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Abstract

Although supervised person re-identification (Re-ID)

methods have shown impressive performance, they suffer

from a poor generalization capability on unseen domains.

Therefore, generalizable Re-ID has recently attracted grow-

ing attention. Many existing methods have employed an

instance normalization technique to reduce style varia-

tions, but the loss of discriminative information could not

be avoided. In this paper, we propose a novel generaliz-

able Re-ID framework, named Meta Batch-Instance Nor-

malization (MetaBIN). Our main idea is to generalize nor-

malization layers by simulating unsuccessful generaliza-

tion scenarios beforehand in the meta-learning pipeline.

To this end, we combine learnable batch-instance normal-

ization layers with meta-learning and investigate the chal-

lenging cases caused by both batch and instance normal-

ization layers. Moreover, we diversify the virtual simu-

lations via our meta-train loss accompanied by a cyclic

inner-updating manner to boost generalization capabil-

ity. After all, the MetaBIN framework prevents our model

from overfitting to the given source styles and improves the

generalization capability to unseen domains without addi-

tional data augmentation or complicated network design.

Extensive experimental results show that our model out-

performs the state-of-the-art methods on the large-scale

domain generalization Re-ID benchmark and the cross-

domain Re-ID problem. The source code is available at:

https://github.com/bismex/MetaBIN.

1. Introduction

Person re-identification (Re-ID) aims to identify a spe-

cific person across non-overlapping cameras under vari-

ous viewpoints and locations. Re-ID has attracted exten-

sive research attention thanks to its practical importance

in surveillance systems. With the development of deep

Convolution Neural Networks (CNNs), person Re-ID meth-

ods [51, 54, 48, 4, 23] have achieved remarkable perfor-

mance in a supervised manner, where a model is trained and

tested on separated splits of the same dataset. However, this

supervised approach is hardly applicable in practice due to

Figure 1. Illustration of unsuccessful generalization scenarios and

our framework. (a) Under-style-normalization happens when the

trained BN model fails to distinguish identities on unseen domains.

(b) Over-style-normalization happens when the trained IN model

removes even ID-discriminative information. (c) Our key idea is

to generalize BIN layers by simulating the preceding cases in a

meta-learning pipeline. By overcoming the harsh situations, our

model learns to avoid overfitting to source styles.

expensive labeling costs and also suffers from severe perfor-

mance degradation on an unseen target domain. For resolv-

ing this problem, unsupervised domain adaptation (UDA)

methods [46, 41, 5, 11, 47, 24] have been introduced, which

adapt a Re-ID model from a labeled source domain to an un-

labeled target domain. The UDA approach is more practical

than the supervised approach, but data collection is still re-

quired for updating the model on the target domain.

Beyond the concept of UDA, the task of domain gener-

alization (DG) is more plausible for real-world applications

since it does not require any target images to train a model.

Since Finn et al. [10] proposed the Model-Agnostic Meta-
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Learning (MAML) scheme for few-shot learning and rein-

forcement learning, several MAML-based methods [1, 19]

have been investigated to solve the DG problem. This ap-

proach enables a DG model to achieve a good generaliza-

tion capability by dividing multiple source domains into

meta-train and meta-test domains to mimic real train-test

domain shifts. However, most DG methods [1, 19] assume a

homogeneous environment, where the source and target do-

mains share the same label space, and they are designed for

a classification task. In contrast, the task of domain gener-

alization for person re-identification (DG Re-ID) deals with

different label spaces between source and target domains for

a retrieval task. Thus, it is difficult to obtain good perfor-

mance when the existing DG methods are directly applied

to DG Re-ID.

To this end, the recent DG Re-ID methods [17, 18, 53]

have focused on a combination of batch normalization

(BN) [16] and instance normalization (IN) [40]. Jia et

al. [17] adopted this idea to Re-ID by inserting IN after

the residual connection in the specific layers, inspired by

[31]. However, this naı̈ve approach not only leads to the

loss of discriminative information but also requires a care-

ful selection of the locations for applying IN. For another

instance, Jin et al. [18] designed the Style Normalization

and Restitution (SNR) module based on instance normal-

ization and feature distillation. Since this method aims at

removing style discrepancy only from the given source do-

mains, it lacks the ability to attenuate the new style of un-

seen domains sufficiently.

So, how do we design normalization layers to be well

generalized for DG Re-ID? To find out the answer, we con-

ducted simple experiments that explore the properties and

limitations of BN and IN layers. After training each of

the BN and IN models on multiple source domains, we ob-

served the retrieval results on unseen target domains. The

BN model strives to learn discriminative information based

on the style variations within each mini-batch. However,

when samples of unexpected styles are given from unseen

target domains, the trained model does not have sufficient

ability to distinguish their IDs. We call it under-style-

normalization in Fig. 1 (a). On the contrary, IN eliminates

instance-specific style information using its own statistics.

