images.

Equivariance learning. Equivariance learning has been

studied in object and keypoints tracking [36, 35, 1, 27], fa-

cial landmark detection [46, 50, 22], and keypoint detec-

tion [45, 59, 44, 43, 32]. The central idea in these works

is to train a model that predicts consistent key points be-

tween two images, with the underlying assumption that two

images share a common instance. This enables unsuper-

vised learning of semantically consistent and geometrically

structured representation learning. The general objective is

to directly minimize the L2 distance between two feature

vectors that correspond to the semantically equivalent loca-

tions on images. However, using MSE loss with clustering

is often sensitive to the choice of hyper-parameters, which is

often infeasible or prone to overfit in unsupervised setting.

Furthermore, individual feature vector may contain noisy

low-level visual cues which can overwhelm the gradient

flow during back-propagation. Our method instead learns

equivariance by enforcing consistent clustering assignments

between two views and hence only cluster-centered visual

cues affect the loss (detail in Sec. 3.3).

3. PiCIE

We are given an uncurated, unlabeled dataset of images

taken from some domain D. On this dataset, we want to

discover a set of visual classes C and learn a semantic seg-

mentation function fθ. When provided an unseen image

from D, fθ should be able to assign every pixel a label from

the set of classes C.

We formulate this task of unsupervised image segmenta-

tion as pixel-level clustering, where every pixel is assigned

to a cluster. Clustering typically requires a good feature

space, but no such feature representation exists a priori. We

therefore propose an approach that learns the feature repre-

sentation jointly with the clustering. The overall pipeline

of PiCIE, which stands for Pixel-level feature Clustering

using Invariance and Equivariance, is depicted in Figure 2.

We describe our approach below.

3.1. A baseline clustering approach

We begin with prior work that learns a neural network

end-to-end for clustering unlabeled images into image-level

classes [4, 5, 51, 14, 53]. The key issue tackled in these pa-

pers is that clustering images into classes requires strong

feature representations, but for training strong feature rep-

resentations one needs class labels. To solve this chicken-

and-egg problem, the simplest solution is the one identi-

fied by DeepCluster [4]: alternate between clustering us-

ing the current feature representation, and use the cluster

labels as pseudo-labels to train the feature representation.

One can follow a similar strategy for the unsupervised se-

mantic segmentation task. The only difference is that we

need to use an embedding function fθ that produces a fea-

ture map, producing a feature vector for every pixel. The

classifier must also operate on individual pixels. One can

then alternate between clustering the pixel feature vectors

to get pixel pseudo-labels, and using these pseudo-labels to

train the pixel feature representation.

Concretely, suppose we have a set of unlabeled images

xi, i = 1, . . . , n. Suppose our embedding, denoted by fθ
produces a feature tensor fθ(x). This yields a feature rep-

resentation for every pixel p in the image x. Denote by

fθ(x)[p] this pixel-level feature representation. Denote by

gw(·) a classifier operating on these pixel feature vectors.

Then our baseline approach alternates between two steps:

1. Use the current embedding and k-means to cluster the

pixels in the dataset.

min
y,µ

∑

i,p

‖fθ(xi)[p]− µyip
‖2 (1)
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where yip denotes the cluster labels of the p-th pixel in

the i-th image, and µk is the k-th cluster centroid. (We

use mini-batch k-means [39]).

2. Use the cluster labels to train a pixel classifier using

standard cross entropy loss.

min
θ,w

∑

i,p

LCE(gw(fθ(xi)[p]), yip) (2)

LCE(gw(fθ(xi)[p]), yip) = − log
e
syip

∑

k e
sk

(3)

where sk is the k-th class score output by the classifier

gw(fθ(xi, p)).

Given this baseline, we now propose the following mod-

ifications.

3.2. Non­parametric prototype­based classifiers

The DeepCluster inspired framework above uses a sepa-

rate, learned classifier. However, in the unsupervised setting

with constantly changing pseudo-labels, training a classifier

jointly with the feature representation can be challenging.

An insufficiently trained classifier can feed noisy gradients

into the feature extractor, resulting in noisy clusters for the

next training round.

