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Figure 1: VIBE [14], the state-of-the-art video-based 3D human pose and shape estimation method, outputs very different

3D human poses per frame, although the frames have subtle differences. Our TCMR produces clearly more temporally

consistent and smooth 3D human motion. To watch the video, please refer to our arxiv paper.

Abstract

Despite the recent success of single image-based 3D hu-

man pose and shape estimation methods, recovering tem-

porally consistent and smooth 3D human motion from a

video is still challenging. Several video-based methods

have been proposed; however, they fail to resolve the sin-

gle image-based methods’ temporal inconsistency issue due

to a strong dependency on a static feature of the current

frame. In this regard, we present a temporally consistent

mesh recovery system (TCMR). It effectively focuses on the

past and future frames’ temporal information without being

dominated by the current static feature. Our TCMR signif-

icantly outperforms previous video-based methods in tem-

poral consistency with better per-frame 3D pose and shape

accuracy. We also release the codes.

1. Introduction

Various methods have been proposed to analyze hu-

mans from images, ranging from estimating a simplistic 2D

skeleton to recovering 3D human pose and shape. Despite

the recent improvements, estimating 3D human pose and

shape from images is still a challenging task, especially in

the monocular case due to depth ambiguity, limited training

data, and complexity of human articulations.

Most of the previous methods [6, 11, 15, 16, 22, 26] at-

tempt to recover 3D human pose and shape from a single

image. They are generally based on parametric 3D hu-

man mesh models, such as SMPL [18], and directly regress
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the model parameters from the input image. Although sin-

gle image-based methods predict a reasonable output from

a static image, they tend to produce temporally inconsis-

tent and unsmooth 3D motion when applied to a video per

frame. The temporal instability is from inconsistent 3D

pose errors for consecutive frames. For example, the er-

rors could occur in different 3D directions, or the following

frames’ pose outputs could remain relatively the same, not

reflecting the motion.

Several methods [12, 14, 19] have been proposed to ex-

tend the single image-based methods to the video case ef-

fectively. They feed a sequence of images to the pretrained

single image-based 3D human pose and shape estimation

networks [11, 15] to obtain a sequence of static features.

All input frames’ static features are passed to a temporal

encoder, which encodes a temporal feature for each input

frame. Then, a body parameter regressor outputs SMPL pa-

rameters for each frame from the temporal feature of the

corresponding time step.

Although the above works quantitatively improved the

per-frame 3D pose accuracy and motion smoothness, their

qualitative results still suffer from the temporal inconsis-

tency aforementioned, as shown in Figure 1. We argue that

the failure comes from a strong dependency on the static

feature of the current frame. For terminological conve-

nience, we use a word current to indicate the time step of a

target frame where SMPL parameters to be estimated. The

first reason for the strong dependency is a residual connec-

tion between the current frame’s static and temporal fea-

tures. While the residual connection has been widely ver-

ified to facilitate a learning process, naively applying it to

the temporal encoding can hinder the system from learn-

ing useful temporal information. Given that the static fea-

ture is extracted by the pretrained network [11, 15], it con-

tains a strong cue for the SMPL parameters of the current

frame. Thus, the residual connection’s identity mapping

of the static feature can make the SMPL parameter regres-

sor heavily depend on it and leverage the temporal feature

marginally. This procedure can constrain the temporal en-

coder from encoding more meaningful temporal features.

The second reason is the temporal encoding that takes static

features from all frames, which include a current static fea-

ture. The current static feature has the largest potential to

affect the current temporal feature, from which SMPL pa-

rameters are predicted. This phenomenon is caused by the

current static feature having the most crucial information

for 3D human pose and shape of a current frame. Although

the dominance will increase the per-frame accuracy of 3D

pose and shape estimation, it can prevent the temporal en-

coder from fully exploiting the past and future frames’ tem-

poral information. Taken together, the existing video-based

methods have a strong preference for the current static fea-

ture, and suffer from the temporal inconsistency issue as

single image-based methods do.