Even though IN can be helpful to remove unseen styles on

target domains, it filters out even some discriminative in-

formation, as shown in Fig. 1 (b). We call it over-style-

normalization. Since both normalization methods have lim-

itations in the DG setting, the combination of BN and IN has

to be handled carefully.

To deal with the above issues, we propose a novel gen-

eralizable Re-ID framework, named Meta Batch-Instance

Normalization (MetaBIN), for learning to generalize nor-

malization layers. The key idea is to simulate the unsuc-

cessful generalization scenarios mentioned earlier within

a meta-learning pipeline and learn more generalized rep-

resentation from the virtual simulations, as shown in

Fig. 1 (c). For this purpose, we design a batch-instance

normalization with learnable balancing parameters between

BN and IN. Depending on the balancing parameter’s bias

toward BN or IN, the DG model suffers from both under-

style-normalization and over-style-normalization scenarios

in meta-learning. By overcoming these challenging cases,

the normalization layer becomes generalized. Moreover, we

intentionally diversify the virtual simulations via our meta-

train loss and a cyclic inner-updating manner to effectively

boost the generalization capability. Our MetaBIN frame-

work enables to train the DG model equipped with a suffi-

cient generalization capability to novel domains.

Our main contributions can be summarized as follows:

• We propose a novel generalizable Re-ID framework

called MetaBIN. This approach prevents our model

from overfitting to the given source styles by gener-

alizing normalization layers via the simulation of un-

successful generalization scenarios in meta-learning.

• We diversify the virtual simulations through our meta-

train loss and a cyclic inner-updating manner. Both

ideas effectively boost generalization capability.

• We make comprehensive comparisons and achieve

state-of-the-art performance on the large-scale domain

generalization Re-ID benchmark and the cross-domain

Re-ID problem.

2. Related Work

Generalizable person re-identification: Domain gen-

eralizable person re-identification (DG Re-ID) aims to learn

a robust model for obtaining good performance on an un-

seen target domain without additional updates. In recent

years, DG Re-ID has attracted a rapidly growing interest

owing to its practical applications. Existing methods are

categorized into two groups depending on the configuration

of source datasets. One is to learn a robust model from a

single dataset [53, 18, 22, 37] and the other is to utilize

multiple large-scale datasets [36, 39, 17]. In the context

of DG Re-ID based on multiple source datasets, Song et

al. [36] constructed the large-scale domain generalization

Re-ID benchmark to validate the generalization capability

of DG models. They also designed Domain-Invariant Map-

ping Network (DIMN) to learn a mapping between a person

image and its ID classifier. However, the additional map-

ping network slows the inference speed. Tamura et al. [39]

suggested a simple selection strategy for data augmentation.

While this method is relatively lightweight and easily ap-

plicable to other models, it lacks consistency in maintain-

ing generalization capabilities across various unseen styles.

For another instance, Jia et al. [17] inserted instance nor-

malization (IN) [40] into each bottleneck in shallow layers
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to eliminate useless style information, but IN brings about

the loss of discriminative information unavoidably. Unlike

these methods, we propose an effective framework to gener-

alize a DG model via the simulation of poorly generalized

scenarios without an additional test module and data aug-

mentation.

Batch-instance normalization: Normalization tech-

niques are widely used in most of the deep neural network

architectures for better optimization and regularization. In

particular, a combination of batch normalization (BN) [16]

and instance normalization (IN) [40] has recently gained at-

tention as a technique for improving generalization capa-

bility to novel domains, which can be divided into non-

parametric and parametric methods. The non-parametric

methods [17, 31, 53] focus on strategies to replace BN with

IN for some layers or add IN to specific locations. How-

ever, since their performances depend on where BN and

IN are mixed, it is difficult to keep task-independent con-

sistency and requires a lot of trial and error. In contrast,

the parametric methods concentrate on how to combine

BN and IN in a learnable manner. For example, Nam et

al. [30] introduced an effective batch-instance normaliza-

tion layer through a simple training strategy in which BN

and IN are balanced with learnable parameters. Although it

has improved recognition performance compared to BN, its

learnable manner sometimes leads to overfitting the style of

given source domains in the DG setting. In addition, some

parametric methods have been studied to handle the follow-

ing tasks: few-shot learning [2] and homogeneous DG [33].

However, these methods are rarely applicable for DG Re-

ID, because evaluation procedures are different from that of

DG Re-ID. In this paper, we propose a novel framework that

generalizes normalization layers more effectively to solve

the challenging DG Re-ID problem.

Model-agnostic meta-learning for DG: Model-

Agnostic Meta-Learning (MAML) [10] is a meta-learning

framework for few-shot learning and reinforcement learn-

ing. MAML helps find a good initialization of parameters

that are sensitive to changes in novel tasks. Recently,

the MAML-based approach has been widely applied to

various tasks, such as domain generalization [19, 1],

object tracking [42], and frame interpolation [6]. From the

perspective of DG, MLDG [19] is a representative method

based on MAML, which enables to train models with a

good generalization capability to novel domains via the

simulation of real train-test domain-shifts. Moreover, Balaji

et al. [1] trained regularizers in a meta-learning pipeline

to achieve good cross-domain generalization. However,

since these methods are designed for homogeneous DG, the

performance inevitably decreases when these methods are

applied directly to DG Re-ID. Inspired by those methods,

we propose a novel generalizable Re-ID framework that

combines normalization layers with meta-learning.