We therefore propose to jettison the parametric pixel

classifier gw entirely. Instead, we label pixels based on their

distance to the centroids (“prototypes” [41]) estimated by k-

means. This results in the following changed objective.

min
θ

∑

i,p

Lclust(fθ(xi)[p], yip,µ) (4)

Lclust(fθ(xi)[p], yip,µ) = − log

(

e
−d(fθ(xi)[p],µyip

)

∑

l e
−d(fθ(xi)[p],µl)

)

(5)

where d(·, ·) is cosine distance.

3.3. Invariance and Equivariance

Jointly learning the feature representation along with the

clustering as above will certainly produce clusters that are

compact in feature space, but there is no reason why these

clusters must be semantic. To get a semantic grouping of

pixels, we need to introduce an additional inductive bias.

What must this inductive bias be if we have no labels?

The inductive bias we introduce is invariance to photo-

metric transformations and equivariance to geometric trans-

formations: the labeling should not change if the pixel col-

ors are jittered slightly, and when the image is warped ge-

ometrically, the labeling should be warped similarly. Con-

cretely, if Y is the output semantic labeling for an image

Above: PiCIE pseudo-code. Notations consistent with Sec. 3.3.

x, and if P and G are photometric and geometric transfor-

mations respectively, then the output semantic labeling of a

transformed image G(P (x)) should be G(Y ).

Implementing this constraint in a joint clustering and

learning framework is tricky, since there isn’t a ground truth

label for each image. The pseudo-ground truth labeling is

itself derived from clustering, which is itself produced from

the feature maps, and as such itself sensitive to input trans-

formations. Invariance/equivariance in this case therefore

means two things: one, we should produce the same clusters

irrespective of the transformations, and two, the predicted

pixel labels should exhibit the desired in/equivariance.

3.3.1 Invariance to photometric transformations

We first address the question of invariance. For each im-

age xi in the dataset, we randomly sample two photomet-

ric transformations, P
(1)
i and P

(2)
i . This yields two feature

vectors for each pixel p in each image xi:

z
(1)
ip = fθ(P

(1)
i (xi))[p] (6)

z
(2)
ip = fθ(P

(2)
i (xi))[p] (7)

We then perform clustering separately in the two “views”

to get two sets of pseudo-labels and centroids:

y
(1),µ(1) = argmin

y,µ

∑

i,p

‖z
(1)
ip − µyip

‖2 (8)

y
(2),µ(2) = argmin

y,µ

∑

i,p

‖z
(2)
ip − µyip

‖2 (9)

Given these two sets of centroids and these two sets of

pseudo-labels, we use two sets of loss functions:

1. As before, we want the feature vectors to adhere to the

clustering labels. Now that we have two views, we
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want this to be true in each view:

Lwithin =
∑

i,p

Lclust(z
(1)
ip , y

(1)
ip ,µ(1))

+ Lclust(z
(2)
ip , y

(2)
ip ,µ(2)) (10)

2. Because we posit that the clustering should be invari-

ant to photometric transformations, we also want fea-

ture vectors from one view to match the cluster labels

and centroids of the other:

Lcross =
∑

i,p

Lclust(z
(1)
ip , y

(2)
ip ,µ(2))

+ Lclust(z
(2)
ip , y

(1)
ip ,µ(1)) (11)

This multi-view framework and the cross-view loss

achieve two things. First, by forcing feature vectors from

one transformation to adhere to labels produced by another,

it encourages the network to learn feature representations

that will be labeled identically irrespective of any photo-

metric transformations. Second, by forcing the same fea-

ture representation to be consistent with two different clus-

tering solutions, it encourages the two solutions themselves

to match, thus ensuring that the set of concepts discovered

by clustering is invariant to photometric transformations.

3.3.2 Equivariance to geometric transformations

A house and a zoomed-in version of the house should be

labeled similarly, but may produce vastly different features.

More precisely, the segmentation of the zoomed-in house

should be a zoomed-in version of the original segmentation.

This is the notion of equivariance to geometric transforma-

tions (such as random crops), which we add in next.