In this work, we propose a temporally consistent mesh

recovery system (TCMR). It is designed to resolve the

strong dependency on the current static feature for tempo-

rally consistent and smooth 3D human motion output from

a video. First, although we follow the previous video-based

works [12, 14, 19] to encode a temporal feature of the cur-

rent frame, we remove the residual connection between the

static and temporal features. Moreover, we introduce Pose-

Forecast, which consists of two temporal encoders, to fore-

cast a current pose from the past and future frames without

the current frame. The temporal features from PoseForecast

are free from the current static feature; however, they con-

tain essential temporal information of the past and future

frames to forecast a current pose. The temporal features

from PoseForecast are integrated with the current temporal

feature, which is extracted from all input frames, to predict

current SMPL parameters. The parameters estimated from

the integrated temporal feature are the final output in infer-

ence time. By removing the strong dependency on the cur-

rent static feature, our SMPL parameter regressor can have

more chance to focus on the past and future frames without

being dominated by the current frame.

Despite its simplicity, we observed that our newly de-

signed temporal architecture is highly effective on obtaining

the temporally consistent and smooth 3D human motion. It

also improves the accuracy of the 3D pose and shape per

frame by utilizing better temporal information. We show

that the proposed TCMR outperforms the previous video-

based methods [12,14,19] on various 3D video benchmarks,

especially in temporal consistency.

Our contributions can be summarized as follows.

• We present a temporally consistent mesh recovery sys-

tem (TCMR), which produces temporally consistent

and smooth 3D human motion from a video. It ef-

fectively leverages temporal information from the past

and future frames without being dominated by the

static feature of the current frame.

• Despite its simplicity, TCMR not only improves the

temporal consistency of 3D human motion but also in-

creases per-frame 3D pose and shape accuracy com-

pared to a baseline method.

• TCMR outperforms previous video-based methods in

temporal consistency by a large margin while achiev-

ing better per-frame 3D pose and shape accuracy.

2. Related works

Single image-based 3D human pose and shape estima-

tion. Most of the current single image-based 3D human

pose and shape estimation methods are based on the model-

based approach, which predicts parameters of a predefined
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3D human mesh model, SMPL [18]. Kanazawa et al. [11]

proposed an end-to-end trainable human mesh recovery

(HMR) system that uses adversarial loss to make their out-

put 3D human mesh anatomically plausible. Pavlakos et

al. [26] used 2D joint heatmaps and silhouette as cues for

predicting accurate SMPL parameters. Omran et al. [23]

proposed a similar system, which uses human part segmen-

tation as a cue for regressing SMPL parameters. Pavlakos et

al. [25] proposed a system that uses multi-view color con-

sistency to supervise a network using multi-view geometry.

Kolotouros et al. [15] introduced a self-improving system

that consists of an SMPL parameter regressor and an itera-

tive fitting framework [2]. Georgakis et al. [8] incorporated

hierarchical kinematic prior on a human body to a network.

Conversely, the model-free approach estimates the shape

directly instead of regressing the model parameters. Varol et

al. [31] proposed BodyNet, which estimates 3D human

shape in the 3D volumetric space. Kolotouros et al. [16]

designed a graph convolutional human mesh regression sys-

tem. Their graph convolutional network takes a template

human mesh in a rest pose as input and predicts mesh vertex

coordinates using image features from ResNet [9]. Moon

and Lee [22] introduced a lixel-based 1D heatmap to local-

ize mesh vertices in a fully convolutional manner. Choi et

al. [6] proposed a graph convolutional network that recovers

3D human pose and mesh from a 2D human pose.

Despite moderate performance on a static image, the sin-

gle image-based works suffer from temporal inconsistency

(e.g., sudden change of poses), when applied to a video.

Video-based 3D human pose and shape estimation.