3. Proposed Method

3.1. Problem Formulation

We begin with a formal description of the domain gener-

alizable person re-identification (DG Re-ID) problem. We

assume that we are given K source domainsD = {Dk}
K
k=1

.

Each source domain contains its own image-label pairs

Dk = {(xk
i , y

k
i )}

Nk

i=1
, where Nk is the number of images in

the source domain Dk. Each sample xk
i ∈ Xk is associated

with an identity label yki ∈ Yk = {1, 2, . . . ,Mk}, where

Mk is the number of identities in the source domain Dk.

While all domains share the label spaces in the general ho-

mogeneous DG setting as Yi =Yj =Y∗, ∀i,j, 1≤ i,j≤K,

source and target domains have completely disjoint label

spaces in the DG Re-ID setting as Yi 6= Yj 6= Y∗. In other

words, this task is an application of heterogeneous DG, such

that the number of identities in all source domains can be

expressed as M =
∑K

k=1
Mk. In the training phase, we

train a DG model using the aggregated image-label pairs

of all source domains. In the testing phase, we perform a

retrieval task on unseen target domains without additional

model updating.

3.2. Batch­Instance Normalization for DG­ReID

In line with our goal of DG, we employ an instance nor-

malization technique [40] to generalize well on unseen do-

mains. Similar to [30], we design a batch-instance normal-

ization module as a mixture of BN and IN with learnable

balancing parameters for each channel of all normalization

layers. Let x ∈ R
N×C×H×W be an input mini-batch of

a certain layer, where N , C, H , and W denote the batch,

channel, height, and width dimensions, respectively. We

combine batch normalization (BN) with instance normal-

ization (IN) as follows:

y = ρ (γB · x̂B + βB) + (1− ρ) (γI · x̂I + βI) , (1)

where the subscripts B and I denote variables with respect

to BN and IN, x̂ is the normalized response by mean and

variance, γ, β ∈ R
C are affine transformation parameters,

and ρ ∈ [0, 1]C is an additional learnable parameter to bal-

ance BN and IN. Note that ρ is a channel-wise parameter

for each normalization layer in a feature extractor. Different

from [30], we apply each affine transformation to normal-

ized responses for BN and IN, which allows batch-instance

normalization layers to learn various representations.

However, the training mechanism of balancing BN and

IN through learnable parameters is a critical issue that can

easily overfit the source domain’s styles. In other words,

the learnable manner forces the balancing parameters to be

optimized depending only on styles within source domains.

As a result, the normalization layers are unsuccessfully gen-

eralized at given unseen target domains, as shown in Fig. 1

(a) and (b). To deal with this problem, we develop our nor-

malization model by using a meta-learning pipeline.

3427



3.3. Meta Batch­Instance Normalization

MetaBIN framework: MLDG [19] is a representa-

tive DG method based on Model-Agnostic Meta-Learning

(MAML) [10], which enables to train models with a good

generalization capability to novel domains through the vir-

tual simulation of real train-test domain-shifts. Inspired by

this, we apply the MAML scheme to the updating process of

the balancing parameters to prevent our model from overfit-

ting to the source style. To this end, we separate an episode

that updates the balancing parameters from another episode

that updates the rest of the parameters, and then perform

both episodes alternately at each training iteration. The

separation of the base model updating process not only en-

sures baseline performance but also enables effective learn-

ing compared to updating all parameters in MLDG [19].

Formally, we denote a classifier gφ(·) parameterized by φ
and a feature extractor fθ(·) parameterized by θ = (θf , θρ),
where θρ and θf are the balancing parameters and the re-

maining parameters of the feature extractor, respectively. In

the base model updating process, we update the classifier

parameters φ and the feature extractor parameters θf except

the balancing parameters θρ. In the meta-learning process,

only the balancing parameters θρ are updated. The overall

methodological flow is summarized in Algorithm 1.

Base model updates: In this stage, we update all param-

eters without the balancing parameters θρ. To this end, we

sample a mini-batch XB by aggregating the labeled images

from all source domainsD. We adopt two loss functions for

updating a base model. First, we use the cross-entropy loss

Lce for ID-discriminative learning as follows:

Lce(XB ; θ, φ) =
1

NB

NB
∑

i=1

lce

(

gφ
(

fθ(xi)
)

, yi

)

, (2)

where NB denotes the number of samples in a mini-batch

XB . In addition, we apply the label-smoothing method [38]

since there are too many identities in aggregated source do-

mains. It helps prevent our model from overfitting to train-

ing IDs.