To learn equivariance with respect to geometric transfor-

mations, we sample a geometric transformation (concretely,

random crop and horizontal flip) Gi for each image. Then,

in the above framework, one view uses feature vectors of

the transformed image, while the other uses the transformed

feature vectors of the original:

z
(1)
ip = fθ(Gi(P

(1)
i (xi)))[p] (12)

z
(2)
ip = Gi(fθ(P

(2)
i (xi)))[p] (13)

The other steps are exactly the same. The two views are

clustered separately, and the final training objective is the

combination of the within-view and cross-view objectives:

Ltotal = Lwithin + Lcross (14)

4. Experiments

4.1. Training details

For all our experiments, we use the Feature Pyramid Net-

work [30] with ResNet-18 [20] backbone pre-trained on Im-

ageNet [9]. The fusion dimension of the feature pyramid

is 128 instead of 256. We apply L2 normalization on the

feature map of our network. The cluster centroids are com-

puted with mini-batch approximation with GPUs using the

FAISS library [39, 24]. For the baselines, we do not use im-

age gradients as an additional input when we use ImageNet-

pretrained weight. Except in Table 4, all images are resized

and center-cropped to 320 × 320 during training. We used

the published codes [4, 23] with minimal modification for

the baselines. Other details are in supplementary.

Pre-trained vs random initialization. Prior works [23,

37] train the network from random initialization, but for se-

mantic segmentation it is unnecessary; unlike representa-

tion learning literature [19, 7, 13, 61, 4, 5, 57], our goal is

to segment a given dataset as accurately as possible, and in a

practical scenario one will always choose to initialize from

a pre-trained network such as on the ImageNet dataset [9].

Therefore, we train all models with ImageNet-pretrained

weights, except that in Table 4 we show PiCIE outperforms

all the baselines when trained from scratch as well.

Loss Balancing and Overclustering. As shown in [4, 5,

23], jointly optimizing for a separate set of clusters with

higher number improves the stability of clustering as well

as the accuracy of the prediction. However, in unsupervised

settings hyper-parameter tuning is often infeasible. Thus,

we use the generic approach to balance the loss:

L = λK1
LK1

+ λK2
LK2

(15)

λK1
= logK2

logK1+logK2

and λK2
= logK1

logK1+logK2

where

K1 and K2 are the number of clusters. The intuition is

that the magnitude of the cross-entropy loss depends log-

arithmically on the number of clusters, hence we prevent

the overclustering to overwhelm the gradient flow. We fix

K2 = 100 and add “+H.” in results when applied. Similarly,

due to the imbalance of datasets, the computed clusters will

have largely different sizes; we apply a balance term for

each cluster during the cross-entropy computation.

4.2. Baselines

We describe the baseline methods that we compare

PiCIE to: IIC [23] and modified DeepCluster [4] for seg-

mentation purposes. They are state-of-the-art implicit and

explicit clustering-based learning methods.

IIC. IIC [23] is an implicit clustering method where the

network directly predicts the (soft) clustering assignment of

each pixel-level feature vector. The main objective is maxi-

mizing the mutual information between the predictions of a

pixel and neighboring pixel(s). For controlled experiments,

we use FPN with ResNet-18 same as PiCIE as well as the

first two residual blocks of ResNet-18 (IIC – res12) simi-

lar to the original shallow VGG-like [40] model (details in
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Figure 3: Overall qualitative results on COCO-All [31] (left) and Cityscapes [8](right). Note that we show IIC-res12 for COCO and IIC

for Cityscapes to show the best result of the method on each dataset. Each ground truth label is assigned a color and for each cluster, the

majority label’s color is used. We show some of the color and name matches for better understanding. More in supplementary materials.

supplementary). Following the original paper [23], we used

auxiliary over-clustering loss with K = 45.

Modified DeepCluster. DeepCluster is an explicit clus-

tering method where the network clusters the feature vectors

of given images and uses the cluster assignment as labels to

train the network. To adjust to our problem setup, we mod-

ify the original DeepCluster to instead cluster pixel-level

feature vectors before the final pooling layer. This allows

the network to assign a label to each pixel. However, since

the size of image explodes the number of feature vectors to

cluster, we apply mini-batch k-means [39] to first compute

the cluster centroids, assign labels, and train the network.

4.3. Datasets

COCO. Following [23], we evaluate our model on the

COCO-Stuff dataset [3]. The COCO-Stuff dataset is a

large-scale scene-centric dataset of images with 80 things

categories and 91 stuff categories. We follow the same pre-

process as [23] where classes are merged to form 27 (15

stuff and 12 things) categories. Unless otherwise stated,

we evaluate both things and stuff categories, unlike prior

works which evaluate only stuff.