HMMR [12] extracts static features and encodes them to

a temporal feature using a 1D fully convolutional tempo-

ral encoder. It learns temporal context representation to

reduce the 3D prediction’s temporal inconsistency by pre-

dicting 3D poses in the nearby past and future frames. Do-

ersch et al. [7] trained their network on a sequence of op-

tical flow and 2D poses to make their network generalize

well to unseen videos. Sun et al. [30] proposed a skeleton-

disentangling framework, which separates 3D human pose

and shape estimation into multi-level spatial and temporal

subproblems. They enforced the network to order shuffled

frames to encourage temporal feature learning. VIBE [14]

encodes static features from the input frames into a tem-

poral feature by using a bi-directional gated recurrent unit

(GRU) [5], and feeds it to an SMPL parameter regressor. A

motion discriminator is introduced to encourage the regres-

sor to produce plausible 3D human motion. MEVA [19] ad-

dresses the problem in a coarse-to-fine manner. Their sys-

tem initially estimates the coarse 3D human motion using a

variational motion estimator (VME), and predicts the resid-

ual motion with a motion residual regressor (MRR).

Temporally consistent 3D human motion from a video.

Although there have been many methods for video-based

3D human motion estimation [3,7,12,14,19,21,27,28,30],

most of them showed their results only qualitatively, and did

not report numerical evaluation on temporal consistency.

After the HMMR [12] introduced the 3D pose acceleration

error for the temporal consistency and smoothness of hu-

man motion, the following works [14,19] have reported the

error metric. HMMR and VIBE [14] lowered the accel-

eration error compared with the single image-based meth-

ods. However, they revealed a trade-off between per-frame

accuracy and temporal consistency. The HMMR outputs

smoother 3D human motion but provides low per-frame 3D

pose accuracy. Conversely, the VIBE [14] shows high per-

frame 3D pose accuracy; however, the output is temporally

inconsistent in quantitative metrics and qualitative results

compared with HMMR.

In this regard, MEVA [19] attempts to establish the bal-

ance between the per-frame 3D pose accuracy and the tem-

poral smoothness. Although it provides better results in

both metrics, the qualitative results still expose unsmooth

3D motion. The reason is that the system strongly depends

on the current static feature to estimate the current 3D pose

and shape. First, MEVA uses a residual connection between

the current frames’ static and temporal features. In addition,

the current temporal feature, which is used to refine initial

3D pose and shape by MRR, is encoded from static fea-

tures of all frames, which include the current frame. This

procedure can make the temporal feature dominated by the

current static feature. As a result, the refinement is signif-

icantly driven by the current static feature, and the 3D er-

rors from consecutive frames appear inconsistent. On the

contrary, our TCMR is deliberately designed to reduce the

strong dependency on the static feature. The residual con-

nection is removed, and PoseForecast forecasts additional

temporal features from past and future frames without a

current frame. Our approach alleviates the dependency and

provides temporally consistent and accurate 3D human mo-

tions in both qualitative and quantitative manners.

Forecasting 3D human poses from images. Recently, [4,

12, 33, 34] proposed to predict a person’s future 3D human

poses from RGB input. Chao et al. [4] leveraged a recur-

rent neural network (RNN) to forecast a sequence of 2D

poses from a static image, and estimate 3D poses from the

predicted 2D poses. The HMMR [12] predicts the current,

future, and past 3D poses from a current input image using

a hallucinator. It hallucinates the past and future 3D poses

from a current frame and is self-supervised by the output

of the 1D fully convolutional temporal encoder. Zhang et

al. [34] proposed a neural autoregressive framework that

takes past video frames as input to predict future 3D mo-

tion. Yuan et al. [33] adopted deep reinforcement learning

to forecast future 3D human poses from egocentric videos.

Although the objective of the above methods is to forecast

future 3D poses, our system aims to learn useful temporal

features free from a current static feature by the forecasting.
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Figure 2: The overall pipeline of TCMR. The gold-colored output Θint is used in inference time, which is regressed from the

integrated temporal feature.

3. TCMR

Figure 2 shows the overall pipeline of our TCMR. We

provide descriptions of each part in the system as follows.