Most of the Re-ID methods [7, 43, 18] combine the

cross-entropy loss with the triplet loss together for similar-

ity learning. The second loss is expressed as follows:

Ltr(XB ; θ) =
1

NB

NB
∑

i=1

[d(fa
i ,f

p
i )− d(fa

i ,f
n
i ) +m]

+
, (3)

where fa
i = fθ(x

a
i ) indicates the feature vector of an anchor

sample xa
i , d(·, ·) is the Euclidean distance, m is a margin

parameter, and [z]
+
= max(z, 0). For each sample fa

i , we

select the hardest positive sample f
p
i and the hardest nega-

tive sample fn
i within a mini-batch in the same way as [14].

The triplet loss helps enhance the intra-class compactness

and inter-class separability in the Euclidean space. To max-

imize the synergy between Lce and Ltr, we use the BNNeck

structure as proposed in [26]. The overall loss is formulated

as follows:

Algorithm 1 MetaBIN

Input: Source domains D = {D1,D2, . . . ,DK},
pre-trained parameters θf , hyperparameters α, β, γ.

Output: Feature extractor fθ(·), classifier gφ(·)

1: Initialize parameters θρ, φ
2: for ite in iterations do

3: Base model update: // Eq. (2)-Eq. (5)

4: Sample a mini-batch XB from D.

5: Lbase(XB ; θ, φ) = Lce(XB ; θ, φ) + Ltr(XB ; θ)
6: (θf , φ)←

(

θf − α∇θfLbase(XB ; θf , θρ, φ),

φ− α∇φ Lbase(XB ; θf , θρ, φ)
)

7: Domain-level sampling:

8: Split D as (Dmtr ∩ Dmte = ∅, Dmtr ∪ Dmte = D)

9: Meta-train: // Eq. (6)-Eq. (9)

10: Sample a mini-batch XS from Dmtr.

11: Lmtr(XS ; θ)=Lscat(XS ; θ)+Lshuf(XS ; θ)+Ltr(XS ; θ)
12: θ′ρ = θρ − β∇θρLmtr(XS ; θf , θρ)
13: Meta-test: // Eq. (10)

14: Sample a mini-batch XT from Dmte.

15: θρ ← θρ − γ∇θρLtr(XT ; θf , θ
′
ρ)

Lbase(XB ; θ, φ) = Lce(XB ; θ, φ) + Ltr(XB ; θ). (4)

Then we update our base model as follows:

(θf , φ)←
(

θf − α∇θfLbase(XB ; θf , θρ, φ),

φ− α∇φ Lbase(XB ; θf , θρ, φ)
)

.
(5)

We note that the balancing parameters θρ are not updated.

Domain-level sampling and meta-learning: To

achieve domain generalization, we split source domains D
into meta-train domains Dmtr and meta-test domains Dmte

randomly at each iteration. This separation is to mimic real

train-test domain-shifts to generalize our normalization lay-

ers. In this way, we inner-update the balancing parameters

via the meta-train loss, and then validate the updated model

at unseen-like meta-test domains. Next, we meta-update the

balancing parameters via the meta-test loss. After all, the

balancing parameters and base model parameters are alter-

nately generalized in the whole process.

Meta-train: Compared to the previous DG methods [19,

1], we introduce a novel concept to significantly improve

generalization capability. We start with an explanation of

virtual simulations, as shown in Fig. 1 (c). We attempt

to simulate unsuccessful generalization scenarios via our

meta-train loss by inner-updating the balancing parame-

ters to any space that cannot be explored with the given

source domains and general classification loss functions.

More specifically, we induce the balancing parameters to

be biased toward IN for investigating the virtual over-style-

normalization situation where our model becomes much

more normalized beyond the styles of the source domain.

On the contrary, we also lead to the parameters to be
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biased toward BN for exploring the virtual under-style-

normalization situation in which our model fails to distin-

guish identities at the unexpected styles. In this way, we

design a complementary objective function that can trigger

both challenging cases, which provides an opportunity to

escape from the local-minima by overcoming the harsh sit-

uations at the unseen-like meta-test domains.

To implement this, we first suggest the losses from the

perspective of over-style-normalization. Our main point

is to enhance intra-domain diversity and disarrange inter-

domain distributions like confusing multiple styles. To

spread the feature distribution for each domain, we intro-

duce an intra-domain scatter loss as follows:

Lscat(XS ; θ) =
1

NS

KS
∑

k=1

Nk
S

∑

i=1

cos
(

f
k
i , f̄

k
)

, (6)

where f̄k denotes the mean feature vector (centroid) of do-

main k in a mini-batch, KS is the number of meta-train

domains, Nk
S is the number of meta-train samples for do-

main k, NS is the number of all meta-train samples, and

cos(a, b) = a · b/‖a‖‖b‖.
In addition to this, we propose an inter-domain shuffle

loss for supporting the virtual effect of style normalization

further. This loss pulls the negative sample of the inter-

domain and pushes the negative sample of the intra-domain,

so that the inter-domain distributions are shuffled. It is ex-

pressed as follows:

Lshuf(XS ; θ) =
1

NS

NS
∑

i=1

ls
(

d(fa
i ,f

n−
i )− d(fa

i ,f
n+
i )

)

, (7)

where fa
i , fn−

i , and fn+
i indicate the feature representa-

tions of an anchor sample, an inter-domain negative sam-

ple, and an intra-domain negative sample. d(·, ·) is the Eu-

clidean distance, and ls is the softplus function [9].

