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Figure 1: Given a pair of a reference image (containing a person) and a target clothing image, our method successfully

synthesizes 1024×768 virtual try-on images.

Abstract

The task of image-based virtual try-on aims to transfer

a target clothing item onto the corresponding region of a

person, which is commonly tackled by fitting the item to

the desired body part and fusing the warped item with the

person. While an increasing number of studies have been

conducted, the resolution of synthesized images is still lim-

ited to low (e.g., 256×192), which acts as the critical lim-

itation against satisfying online consumers. We argue that

the limitation stems from several challenges: as the resolu-

tion increases, the artifacts in the misaligned areas between

the warped clothes and the desired clothing regions become

noticeable in the final results; the architectures used in ex-

* These authors contributed equally.

isting methods have low performance in generating high-

quality body parts and maintaining the texture sharpness of

the clothes. To address the challenges, we propose a novel

virtual try-on method called VITON-HD that successfully

synthesizes 1024×768 virtual try-on images. Specifically,

we first prepare the segmentation map to guide our virtual

try-on synthesis, and then roughly fit the target clothing item

to a given person’s body. Next, we propose ALIgnment-

Aware Segment (ALIAS) normalization and ALIAS genera-

tor to handle the misaligned areas and preserve the details

of 1024×768 inputs. Through rigorous comparison with ex-

isting methods, we demonstrate that VITON-HD highly sur-

passes the baselines in terms of synthesized image quality

both qualitatively and quantitatively.
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1. Introduction

Image-based virtual try-on refers to the image generation

task of changing the clothing item on a person into a differ-

ent item, given in a separate product image. With a growing

trend toward online shopping, virtually wearing the clothes

can enrich a customer’s experience, as it gives an idea about

how these items would look on them.

Virtual try-on is similar to image synthesis, but it has

unique and challenging aspects. Given images of a person

and a clothing product, the synthetic image should meet

the following criteria: (1) The person’s pose, body shape,

and identity should be preserved. (2) The clothing prod-

uct should be naturally deformed to the desired clothing re-

gion of the given person, by reflecting his/her pose and body

shape. (3) Details of the clothing product should be kept in-

tact. (4) The body parts initially occluded by the person’s

clothes in the original image should be properly rendered.

Since the given clothing image is not initially fitted to the

person image, fulfilling these requirements is challenging,

which leaves the development of virtual try-on still far be-

hind the expectations of online consumers. In particular, the

resolution of virtual try-on images is low compared to the

one of normal pictures on online shopping websites.

After Han et al. [10] proposed VITON, various image-

based virtual try-on methods have been proposed [27, 32,

31, 6]. These methods follow two processes in common: (1)

warping the clothing image initially to fit the human body;

(2) fusing the warped clothing image and the image of the

person that includes pixel-level refinement. Also, several

recent methods [9, 32, 31] add a module that generates seg-

mentation maps and determine the person’s layout from the

final image in advance.

However, the resolution of the synthetic images from the

previous methods is low (e.g., 256×192) due to the follow-

ing reasons. First, the misalignment between the warped

clothes and a person’s body results in the artifacts in the

misaligned regions, which become noticeable as the image

size increases. It is difficult to warp clothing images to fit

the body perfectly, so the misalignment occurs as shown in

Fig. 2. Most of previous approaches utilize the thin-plate

spline (TPS) transformation to deform clothing images. To

accurately deform clothes, ClothFlow [9] predicts the op-

tical flow maps of the clothes and the desired clothing re-

gions. However, the optical flow maps does not remove

the misalignment completely on account of the regulariza-

tion. In addition, the process requires more computational

costs than other methods due to the need of predicting the

movement of clothes at a pixel level. (The detailed analysis

of ClothFlow is included in the supplementary.) Second, a

simple U-Net architecture [22] used in existing approaches

is insufficient in synthesizing initially occluded body parts

in final high-resolution (e.g., 1024×768) images. As noted

in Wang et al. [28], applying a simple U-Net-based archi-

Figure 2: An example of misaligned regions.

tecture to generate high-resolution images leads to unstable

training as well as unsatisfactory quality of generated im-

ages. Also, refining the images once at the pixel level is in-

sufficient in preserving the details of high-resolution cloth-

ing images.