3.1. Temporal encoding from all frames

Given a sequence of T RGB frames I1, . . . , IT ,

ResNet [9], pretrained by Kolotouros et al. [15], extracts

a static image feature per frame. Then, a global average

pooling is applied on the ResNet outputs, which become

f1, . . . , fT , where f• ∈ R
2048. The network weights of the

ResNet are shared for all frames.

From the extracted static features of all input frames,

we compute the current frame’s temporal feature using a

bi-directional GRU, which consists of two uni-directional

GRUs. We denote the bi-directional GRU as Gall. The

current frame is defined as a ⌊T/2⌋th frame among T in-

put frames. The two uni-directional GRUs extract temporal

features from the input static features in the opposite time

directions. The initial inputs of the two GRUs are f1 and

fT , respectively, and the initial hidden states of them are

initialized as zero tensors. Then, they recurrently updates

their hidden states by aggregating the static features from

the next frames f2, . . . , f⌊T/2⌋ and fT−1, . . . , f⌊T/2⌋, respec-

tively. The concatenated hidden states of the GRUs at the

current frame become the current temporal feature from all

input frames gall ∈ R
2048. Unlike VIBE [14], we do not add

residual connection between f⌊T/2⌋ and gall, such that the

current temporal feature will not be dominated by f⌊T/2⌋.

1
0

2
4

→
2

0
4

8
2

0
4

8
→

2
0

4
8

1
0

2
4

→
2

0
4

8

2
0

4
8

→
2

5
6

7
6

8
→

2
5

6

2
5

6
→

2
5

6

2
5

6
→

3

tanh activation fully connected layer

softmax activation element-wise sumscalar matrix multiplication

gpast

gfuture

gall

gpast

gall

gfuture

gpast

gall

gfuture

apast

aall

afuture

gint

concatenation

Figure 3: Temporal feature integration to estimate 3D hu-

man mesh for the current frame.

3.2. Temporal encoding by PoseForecast

PoseForecast forecasts additional temporal features for

the current target pose from the past and future frames

by employing two additional GRUs, denoted as Gpast and

Gfuture, respectively. The past and future frames are defined

as 1, . . . , (⌊T/2⌋ − 1)th frames and (⌊T/2⌋ + 1), . . . , T th

frames, respectively. The initial input of the Gpast is f1, and

the initial hidden state is initialized as a zero tensor. Then, it

recurrently updates its hidden state by aggregating the static

features from the next frames f2, . . . , f⌊T/2⌋−1. The final

hidden state of the Gpast becomes the temporal feature from

the past frames gpast ∈ R
1024. Similarly, Gfuture takes fT as

an initial input with a zero-initialized hidden state, and re-

currently updates its hidden state by aggregating the static

features from the next frames fT−1, . . . , f⌊T/2⌋+1. The fi-

nal hidden state of the Gfuture becomes the temporal feature

from the future frames gfuture ∈ R
1024.
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3.3. Temporal feature integration

We integrate the extracted temporal features from all

frames gall, from the past frames gpast, and from the fu-

ture frames gfuture for the final 3D mesh estimation, as il-

lustrated in Figure 3. For the integration, we pass each

temporal feature to ReLU activation function and a fully

connected layer to change the size of the channel dimen-

sion to 2048. The outputs of the fully connected layer are

denoted as g′
all, g′

past, and g′
future. Then, the output fea-

tures are resized to 256 by a shared fully connected layer

and concatenated. The concatenated feature is passed to

several fully connected layers, followed by the softmax

activation function, which produces attention values a =
(aall, apast, afuture) ∈ R

3. The attention values represent how

much the system should give a weight for the feature inte-

gration. The final integrated temporal feature is obtained by

g′
int = aallg

′
all + apastg

′
past + afutureg

′
future.

In the training stage, we pass g′
past, g

′
future, and g′

int to the

SMPL parameter regressor, which outputs Θpast, Θfuture, and

Θint from each input temporal feature, respectively. The re-

gressor is shared for all outputs. Θ• denotes a union of

SMPL parameter set {θ•, β•} and weak-perspective cam-

era parameter set {s•, t•}. θ, β, s, and t represent SMPL

pose parameter, identity parameter, scale, and translation,

respectively. In the testing stage, we only pass g′
int to the pa-

rameter regressor and use Θint as the final 3D human mesh.