At the same time, we add the triplet loss Ltr(XS ; θ) from

perspective of under-style-normalization. It enhances intra-

class compactness regardless style differences. The overall

loss for meta-train is as follows:

Lmtr(XS ; θ) = Lscat(XS ; θ)+Lshuf(XS ; θ)+Ltr(XS ; θ). (8)

The combination of the triplet loss alleviates the excessive

discrimination reduction problem caused by Lscat(XS ; θ)
and Lshuf(XS ; θ).

Based on the meta-train loss Lmtr, we inner-update the

balancing parameters from θρ to θ′ρ as follows:

θ
′
ρ = θρ − β∇θρLmtr(XS ; θf , θρ), (9)

where β is a learning rate for the inner-level optimization.

Cyclic inner-updates: In the general MAML-based DG

methods [19, 1], the learning rate β is pre-defined as a con-

stant. To promote the diversity of virtual simulations, we

adopt the cyclical learning rate [35] for the inner-level opti-

mization, which we call it a cyclical inner-updating method.

More specifically, this method affects how much the balanc-

ing parameters are updated. Therefore, it diversifies gener-

alization scenarios from the easy case by a small β to the

difficult case by a large β.

Meta-test: After moving the balancing parameters in the

inner-level optimization step, we evaluate our model at the

unseen-like samples XT from meta-test domains Dmte. In

this step, we can examine various generalization scenarios

depending on the movement of the balancing parameters.

To validate a retrieval task effectively, we employ the triplet

loss with the updated balancing parameters θ′ρ as follows:

θρ ← θρ − γ∇θρLtr(XT ; θf , θ
′
ρ). (10)

From the equation, we meta-update the balancing param-

eters to overcome the virtual simulations. Eventually, our

model learns to generalize the balancing parameters by the

final optimization process. As these meta-learning and base

model updating steps are alternately trained, the generaliza-

tion capability to unseen domains is improved effectively.

4. Experiments

4.1. Datasets and Settings

Datasets: To evaluate the generalization capability of

our method, we employ the large-scale domain generaliza-

tion (DG) Re-ID benchmark [36] and the cross-domain Re-

ID problem. In the large-scale DG Re-ID setting, source

datasets contain CUHK02 [20], CUHK03 [21], Market-

1501 [49], DukeMTMC-ReID [50], and CUHK-SYSU Per-

sonSearch [45], and target datasets include VIPeR [12],

PRID [15], GRID [25], and QMUL i-LIDS [44]. All im-

ages in the source datasets are used for training regard-

less of train/test splits, and the total number of identities

is M = 18,530 with N = 121,765 images. In the cross-

domain Re-ID setting, we employ Market-1501 [49] and

DukeMTMC-ReID [50]. We alternately construct the two

datasets into source and target domains. At this time, we re-

gard each camera within a dataset as an individual domain.

Implementation details: For a fair comparison, we

adopted MobileNetV2 [32] with a multiplier of 1.4 and

ResNet-50 [13] as backbone networks. The weights are

pre-trained on ImageNet [8]. All balancing parameters are

initialized to 1. For training, each image is resized to 256

× 128. We select 16 samples for each domain in a mini-

batch. In the base model updating step, all images in a

mini-batch are used. However, in a meta-learning pipeline,

domains are separated into meta-train and meta-test from

another mini-batch. The label-smoothing parameter is 0.1

and the margin in the triplet loss is 0.3. For updating our

base model, we use the SGD optimizer with a momentum

of 0.9 and a weight decay of 5 × 10−4. Its initial learning

rate α is 0.01, which is warmed up for 10 epochs as [26] and

decayed to its 0.1× and 0.01× at 40 and 70 epochs. In the

meta-learning step, the balancing parameters are updated by
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Table 1. Performance (%) comparison with the state-of-the-arts on the large-scale DG Re-ID benchmark, where ‘†’ is based on ResNet-50.

Method

Large-scale domain generalization Re-ID (multi-source DG)

Average Target: VIPeR (V) [12] Target: PRID (P) [15] Target: GRID (G) [25] Target: i-LIDS (I) [44]

R-1 mAP R-1 R-5 R-10 mAP R-1 R-5 R-10 mAP R-1 R-5 R-10 mAP R-1 R-5 R-10 mAP

DIMN [36] 47.5 57.9 51.2 70.2 76.0 60.1 39.2 67.0 76.7 52.0 29.3 53.3 65.8 41.1 70.2 89.7 94.5 78.4

AugMining [39] 51.8 - 49.8 70.8 77.0 - 34.3 56.2 65.7 - 46.6 67.5 76.1 - 76.3 93.0 95.3 -