To address the above-mentioned challenges, we pro-

pose a novel high-resolution virtual try-on method, called

VITON-HD. In particular, we introduce a new clothing-

agnostic person representation that leverages the pose in-

formation and the segmentation map so that the clothing

information is eliminated thoroughly. Afterwards, we feed

the segmentation map and the clothing item deformed to

fit the given human body to the model. Using the addi-

tional information, our novel ALIgnment-Aware Segment

(ALIAS) normalization removes information irrelevant to

the clothing texture in the misaligned regions and propa-

gates the semantic information throughout the network. The

normalization separately standardizes the activations corre-

sponding to the misaligned regions and the other regions,

and modulates the standardized activations using the seg-

mentation map. Our ALIAS generator employing ALIAS

normalization synthesizes the person image wearing the tar-

get product while filling the misaligned regions with the

clothing texture and preserving the details of the clothing

item through the multi-scale refinement at a feature level.

To validate the performance of our framework, we col-

lected a 1024×768 dataset that consists of pairs of a per-

son and a clothing item for our research purpose. Our ex-

periments demonstrate that VITON-HD significantly out-

performs the existing methods in generating 1024×768 im-

ages, both quantitatively and qualitatively. We also confirm

the superior capability of our novel ALIAS normalization

module in dealing with the misaligned regions.

We summarize our contributions as follows:

• We propose a novel image-based virtual try-on ap-

proach called VITON-HD, which is, to the best of our

knowledge, the first model to successfully synthesize

1024×768 images.

• We introduce a clothing-agnostic person representa-

tion that allows our model to remove the dependency

on the clothing item originally worn by the person.
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• To address the misalignment between the warped

clothes and the desired clothing regions, we propose

ALIAS normalization and ALIAS generator, which is

effective in maintaining the details of clothes.

• We demonstrate the superior performance of our

method through experiments with baselines on the

newly collected dataset.

2. Related Work

Conditional Image Synthesis. Conditional generative

adversarial networks (cGANs) utilize additional informa-

tion, such as class labels [16, 2], text [21, 30], and at-

tributes [25], to steer the image generation process. Since

the emergence of pix2pix [14], numerous cGANs condi-

tioned on input images have been proposed to generate

high-resolution images in a stable manner [28, 1, 18]. How-

ever, these methods tend to generate blurry images when

handling a large spatial deformation between the input im-

age and the target image. In this paper, we propose a method

that can address the spatial deformation of input images and

properly generate 1024×768 images.

Normalization Layers. Normalization layers [13, 26]

have been widely applied in modern deep neural networks.

Normalization layers, whose affine parameters are esti-

mated with external data, are called conditional normaliza-

tion layers. Conditional batch normalization [4] and adap-

tive instance normalization [12] are such conditional nor-

malization techniques and have been used in style transfer

tasks. SPADE [17] and SEAN [34] utilize segmentation

maps to apply spatially varying affine transformations. Us-

ing the misalignment mask as external data, our proposed

normalization layer computes the means and the variances

of the misaligned area and the other area within an instance

separately. After standardization, we modulate standard-

ized activation maps with affine parameters inferred from

human-parsing maps to preserve semantic information.

Virtual Try-on Approaches. There are two main cat-

egories for virtual try-on approaches: 3D model-based

approaches [8, 24, 20, 19] and 2D image-based ap-

proaches [10, 27, 9, 32, 31, 5]. 3D model-based approaches

can accurately simulate the clothes but are not widely appli-

cable due to their dependency on 3D measurement data.

2D image-based approaches do not rely on any 3D in-

formation, thus being computationally efficient and appro-

priate for practical use. Jetchev and Bergmann [15] pro-

posed CAGAN, which first introduced the task of swap-

ping fashion articles on human images. VITON [10] ad-

dressed the same problem by proposing a coarse-to-fine

synthesis framework that involves TPS transformation of

clothes. Most existing virtual try-on methods tackle differ-

ent aspects of VITON to synthesize perceptually convincing

photo-realistic images. CP-VTON [27] adopted a geometric

matching module to learn the parameters of TPS transfor-

mation, which improves the accuracy of deformation. VT-

NFP [32] and ACGPN [31] predicted the human-parsing

maps of a person wearing the target clothes in advance to

guide the try-on image synthesis. Even though the image

quality at high resolution is an essential factor in evaluating

the practicality of the generated images, none of the meth-

ods listed above could generate such photo-realistic images

at high resolution.

3. Proposed Method

Model Overview. As described in Fig. 3, given a ref-

erence image I ∈ R
3×H×W of a person and a clothing

image c ∈ R
3×H×W (H and W denote the image height

and width, respectively), the goal of VITON-HD is to gen-

erate a synthetic image Î ∈ R
3×H×W of the same person

wearing the target clothes c, where the pose and body shape

of I and the details of c are preserved. While training the

model with (I, c, Î) triplets is straightforward, construction

of such dataset is costly. Instead, we use (I, c, I) where the

person in the reference image I is already wearing c.