3.4. Loss functions

For the training, we supervise all three outputs Θpast,

Θfuture, and Θint with current frame groundtruth. L2 loss

between predicted and groundtruth SMPL parameters and

2D/3D joint coordinates are used, following VIBE [14].

The 3D joint coordinates are obtained by forwarding the

SMPL parameters to the SMPL layer, and the 2D joint coor-

dinates are obtained by projecting the 3D joint coordinates

using the predicted camera parameters.

4. Implementation details

Following VIBE [14], we set the length of the input se-

quence T to 16 and the input video frame rate to 25-30

frames per second and initialize the backbone and regres-

sor with the pretrained SPIN [15]. The weights are up-

dated by the Adam optimizer [13] with a mini-batch size of

32. The human body region is cropped using a groundtruth

box in both of training and testing stages following previ-

ous works [11, 14–16]. The cropped image is resized to

224×224. Inspired by Sarandi et al. [29], we occlude the

cropped image with various objects for data augmentation.

The occlusion augmentation reduces both pose and accel-

eration errors approximately by 1mm. Following [12, 14],

we precompute the static features from the cropped images

by ResNet [9] to save training time and memory. All the

input -res +PF (Ours) +res -PF

Figure 4: Qualitative comparison between our TCMR (mid-

dle) and the baseline (right). TCMR learns more useful tem-

poral features, and provides a more accurate 3D pose and

temporally consistent 3D motion. res denotes the residual

connection and PF is the abbreviation for PoseForecast. To

watch the video, please refer to our arxiv paper.

3D rotations of θ are initially predicted in the 6D rotational

representation of Zhou et al. [36], and converted to the 3D

axis-angle rotations. The initial learning rate is set to 5−5

and reduced by a factor of 10, when the 3D pose accuracy

does not improve after every 5 epochs. We train the net-

work for 30 epochs with one NVIDIA RTX 2080Ti GPU.

PyTorch [24] is used for code implementation.

5. Experiment

5.1. Evaluation metrics and datasets.

Evaluation metrics. We report the per-frame and tempo-

ral evaluation metrics. For the per-frame evaluation, we use

mean per joint position error (MPJPE), Procrustes-aligned

MPJPE (PA-MPJPE), and mean per vertex position error

(MPVPE). The position errors are measured in millimeter

(mm) between the estimated and groundtruth 3D coordi-

nates after aligning the root joint. Particularly, we use PA-

MPJPE as the main metric for per-frame accuracy, since

it excludes the effect of outputs’ scale ambiguity on er-

rors. For the temporal evaluation, we use the acceleration

error proposed in HMMR [12]. The acceleration error com-

putes an average of the difference between the predicted and

groundtruth acceleration of each joint in (mm/s2).

Datasets. We use 3DPW [32], Human3.6M [10], MPI-INF-

3DHP [20], InstaVariety [12], Penn Action [35], and Pose-

Track [1] for training, following VIBE [14]. 3DPW is the

only in-the-wild dataset that contains accurate groundtruth

SMPL parameters. 3DPW, Human3.6M, MPI-INF-3DHP

are also used for evaluation. More details are in the supple-

mentary material.

5.2. Ablation study

In this study, we show how each component of our tem-

poral architecture reduces the dependency of the model on
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Table 1: Comparison between different temporal architec-

tures. All networks estimate only on the middle frame of

the input sequence.

remove residual PoseForecast PA-MPJPE↓ Accel↓

✗ ✗ 55.6 29.2

✗ ✓ 55.0 24.9

✓ ✗ 54.2 8.7

✓ (Ours) ✓ 53.9 7.7

Table 2: Comparison between PoseForecast that takes a cur-

rent frame and that does not take a current frame.