Switchable (BN+IN) [27] 57.0 65.6 51.6 72.9 80.8 61.4 59.6 78.6 90.1 69.4 39.3 58.8 68.1 48.1 77.3 91.2 94.8 83.5

DualNorm [17] 57.6 61.8 53.9 62.5 75.3 58.0 60.4 73.6 84.8 64.9 41.4 47.4 64.7 45.7 74.8 82.0 91.5 78.5

DDAN [3] 59.0 63.1 52.3 60.6 71.8 56.4 54.5 62.7 74.9 58.9 50.6 62.1 73.8 55.7 78.5 85.3 92.5 81.5

DDAN [3] w/ [17] 60.9 65.1 56.5 65.6 76.3 60.8 62.9 74.2 85.3 67.5 46.2 55.4 68.0 50.9 78.0 85.7 93.2 81.2

MetaBIN (Ours) 64.7 72.3 56.9 76.7 82.0 66.0 72.5 88.2 91.3 79.8 49.7 67.5 76.8 58.1 79.7 93.3 97.3 85.5

SNR† [18] 57.3 66.4 52.9 - - 61.3 52.1 - - 66.5 40.2 - - 47.7 84.1 - - 89.9

DualNorm† [17] 62.7 - 59.4 - - - 69.6 - - - 43.7 - - - 78.2 - - -

MetaBIN† (Ours) 66.0 73.6 59.9 78.4 82.8 68.6 74.2 89.7 92.2 81.0 48.4 70.3 77.2 57.9 81.3 95.0 97.0 87.0

another SGD optimizer without momentum and weight de-

cay. The meta-train step-size β oscillates back and forth in

the range [0.001, 0.1] with the triangular policy [35]. The

meta-test step-size γ is fixed to 0.1. The training stops at

100 epochs. To speed up the training process and increase

memory efficiency, we use the automatic mixed-precision

training [29] in the entire process and the first-order ap-

proximations [10] in meta-optimization. All experiments

are conducted on an NVIDIA Titan Xp GPU using Pytorch.

Evaluation metrics: We follow the common evaluation

metrics for Re-ID as mean Average Precision (mAP) and

Cumulative Matching Characteristic (CMC) at Rank-k.

4.2. Comparison with State­of­the­art Methods

Large-scale DG Re-ID benchmark: We evaluate our

MetaBIN framework on the large-scale domain generaliza-

tion Re-ID benchmark [36], which is shown in Table 1. For

a fair comparison, we provide both results based on Mo-

bileNetV2 and ResNet-50. All Re-ID models have been

evaluated individually on each target dataset. Among the

competitors, DualNorm [17] achieved relatively good per-

formance on VIPeR and PRID, and DDAN [3] also obtained

comparable performance on GRID. In addition, SNR [18]

achieved impressive results on the i-LIDS dataset in the ex-

periment based on ResNet-50. Nevertheless, our MetaBIN

method outperformed all competing methods by a signifi-

cant margin in the average performance. The main reasons

come from two aspects: 1) Our MetaBIN framework, which

simulates the virtual scenarios in a meta-learning pipeline,

effectively enhances the generalization capability to novel

domains; 2) With the addition of simple balancing parame-

ters and the separation of learning episodes, we can solve

the challenging heterogeneous DG problem without syn-

thetic data augmentation or complicated network design.

Cross-domain Re-ID problem: To demonstrate the

superiority of our method, we additionally compare our

MetaBIN framework with a variety of state-of-the-art

methods in the cross-domain Re-ID problem, which is

shown in Table 2. ‘Market1501 → DukeMTMC’ indi-

cates that Market-1501 [49] is a labeled source domain and

DukeMTMC-ReID [50] is an unseen target domain. In

Table 2. Performance (%) comparison with the state-of-the-arts on

the cross-domain Re-ID problem.

Method

Cross-domain Re-ID (single-source DG)

Market1501→ DukeMTMC DukeMTMC→Market1501

R-1 R-5 R-10 mAP R-1 R-5 R-10 mAP

IBN-Net [31] 43.7 59.1 65.2 24.3 50.7 69.1 76.3 23.5

OSNet [53] 44.7 59.6 65.4 25.9 52.2 67.5 74.7 24.0

OSNet-IBN [53] 47.9 62.7 68.2 27.6 57.8 74.0 79.5 27.4

CrossGrad [34] 48.5 63.5 69.5 27.1 56.7 73.5 79.5 26.3

QAConv [22] 48.8 - - 28.7 58.6 - - 27.2

L2A-OT [52] 50.1 64.5 70.1 29.2 63.8 80.2 84.6 30.2

OSNet-AIN [53] 52.4 66.1 71.2 30.5 61.0 77.0 82.5 30.6

SNR [18] 55.1 - - 33.6 66.7 - - 33.9

MetaBIN (Ours) 55.2 69.0 74.4 33.1 69.2 83.1 87.8 35.9

other words, we need to generalize a Re-ID model so that it

works well on the unseen target dataset using only the im-

ages on a single source dataset. The setting of cross-domain

Re-ID is somewhat different from that of large-scale do-

main generalization. First, the style variation within a sin-

gle dataset is relatively small. Therefore, we increased the

meta-optimization step size to 0.2 on Market-1501 [49] and

0.5 on DukeMTMC-ReID [50]. Second, some identities

are simultaneously distributed on different camera domains.