Cityscapes. We further evaluate our model on the

Cityscapes dataset [8]. Cityscapes is a set of images of

street scenes from 50 different cities. There are 30 classes

Method Classifier Acc. mIoU

No Train Linear 17.45 3.70

No Train Prototype 26.26 8.41

Modified DC Linear 32.21 9.79

IIC - res12 [23] Linear 22.45 4.11

IIC [23] Linear 21.79 6.71

PiCIE Prototype 48.09 13.84

PiCIE + H. Prototype 49.99 14.36

Table 1: COCO-All [23] results. Our method is compared to

clustering methods adapted to semantic segmentation. “+H.” de-

notes PiCIE trained with auxiliary clustering.

of instances that can be further categorized into 8 groups.

After filtering out void group, we have 27 categories. We

train our method as well as IIC and modified DeepCluster

with K = 27 where K is the number of clusters.

4.4. Results

In Table 1, we compare PiCIE with the following base-

lines: No Train, modified DeepCluster [4], and IIC [23].

Unlike the prior works [23, 37] where only stuff categories

are considered, we evaluate the models on both stuff and

things categories to test on more realistic setting. Since the

majority of scene-centric image dataset consists of stuff cat-

egories, our evaluation now faces a severe imbalance prob-

lem. Also, the learning mechanism of IIC assumes local

spatial consistency, which is not often true for things cat-
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Figure 4: Nearest neighbor results for correctly predicted (left) instances and incorrectly predicted (right) instances. The red box indicates

the position of the particular feature vector (size exaggerated). More details in supplementary materials.

Method Partition # Classes Acc. mIoU

Modified DC [4] 44.28 22.24

IIC [23] Stuff 15 33.91 12.00

PiCIE + H. 74.56 17.32

Modified DC [4] 67.06 11.55

IIC [23] Things 12 43.93 13.64

PiCIE + H. 69.39 23.83

Modified DC [4] 32.21 9.79

IIC [23] All 27 21.79 6.71

PiCIE + H. 49.99 14.36

Table 2: Results on different partitions of the COCO dataset.

Method # Classes Accuracy mIoU

IIC

27

47.88 6.35

IIC – res12 29.78 4.96

Modified DC 40.67 7.06

PiCIE 65.50 12.31

Table 3: Cityscapes results.

Method COCO-Stuff

Random CNN 19.4

K-means [38] 14.1

SIFT [33] 20.2

Doersch 2015 [10] 23.1

Isola 2016 [21] 24.3

DeepCluster [4] 19.9

IIC [23] 27.7

AC [37] 30.8

Modified DC 25.26

IIC 27.97

IIC – res12 27.92

PiCIE 31.48

Table 4: COCO-Stuff results without ImageNet pretrained weight

following [23, 37]. First section is from prior works [23, 37] and

the last two sections are from our implementation.

egories due to more dynamic shape variations. We found

that IIC tends to overfit to low-level visual cues since (im-

plicit) clustering is done within a batch and insufficient su-

pervisory signal is present when an instance has dynamic

and complex visual cues. Indeed, in Figure 3 no things cat-

egories are correctly segmented from IIC results. On the

other hand, PiCIE’s novel in/equivariance loss enforces ge-

ometric consistency as an inductive bias to learn high-level

visual concepts, and as shown in Figure 3 PiCIE (“Ours”) is

capable of segmenting both stuff and things categories with

high accuracy. As a result, Table 1 shows that PiCIE largely

outperforms other baselines (+ 17.5 Acc. and 4.5 mIoU). In

Table 3, we test the baselines and our method on Cityscapes

and show similar level of advantages (+ 18 Acc. and 5.3

mIoU). Finally, Table 4 shows PiCIE outperforms the other

models on the benchmark from [23, 37] where the image

size is 128×128, models are trained from scratch, and only

stuff labels are considered for evaluation.

Things vs stuff. In Table 2, we show that PiCIE improves

mainly on things categories (+10 mIoU) while maintaining

better or compatible performance on stuff categories com-

pared to other methods. This indicates that enforcing geo-

metric transformation equivariance was highly effective on

things categories where the instances objects with distinct

shape and boundaries. Furthermore, we show in Table 2

and 4 that PiCIE still outperforms on stuff categories with

or without ImageNet-pretrained weights.