PoseForecast input PA-MPJPE↓ Accel↓

w. current frame 53.8 10.3

wo. current frame (Ours) 53.9 7.7

a current static feature, and make it focus on temporal fea-

tures from the past and future. We take the same baseline

used in VIBE [14]. The baseline has a single bi-directional

GRU that encodes temporal features from all input frames

and a residual connection between the static and temporal

features as VIBE. It also predicts each 3D pose and shape

for all input frames in a single feed-forward, but does not

use the motion discriminator. We use 3DPW [32], MPI-

INF-3DHP [20], InstaVariety [12], and Penn Action [35]

for training, and 3DPW for evaluation.

Effectiveness of residual connection removal. To analyze

the effect of the residual connection between the static and

temporal features, we compare the models with and with-

out it. As shown in Table 1, removing the residual con-

nection decreases the acceleration error significantly, which

indicates a considerable improvement in temporal consis-

tency and smoothness of 3D human motion. This finding

verifies that the identity mapping of the current static fea-

ture inside the residual connection hinders a model from

learning meaningful temporal features. Moreover, the in-

creased temporal consistency of 3D motion improves the

per-frame 3D pose accuracy. Figure 4 illustrates how the en-

hanced temporal consistency contributes to better per-frame

3D pose estimation. The sudden change of poses, caused

by the inaccurate 3D pose estimation on specific frames, is

disappeared. The above comparisons clearly validate the ef-

fectiveness of removing the residual connection in terms of

both per-frame and temporal metrics.

Effectiveness of PoseForecast We compare the models

with and without PoseForecast to verify the effectiveness

of forecasting current temporal features only from the past

and future frames. On the basis of the results in Table 1,

PoseForecast consistently improves per-frame and temporal

metrics regardless of the residual connection. Particularly,

the acceleration error consistently decreases by over 11%

Table 3: Comparison between different supervision on esti-

mated SMPL parameters from the PoseForecast.

PoseForecast supervision target PA-MPJPE↓ Accel↓

none 55.1 8.3

GT of past and future frames 54.1 8.5

GT of current frame (Ours) 53.9 7.7

. Thus, the temporal encoding that takes all frames with

the current frame may be suboptimal, and forecasting the

current temporal features from the past and future frames is

beneficial for temporally consistent 3D human motion.

To further validate the forecasting, we compare our Pose-

Forecast with its variations. First, we show the effectiveness

of taking past and future frames without a current frame

in Table 2. As the table shows, additionally taking current

frames increases the acceleration error by 33%. Thus, main-

taining the temporal features free from the current static

feature is important for temporally consistent and smooth

3D human motion. Second, we validate the effectiveness

of supervising the predicted SMPL parameters from Pose-

Forecast (i.e., Θpast and Θfuture) with groundtruth of the cur-

rent frame in Table 3. As shown in the table, supervising

the predicted parameters with the current groundtruth pro-

vides better per-frame 3D pose accuracy and temporal con-

sistency than the other supervisions. When we supervise the

predicted parameters with the groundtruth of ⌊T/2⌋ − 1th

and ⌊T/2⌋ + 1th frames (the second row), the acceleration

error increases by 10%. The performance degrades, because

the temporal features of PoseForecast are encoded from the

input including the static features of the target frames (i.e.,

⌊T/2⌋−1th and ⌊T/2⌋+1th frames). As verified in Table 2,

including the target static feature hinders PoseForecast from

learning useful temporal information for temporally consis-

tent and smooth 3D human motion. The encoded temporal

feature is likely to be dominated by the target static feature

and marginally leverage temporal information from other

frames. When no supervision is observed (the first row),

both 3D pose accuracy and temporal consistency decrease

compared with ours. Hence, designing our PoseFrecast to

forecast the current SMPL parameters by supervising it with

the current target (the third row) facilitates the network to

learn more useful temporal features.

In summary, the above comparisons show that forecast-

ing current temporal features from past and future frames

is effective for temporally consistent 3D human motion by

reducing the strong dependency on a current static feature.