Thus, we added the cross-entropy loss to the meta-train and

meta-test losses for enhancing the ID-discrimination abil-

ity. Third, since the number of domains is different from

the previous one, we divided the entire camera domains in

half for each dataset. Finally, for a fair comparison with

SNR [18], we employed ResNet-50 [13] with color jitter-

ing. Table 2 show that our MetaBIN framework achieved

comparable performance on both settings. In the end, we

prove that our framework has the potential to improve the

generalization capability even on the single-source dataset

with relatively small domain discrepancy.

4.3. Ablation study

We perform comprehensive ablation studies to show the

effectiveness of our MetaBIN framework and detailed com-

ponents through the average performance on the large-scale

DG Re-ID benchmark.

Influence of model components: Table 3 reports the ab-

lation results of our novel framework including meta-train

losses and the cyclic inner-updating method. We employed

the cross-entropy and triplet losses as a baseline. We ob-
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Table 3. Ablation studies of our MetaBIN framework in the aver-

age performance on the large-scale DG Re-ID benchmark.

Method Lmtr Lmte β R-1 mAP

BN - - - 50.9 59.5

MetaBIN Lce Lce fixed 60.6 69.4

MetaBIN Lce,Ltr Lce,Ltr fixed 62.0 69.9

MetaBIN Ltr Ltr fixed 62.8 70.8

MetaBIN Ltr,Lscat Ltr fixed 63.0 71.0

MetaBIN Ltr,Lshuf Ltr fixed 63.1 71.0

MetaBIN Ltr,Lscat,Lshuf Ltr fixed 63.5 71.3

MetaBIN Ltr,Lscat,Lshuf Ltr cyclic 64.7 72.3

Figure 2. Performance (%) and memory usage (MiB) analysis ac-

cording to the sampling manner of domains and images.

served the following aspects: 1) Our novel MetaBIN frame-

work that updates balancing parameters in meta-learning

improves the generalization capability with a large perfor-

mance gap by alleviating the overfitting problem at given

source domains; 2) In simulating real train-test domain

shifts, the triplet loss is more suitable than the cross-entropy

loss for DG Re-ID, which is different from the general ho-

mogeneous DG methods [19, 1]; 3) Our meta-train losses

are complementary to each other and have a synergistic ef-

fect with the cyclic inner-updating method.

Influence of domain-level sampling: In this part, we

compare the differences depending on the sampling man-

ner of domains and images in the meta-learning step. In

Fig. 2 (a), whereas the simulation quality deteriorates if

the number of meta-train domains is too small, the gener-

alization capability to overcome the overfitting issues be-

comes insufficient if the number of meta-test domains is

too small. Therefore, the domain sampling between meta-

train and meta-test should be adequately balanced. Our

method achieved the highest performance and the lowest

memory usage when the number of meta-train and meta-

test domains is 3 and 2, respectively. Figure 2 (b) shows

the performance and memory usage according to the num-

ber of images per domain in a mini-batch. It is noteworthy

that we chose the highest performance case under the con-

dition that does not exceed the memory usage (7,895MiB)

of updating a base model. In other words, the proposed

meta-learning pipeline does not increase the memory usage,

since the meta-learning and base model updating steps are

divided. Thus, it has an advantage in terms of memory con-

sumption over the MLDG method [19] of meta-updating the

entire parameters.

Table 4. Performance (%) comparison in a meta-learning pipeline.

Method Lbase MLDG [19] cyclic β R-1 mAP

BN

Lce ✗ ✗ 50.2 59.6

Lce ✓ ✗ 50.5 59.2

Lce ✓ ✓ 52.3 60.9

Lce,Ltr ✗ ✗ 50.9 59.5

Lce,Ltr ✓ ✗ 52.2 61.2

Lce,Ltr ✓ ✓ 53.6 61.8

BIN [30]

Lce,Ltr ✗ ✗ 54.8 63.1

Lce,Ltr ✓ ✗ 57.9 65.7

Lce,Ltr ✓ ✓ 58.4 66.3

MetaBIN (replace with BIN [30]) 60.6 68.8

MetaBIN (w/o episode separation) 60.9 69.1

MetaBIN 64.7 72.3

Table 5. Performance (%) comparison with normalization methods

in DG and supervised settings, where ‘S’ is single normalization,

‘N’ is non-parametric normalization, ‘P’ is parametric normaliza-

tion, ‘BN+IN half’ is a channel-wise combination of BN and IN.