4.5. Ablation Study

In Table 5, we decompose our method to examine which

component affects the performance the most. We gain 5

points by using a non-parametric classifier with cluster cen-

troids. We further gain 3 points with cross-view learn-

ing with invariance transformations. Equivariance learning

adds another 5.5 points, and with auxiliary over-clustering,

we arrive at 49.99 pixel accuracy and 14.36 mIoU.

In Table 6, we test alternatives of different components

of PiCIE. First, one could wonder if our cross-view loss can

be replaced by MSE loss, directly minimizing the feature
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Nonpara- Photo- Geo- Over-
Accuracy mIoU

metric metric metric cluster

34.35 9.88

X 39.25 9.82

X X 42.55 9.84

X X 46.97 12.04

X X X 48.09 13.84

X X X X 49.99 14.36

Table 5: Ablation study 1. Our method is decomposed to exam-

ine which components affect the performance the most.

Single MSE eqv. No inv. No balance Accuracy mIoU

48.09 13.84

X 40.56 11.46

X 44.31 11.71

X 44.15 10.98

X X 41.70 9.92

Table 6: Ablation study 2. One or more components in our

method is replaced with alternative options.

vectors of the two views. This leads PiCIE to a suboptimal

solution: 1) the direct distance between two feature vec-

tors can be overwhelmed by low-level or irrelevant signals

whereas cross-view loss directs the gradient to the nearest

centroid, hence only considers relevant signals and 2) MSE

loss requires hyperparameter tuning to be jointly used with

cross-entropy loss, which is infeasible in purely unsuper-

vised setting. Also, one could doubt if two sets of clustering

are necessary; a single clustering with geometric transfor-

mation on the predicted labels can be used as an alternative

to compute the cross-view loss. However, the two versions

of an image contain different information (e.g., zoomed-in

vs full house) that can be mutually beneficial. We test them

all (and more) in Table 6 and the results justify our choices.

4.6. Analysis
Nearest neighbor analysis. In Figure 4, we show the

nearest neighbors of correctly (left) and incorrectly (right)

predicted instances. The nearest neighbors of correctly pre-

dicted segments share close high-level semantics (e.g., per-

son playing tennis, zebra, giraffe, and a building with a

clock). This indicates that intra-class semantics are well

preserved. The incorrectly predicted segments also have se-

mantically and visually close nearest neighbors. For exam-

ple, the first row shows that snow pixels are confused with

sky as the two concepts are visually alike. Such visual am-

biguity is an inherent limitation of unsupervised methods.

Representation quality. In Table 7, we compare the

learned representations by training a linear classifier for

each trained method from our main experiments on COCO-

All. We train with η = 0.001 for 10 epochs with cross-

entropy loss. This allows us to analyze whether the diffi-

culty is from the representation or from clustering. Com-

pared to the unsupervised results from Table 1, baselines

Feature Extractor Normalization Acc. mIoU

Modified DC 50.79 13.76

Modified DC X 48.61 13.30

IIC 51.49 13.26

IIC X 44.50 8.37

No Eqv. 47.73 12.59

No Eqv. X 48.58 10.40

Single Cluster 50.34 12.70

Single Cluster X 49.24 11.47

MSE 52.01 13.16

MSE X 50.61 11.83

PiCIE 54.08 14.11

PiCIE X 54.16 13.89

PiCIE + H. 54.65 14.32

PiCIE + H. X 54.75 14.77

Table 7: Transfer learning results. A new linear classifier has

been trained on top of the learned embedding network.

Initialization Normalization Acc. mIoU C-Acc. C-mIoU

ImageNet 75.48 44.69 55.82 17.36

ImageNet X 74.74 43.44 57.24 31.51

Modified DC 75.25 44.37 55.16 18.43

Modified DC X 75.27 43.82 57.41 30.27

IIC 75.16 44.26 56.07 20.32

IIC X 74.81 44.11 57.30 29.47

PiCIE 75.61 44.40 54.84 17.39

PiCIE X 76.02 44.97 59.77 32.81

PiCIE + H. 75.90 45.60 58.95 18.38

PiCIE + H. X 76.01 45.04 58.94 32.15

Table 8: Re-training results. Trained networks are used as an

initialization for standard supervised training. “C-Acc.” and “C-

mIoU” are clustering results after supervised training. All models

are trained from ImageNet-pretrained initialization.

have a huge performance gap whereas PiCIE has a minimal

gap. This indicates that clustering is where the major dif-

ficulty is and PiCIE gives close-to-optimal clustering given

learned representation. In Table 8, we show that PiCIE can

give better network initialization for supervised training.