5.3. Comparison with state­of­the­art methods

Comparison with video-based methods. We compare our

TCMR with previous state-of-the-art video-based methods

[12, 14, 19] that report the acceleration error in Table 4.
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Table 4: Evaluation of state-of-the-art methods on 3DPW, MPI-INF-3DHP, and Human3.6M. All methods except

HMMR [12] do not use Human3.6M SMPL parameters from Mosh [17], but use 3DPW train set for training following

MEVA [19].

3DPW MPI-INF-3DHP Human3.6M number of

method PA-MPJPE ↓ MPJPE ↓ MPVPE ↓ Accel ↓ PA-MPJPE ↓ MPJPE ↓ Accel ↓ PA-MPJPE ↓ MPJPE ↓ Accel ↓ input frames

HMMR [12] 72.6 116.5 139.3 15.2 - - - 56.9 - - 20

VIBE [14] 57.6 91.9 - 25.4 68.9 103.9 27.3 53.3 78.0 27.3 16

MEVA [19] 54.7 86.9 - 11.6 65.4 96.4 11.1 53.2 76.0 15.3 90

TCMR (Ours) 52.7 86.5 102.9 7.1 63.5 97.3 8.5 52.0 73.6 3.9 16

a
cc

e
le

ra
ti
o
n
 e

rr
o
r 

(m
m

/s
2
)

time step

acceleration error spikes

(a) sampled frames of ‘courtyard_basketball_01’ in order

(b) acceleration error plot of ‘courtyard_basketball_01’

(1)

(1)

(2)

(2)

(3)

(3)

(4)

(4)

Figure 5: Comparison between the acceleration errors of the proposed TCMR, MEVA [19], and VIBE [14]. Our TCMR

shows clearly lower acceleration errors along the time step than previous methods, which indicates temporally consistent 3D

motion output. The previous methods reveal extreme acceleration error spikes compared to our TCMR.

Table 5: Comparison between ours and previous methods

applied with average filtering on 3DPW.

method PA-MPJPE↓ MPJPE↓ Accel↓

VIBE [14] 57.6 91.9 25.4

+ Avg. filter 57.8 91.6 13.5

MEVA [19] 54.7 86.9 11.6

+ Avg. filter 55.5 87.7 8.2

TCMR (Ours) 52.7 86.5 7.1

+ Avg. filter 55.0 88.7 6.5

On the basis of the study of Luo et al. [19], all methods,

except HMMR [12] are trained on the train set including

3DPW [32], but do not leverage Human3.6M [10] SMPL

parameters obtained from Mosh [17] for supervision. The

numbers of VIBE [14] are from MEVA [19], but we vali-

dated them independently. As shown in the table, our pro-

posed system outperforms the previous video-based meth-

ods on all benchmarks both in per-frame 3D pose accuracy

and temporal consistency. These results prove that our sys-

tem effectively leverages temporal information of the past

and future by resolving the system’s strong dependency on

a current static feature. Although MEVA [19] also im-

proves the per-frame and temporal metrics, the model con-

sumes nearly 6 times more input frames during training and

testing, and provides worse results than ours. In addition,

71970



Table 6: Evaluation of state-of-the-art methods on 3DPW, MPI-INF-3DHP, and Human3.6M. All methods do not use

3DPW [32] on training. ‘single image’ or ‘video’ denotes whether the input of a method is a single image or a video.

3DPW MPI-INF-3DHP Human3.6M

method PA-MPJPE ↓ MPJPE ↓ MPVPE ↓ Accel ↓ PA-MPJPE ↓ MPJPE ↓ Accel ↓ PA-MPJPE ↓ MPJPE ↓ Accel ↓