Method
Large-scale DG Supervised (Market1501)

R-1 mAP R-1 mAP

S
BN 50.9 59.5 87.2 67.9

IN 54.9 63.3 71.9 46.1

N
DualNorm [17] 57.6 61.8 82.6 57.2

BN+IN half 56.5 65.3 79.5 53.9

P
BIN [30] 54.8 63.1 87.5 67.8

MetaBIN (Ours) 64.7 72.3 87.9 68.5

4.4. Further Analysis

Analysis from the perspective of MAML: Table

4 presents the experimental results in a meta-learning

pipeline. MLDG [19] is a representative MAML-based

method designed for homogeneous DG. We observed that

MLDG does not improve performance much, which means

that it is difficult to directly apply the conventional homoge-

neous DG method to the challenging DG Re-ID task. On the

other hand, when the meta-learning approach is combined

with the triplet loss or a batch-instance normalization layer,

its performance has been meaningfully improved. Thus,

these methods are valid for solving the DG Re-ID prob-

lem. However, we note that the generalization potential

of the existing BIN model [30] was insufficient compared

to that of our model. The proposed cyclic inner-updating

method has made significant improvements in all cases, in-

dicating an effective model-free method. Finally, the sepa-

ration of training episodes contributed to improving perfor-

mance considerably. It demonstrates that selectively updat-

ing only the balancing parameters in the complicated meta-

learning pipeline brings training stability and improves the

generalization capacity.

Analysis from the perspective of normalization: We

analyze our MetaBIN framework and other normalization

methods through the performance and t-SNE visualiza-

tion [28]. First, we compare BN with IN as single normal-

ization techniques. We observed under-style-normalization

in Fig. 3 (a) and over-style-normalization in Fig. 3 (b), and

it turned out that the performance plummeted when these

scenarios occurred as reported in Table 5. Furthermore,

since IN filtered out discriminative information too much,
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Figure 3. The t-SNE visualization of the embedding vectors on four unseen target datasets (VIPeR, PRID, GRID, and i-LIDS). Trained

models are evaluated individually for each dataset, and query and gallery samples are expressed in different shapes. Best viewed in color.

Figure 4. Analysis on the final distribution ratios of balancing pa-

rameters for each layer. Best viewed in color.

its performance had been greatly degraded in the super-

vised setting. Meanwhile, the non-parametric or paramet-

ric combination of BN and IN alleviated these problems.

The non-parametric methods in the DG experiment and the

parametric methods in the supervised setting showed rel-

atively high performance. However, a poorly generalized

case was also observed at the BIN method [30], as ex-

pressed in Fig. 3 (c). On the other hand, our MetaBIN

method overcame the overfitting issue by simulating unsuc-

cessful generalization in the meta-learning pipeline, eventu-

ally surpassing all normalization methods in the DG experi-

ment. Figure 3 (d) shows that our method has shorter query-

gallery distances than those of other methods. Besides, our

method improves performance even in the supervised set-

ting. Thus, we demonstrate that our MetaBIN method is

generalizable and practical for real-world situations.

Analysis on the balancing parameters: To under-

stand how normalization layers are generalized, we inves-

tigate the final distribution ratio of balancing parameters,

as shown in Fig. 4. Both experiments have been con-

ducted based on MobileNetV2 [32] trained on the large-

scale DG Re-ID dataset. Note that all balancing parame-

ters have been initialized to 1 (toward BN). We observed

that most of the parameters tend to maintain the BN proper-

ties, but only some parameters are biased toward IN. Since

the performance improved through this process, we demon-

strate that removing useless instance-specific style informa-

tion contributes to improving generalization capability. In

particular, the distribution difference between BIN [30] and

Figure 5. Analysis on the gradients in the inner-optimization step

according to the meta-train loss (Ltr,Lscat,Lshuf).

MetaBIN shows that deflecting some channels toward IN in

the middle layer as well as the shallow layer alleviates the

overfitting issue and promotes the generalization capability.

Analysis on the meta-train loss: We analyze the virtual

simulation scenarios through visualization of gradients cal-

culated in the inner-optimization step, as illustrated in Fig.

5. First, the intra-domain scatter loss Lscat and inter-domain

shuffle loss Lshuf generate positive gradients, which act to

move the balancing parameters in the IN direction. In addi-

tion, the triplet loss Ltr promotes negative gradients, which

cause the parameters to shift in the BN direction. Even-

tually, we prove that our meta-train losses induce the bal-

ancing parameters to the specific directions, which means

that unsuccessful generalization scenarios can be deliber-

ately simulated. We also emphasize that combining all these

losses helps improve performance, as shown in Table 3.

5. Conclusion

In this work, we have proposed a novel generaliz-

able person re-identification framework, called Meta Batch-

Instance Normalization (MetaBIN). Compared to previous

studies, the proposed method alleviates the overfitting prob-

lem by investigating unsuccessful generalization scenarios

based on our observation. Furthermore, our novel meta-

train loss and cyclic inner-updating method diversify virtual

simulations and eventually boost generalization capability

to unseen domains. Extensive experiments and comprehen-

sive analysis in the single- and multi-source DG settings

demonstrate its superiority over state-of-the-art methods.
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