Since directly training on (I, c, I) can harm the model’s

generalization ability at test time, we first compose a

clothing-agnostic person representation that leaves out the

clothing information in I and use it as an input. Our new

clothing-agnostic person representation uses both the pose

map and the segmentation map of the person to eliminate

the clothing information in I (Section 3.1). The model gen-

erates the segmentation map from the clothing-agnostic per-

son representation to help the generation of Î (Section 3.2).

We then deform c to roughly align it to the human body

(Section 3.3). Lastly, we propose the ALIgnment-Aware

Segment (ALIAS) normalization that removes the mislead-

ing information in the misaligned area after deforming c.

ALIAS generator fills the misaligned area with the clothing

texture and maintains the clothing details (Section 3.4).

3.1. Clothing­Agnostic Person Representation

To train the model with pairs of c and I already wearing

c, a person representation without the clothing information

in I has been utilized in the virtual try-on task. Such rep-

resentations have to satisfy the following conditions: (1)

the original clothing item to be replaced should be deleted;

(2) sufficient information to predict the pose and the body

shape of the person should be maintained; (3) the regions to

be preserved (e.g., face and hands) should be kept to main-

tain the person’s identity.

Problems of Existing Person Representations. In or-

der to maintain the person’s shape, several approaches [10,

27, 32] provide a coarse body shape mask as a cue to syn-

thesize the image, but fail to reproduce the body parts elab-

orately (e.g., hands). To tackle this issue, ACGPN [31] em-

ploys the detailed body shape mask as the input, and the

neural network attempts to discard the clothing informa-
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Figure 3: Overview of a VITON-HD. (a) First, given a reference image I containing a target person, we predict the seg-

mentation map S and the pose map P , and utilize them to pre-process I and S as a clothing-agnostic person image Ia
and segmentation Sa. (b) Segmentation generator produces the synthetic segmentation Ŝ from (Sa, P, c). (c) Geometric

matching module deforms the clothing image c according to the predicted clothing segmentation Ŝc extracted from Ŝ. (d)

Finally, ALIAS generator synthesizes the final output image Î based on the outputs from the previous stages via our ALIAS

normalization.

tion to be replaced. However, since the body shape mask

includes the shape of the clothing item, neither the coarse

body shape mask nor the neural network could perfectly

eliminate the clothing information. As a result, the original

clothing item that is not completely removed causes prob-

lems in the test phase.

Clothing-Agnostic Person Representation. We pro-

pose a clothing-agnostic image Ia and a clothing-agnostic

segmentation map Sa as inputs of each stage, which truly

eliminate the shape of clothing item and preserve the body

parts that need to be reproduced. We first predict the

segmentation map S ∈ L
H×W and the pose map P ∈

R
3×H×W of the image I by utilizing the pre-trained net-

works [7, 3], where L is a set of integers indicating the se-

mantic labels. The segmentation map S is used to remove

the clothing region to be replaced and preserve the rest of

the image. The pose map P is utilized to remove the arms,

but not the hands, as they are difficult to reproduce. Based

on S and P , we generate the clothing-agnostic image Ia
and the clothing-agnostic segmentation map Sa, which al-

low the model to remove the original clothing information

thoroughly, and preserve the rest of the image. In addition,

unlike other previous work, which adopts the pose heatmap

with each channel corresponded to one keypoint, we con-

catenate Ia or Sa to the RGB pose map P representing a

skeletal structure that improves generation quality.

3.2. Segmentation Generation

Given the clothing-agnostic person representation

(Sa, P ), and the target clothing item c, the segmentation

generator GS predicts the segmentation map Ŝ ∈ L
H×W

of the person in the reference image wearing c. We train

GS to learn the mapping between S and (Sa, P, c), in

which the original clothing item information is completely

removed. As the architecture of GS , we adopt U-Net [22],

and the total loss LS of the segmentation generator are

written as

LS = LcGAN + λCELCE , (1)

where LCE and LcGAN denote the pixel-wise cross-entropy

loss and conditional adversarial loss between Ŝ and S, re-

spectively. λCE is the hyperparameter corresponding to the

relative importance between two losses.