si
n
g
le

im
ag

e HMR [11] 76.7 130.0 - 37.4 89.8 124.2 - 56.8 88.0 -

GraphCMR [16] 70.2 - - - - - - 50.1 - -

SPIN [15] 59.2 96.9 116.4 29.8 67.5 105.2 - 41.1 - 18.3

I2L-MeshNet [22] 57.7 93.2 110.1 30.9 - - - 41.1 55.7 13.4

Pose2Mesh [6] 58.3 88.9 106.3 22.6 - - - 46.3 64.9 23.9

HKMR [8] - - - - - - - - 59.6 -

v
id

eo

HMMR [12] 72.6 116.5 139.3 15.2 - - - 56.9 - -

Doersch et al. [7] 74.7 - - - - - - - - -

Sun et al. [30] 69.5 - - - - - - 42.4 59.1 -

VIBE [14] 56.5 93.5 113.4 27.1 63.4 97.7 29.0 41.5 65.9 18.3

TCMR (Ours) 55.8 95.0 111.5 7.0 62.8 97.4 8.0 41.1 62.3 5.3

MEVA requires at least 90 input frames, which means that

it can not be trained and tested on short videos. Figure 5

describes the clear advantage of our TCMR on the tempo-

ral consistency among video-based methods. The previous

methods expose numerous spikes, which represent unstable

and unsmooth 3D motion estimation. Our TCMR provides

relatively low acceleration errors along the time step, which

indicates temporally consistent 3D motion output. The fig-

ure’s acceleration errors are measured on a sequence of the

3DPW validation set that has a diverse motion.

To further confirm the effectiveness of the proposed sys-

tem on temporal consistency, we compare our TCMR with

VIBE [14] and MEVA [19] with an average filter applied as

post-processing in Table 5. Average filtering is performed

by spherical linear interpolation in the quaternions of esti-

mated SMPL [18] pose parameters following MEVA. The

numbers of other methods are from MEVA. As shown in

the table, our system outperforms other methods even when

they are applied with the average filtering. Moreover, the

results imply that the average filtering can decrease the per-

frame 3D pose accuracy by smoothing out the details of 3D

human motion. However, each component of our TCMR

decreases the acceleration error while improving the per-

frame 3D pose accuracy, as shown in Table 1.

In summary, our newly designed system significantly

outperforms the previous state-of-the-art methods in tempo-

ral consistency and smoothness of 3D human motion with-

out any post-processing while also increasing the per-frame

3D pose accuracy. Note that the comparison in Table 4

and 5 is the fairest comparison between the video-based

methods, since all methods, except HMMR [12], used the

same training datasets.

Comparison with single image-based and video-based

methods. We compare our system with previous 3D pose

and shape estimation methods, including single image-

based methods in Table 6. None of the methods are trained

on 3DPW [32]. For evaluation on Human3.6M [10], we

use the frontal view images following [12, 15], whereas all

views are tested in Table 4 and 5. In addition, to confirm

the acceleration error of VIBE [14] on MPI-INF-3DHP [20]

and Human3.6M, we re-evaluate the model using the pre-

trained weights provided in the official code repository.

As shown in the table, our method outperforms all

the previous methods on 3DPW, a challenging in-the-wild

benchmark, and MPI-INF-3DHP in per-frame 3D pose ac-

curacy (PA-MPJPE) and temporal consistency. Especially

the temporal consistency is largely improved compared with

single image-based methods. While VIBE decreases the

acceleration error of SPIN [15] by 9% and is defeated by

Pose2Mesh [6] in the temporal consistency, our system pro-

vides over 3 times better performance than both SPIN and

Pose2Mesh in 3DPW. Moreover, VIBE gives a higher ac-

celeration error than I2L-MeshNet [22] but our TCMR out-

performs it by a wide margin in Human3.6M.

We provide qualitative comparison with VIBE [14] and

MEVA [19] on 3DPW, qualitative results of TCMR on In-

ternet videos, and failure cases in this link 1.

6. Conclusion

We present TCMR, a novel and powerful system that

estimates a 3D human mesh from a RGB video. Previ-

ous video-based methods suffer from the temporal inconsis-

tency issue because of the strong dependency on the static

feature of the current frame. We resolve the issue by remov-

ing the residual connection between the static and tempo-

ral features, and employing PoseForecast that forecasts the

current temporal feature from the past and future frames.

In comparison with the previous video-based methods, the

proposed TCMR provides highly temporally consistent 3D

motion and a more accurate 3D pose per frame.
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