5. Conclusion

In this paper, we introduced a new framework for unsu-

pervised semantic segmentation with clustering. Our main

contribution is to incorporate geometric consistency as an

inductive bias to learn invariance and equivariance for pho-

tometric and geometric variations. Our novel cross-view

loss is simple yet highly effective in learning high-level vi-

sual concepts necessary to segment things categories. Our

method is the first unsupervised semantic segmentation that

works for both stuff and things categories without rigorous

hyper-parameter tuning or task-specific pre-processing.
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Stacked denoising autoencoders: Learning useful represen-

tations in a deep network with a local denoising criterion.

Journal of machine learning research, 11(12), 2010. 4322

[50] O. Wiles, A.S. Koepke, and A. Zisserman. Self-supervised

learning of a facial attribute embedding from video. In

British Machine Vision Conference, 2018. 4323

[51] Junyuan Xie, Ross Girshick, and Ali Farhadi. Unsuper-

vised deep embedding for clustering analysis. In Inter-

national conference on machine learning, pages 478–487,

2016. 4322, 4323

[52] Xueting Yan, Ishan Misra, Abhinav Gupta, Deepti Ghadi-

yaram, and Dhruv Mahajan. Clusterfit: Improving gen-

eralization of visual representations. In Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern

Recognition, pages 6509–6518, 2020. 4323

[53] Jianwei Yang, Devi Parikh, and Dhruv Batra. Joint unsuper-

vised learning of deep representations and image clusters.

In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 5147–5156, 2016. 4323

[54] Linxiao Yang, Ngai-Man Cheung, Jiaying Li, and Jun

Fang. Deep clustering by gaussian mixture variational au-

toencoders with graph embedding. In Proceedings of the

IEEE/CVF International Conference on Computer Vision

(ICCV), October 2019. 4322

433016803



[55] Asano YM., Rupprecht C., and Vedaldi A. Self-labelling via

simultaneous clustering and representation learning. In In-

ternational Conference on Learning Representations, 2020.

4322

[56] Yunpeng Zhai, Shijian Lu, Qixiang Ye, Xuebo Shan, Jie

Chen, Rongrong Ji, and Yonghong Tian. Ad-cluster: Aug-

mented discriminative clustering for domain adaptive person

re-identification. In Proceedings of the IEEE/CVF Confer-

ence on Computer Vision and Pattern Recognition (CVPR),

June 2020. 4323

[57] Xiaohang Zhan, Jiahao Xie, Ziwei Liu, Yew-Soon Ong, and

Chen Change Loy. Online deep clustering for unsupervised

representation learning. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition,

pages 6688–6697, 2020. 4322, 4323, 4325

[58] Junjian Zhang, Chun-Guang Li, Chong You, Xianbiao Qi,

Honggang Zhang, Jun Guo, and Zhouchen Lin. Self-

supervised convolutional subspace clustering network. In

Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 5473–5482, 2019. 4322

[59] Yuting Zhang, Yijie Guo, Yixin Jin, Yijun Luo, Zhiyuan He,

and Honglak Lee. Unsupervised discovery of object land-

marks as structural representations. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recogni-

tion, pages 2694–2703, 2018. 4323

[60] Junjie Zhao, Donghuan Lu, Kai Ma, Yu Zhang, and Yefeng

Zheng. Deep image clustering with category-style represen-

tation. In Andrea Vedaldi, Horst Bischof, Thomas Brox, and

Jan-Michael Frahm, editors, Computer Vision - ECCV 2020

- 16th European Conference, Glasgow, UK, August 23-28,

2020, Proceedings, Part XIV, volume 12359 of Lecture Notes

in Computer Science, pages 54–70. Springer, 2020. 4322

[61] Chengxu Zhuang, Alex Lin Zhai, and Daniel Yamins. Local

aggregation for unsupervised learning of visual embeddings.

In The IEEE International Conference on Computer Vision

(ICCV), October 2019. 4325

433116804