3.3. Clothing Image Deformation

In this stage, we deform the target clothing item c to

align it with Ŝc, which is the clothing area of Ŝ. We

employ the geometric matching module proposed in CP-

VTON [27] with the clothing-agnostic person representa-
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Figure 4: ALIAS generator. (a) The ALIAS generator is composed of a series of ALIAS residual blocks, along with up-

sampling layers. The input (Ia, P,W(c, θ)) is resized and injected into each layer of the generator. (b) A detailed view of a

ALIAS residual block. Resized (Ia, P,W(c, θ)) is concatenated to hi after passing through a convolution layer. Each ALIAS

normalization layer leverages resized Ŝ and Mmisalign to normalize the activation.

tion (Ia, P ) and Ŝc as inputs. A correlation matrix be-

tween the features extracted from (Ia, P ) and c is first cal-

culated . With the correlation matrix as an input, the regres-

sion network predicts the TPS transformation parameters

θ ∈ R
2×5×5, and then c is warped by θ. In the training

phase, the model takes Sc extracted from S instead of Ŝc.

The module is trained with the L1 loss between the warped

clothes and the clothes Ic that is extracted from I . In addi-

tion, the second-order difference constraint [31] is adopted

to reduce obvious distortions in the warped clothing images

from deformation. The overall objective function to warp

the clothes to fit the human body is written as

Lwarp = ||Ic −W(c, θ)||1,1 + λconstLconst, (2)

where W is the function that deforms c using θ, Lconst is a

second-order difference constraint, and λconst is the hyper-

parameter for Lconst.

3.4. Try­On Synthesis via ALIAS normalization

We aim to generate the final synthetic image Î based

on the outputs from the previous stages. Overall, we

fuse the clothing-agnostic person representation (Ia, P )
and the warped clothing image W(c, θ), guided by Ŝ.

(Ia, P,W(c, θ)) is injected into each layer of the generator.

For Ŝ, we propose a new conditional normalization method

called the ALIgnment-Aware Segment (ALIAS) normaliza-

tion. ALIAS normalization enables the preservation of se-

mantic information, and the removal of misleading infor-

mation from the misaligned regions by leveraging Ŝ and

the mask of these regions.

Alignment-Aware Segment Normalization. Let us de-

note hi ∈ R
N×Ci

×Hi
×W i

as the activation of the i-th layer

of a network for a batch of N samples, where Hi, W i, and

Ci indicate the height, width, and the number of channels

of hi, respectively. ALIAS normalization has two inputs:

Figure 5: ALIAS normalization. First, the activation is

separately standardized according to the regions divided by

Mmisalign, which can be obtained from the difference be-

tween Ŝc and Malign. Next, Ŝdiv is convolved to create the

modulation parameters γ and β, and then the standardized

activation is modulated with the parameters γ and β.

(1) the synthetic segmentation map Ŝ; (2) the misalign-

ment binary mask Mmisalign ∈ L
H×W , which excludes the

warped mask of the target clothing image W(Mc, θ) from

Ŝc (Mc denotes the target clothing mask), i.e.,

Malign = Ŝc ∩W(Mc, θ) (3)

Mmisalign = Ŝc −Malign. (4)

Fig. 5 illustrates the workflow of the ALIAS normaliza-

tion. We first obtain Malign and Mmisalign from Eq. (3) and

Eq. (4). We define the modified version of Ŝ as Ŝdiv , where

Ŝc in Ŝ separates into Malign and Mmisalign. ALIAS nor-

malization standardizes the regions of Mmisalign and the
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256 × 192 512 × 384 1024 × 768

SSIM↑ LPIPS↓ FID↓ SSIM↑ LPIPS↓ FID↓ SSIM↑ LPIPS↓ FID↓

CP-VTON 0.739 0.159 56.23 0.791 0.141 31.96 0.786 0.158 43.28

ACGPN 0.842 0.064 26.45 0.863 0.067 15.22 0.856 0.102 43.39

VITON-HD* - - - - - - 0.893 0.054 12.47

VITON-HD 0.844 0.062 27.83 0.870 0.052 14.05 0.895 0.053 11.74

Table 1: Quantitative comparison with baselines across different resolutions. VITON-HD* is a VITON-HD variant where the

standardization in ALIAS normalization is replaced by channel-wise standardization as in the original instance normalization.

For the SSIM, higher is better. For the LPIPS and the FID, lower is better.

other regions in hi separately, and then modulates the stan-

dardized activation using affine transformation parameters

inferred from Ŝdiv . The activation value at site (n ∈ N, k ∈
Ci, y ∈ Hi, x ∈ W i) is calculated by

γi
k,y,x(Ŝdiv)

hi
n,k,y,x − µ

i,m
n,k

σ
i,m
n,k

+ βi
k,y,x(Ŝdiv), (5)

where hi
n,k,y,x is the activation at the site before normal-

ization and γi
k,y,x and βi

k,y,x are the functions that convert

Ŝdiv to modulation parameters of the normalization layer.

µ
i,m
n,k and σ

i,m
n,k are the mean and standard deviation of the

activation in sample n and channel k. µ
i,m
n,k and σ

i,m
n,k are

calculated by

µ
i,m
n,k =

1

|Ωi,m
n |

∑

(y,x)∈Ωi,m
n

hi
n,k,y,x (6)

σ
i,m
n,k =

√

√

√

√

1

|Ωi,m
n |

∑

(y,x)∈Ωi,m
n

(hi
n,k,y,x − µ

i,m
n,k )

2, (7)

where Ωi,m
n denotes the set of pixels in region m, which is

Mmisalign or the other region, and |Ωi,m
n | is the number of

pixels in Ωi,m
n . Similar to instance normalization [26], the

activation is standardized per channel. However, ALIAS

normalization divides the activation in channel k into the

activation in the misaligned region and the other region.

The rationale behind this strategy is to remove the mis-

leading information in the misaligned regions. Specifically,

the misaligned regions in the warped clothing image match

the background that is irrelevant to the clothing texture. Per-

forming a standardization separately on these regions leads

to a removal of the background information that causes

the artifacts in the final results. In modulation, affine pa-

rameters inferred from the segmentation map modulate the

standardized activation. Due to injecting semantic informa-

tion at each ALIAS normalization layer, the layout of the

human-parsing map in the final result is preserved.

ALIAS Generator. Fig. 4 describes the overview of the

ALIAS generator, which adopts the simplified architecture

that discards the encoder part of an encoder-decoder net-

work. The generator employs a series of residual blocks

(ResBlk) with upsampling layers. Each ALIAS ResBlk

consists of three convolutional layers and three ALIAS nor-

malization layers. Due to the different resolutions that Res-

Blks operate at, we resize the inputs of the normalization

layers, Ŝ and Mmisalign, before injecting them into each

layer. Similarly, the input of the generator, (Ia, P,W(c, θ)),
is resized to different resolutions. Before each ResBlk, the

resized inputs (Ia, P,W(c, θ)) are concatenated to the acti-

vation of the previous layer after passing through a convolu-

tion layer, and each ResBlk utilizes the concatenated inputs

to refine the activation. In this manner, the network per-

forms the multi-scale refinement at a feature level that bet-

ter preserves the clothing details than a single refinement at

the pixel level. We train the ALIAS generator with the con-

ditional adversarial loss, the feature matching loss, and the

perceptual loss following SPADE [17] and pix2pixHD [28].

Details of the model architecture, hyperparameters, and the

loss function are described in the supplementary.

4. Experiments

4.1. Experiment Setup

Dataset. We collected 1024×768 virtual try-on dataset

for our research purpose, since the resolution of images on

the dataset provided by Hanet al. [10] was low. Specifically,

we crawled 13,679 frontal-view woman and top clothing

image pairs on an online shopping mall website. The pairs

are split into a training and a test set with 11,647 and 2,032

pairs, respectively. We use the pairs of a person and a cloth-

ing image to evaluate a paired setting, and we shuffle the

clothing images for an unpaired setting. The paired setting

is to reconstruct the person image with the original clothing

item, and the unpaired setting is to change the clothing item

on the person image with a different item.

Training and Inference. With the goal of reconstruct-

ing I from (Ia, c), the training of each stage proceeds in-

dividually. During the training of the geometric matching

module and the ALIAS generator, we use S instead of Ŝ.

While we aim to generate 1024×768 try-on images, we

train the segmentation generator and the geometric match-

ing module at 256×192. In the inference phase, after be-

ing predicted by the segmentation generator at 256×192,
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Figure 6: Qualitative comparison of the baselines.

Figure 7: Qualitative comparison of the segmentation gen-

erator of ACGPN and VITON-HD. The clothing-agnostic

segmentation map used by each model is also reported.

the segmentation map is upscaled to 1024×768 and passed

to subsequent stages. Similarly, the geometric matching

module predicts the TPS parameters θ at 256×192, and the

1024×768 clothing image deformed by the parameters θ is

used in the ALIAS generator. We empirically found that

this approach makes these two modules perform better with

a lower memory cost than those trained at 1024×768. De-

tails of the model architecture and hyperparameters are de-

scribed in the supplementary.

4.2. Qualitative Analysis

We compare VITON-HD with CP-VTON [27] and

ACGPN [31], whose codes are publicly available. Follow-

ing the training and inference procedure of our model, seg-

mentation generators and geometric matching modules of

the baselines are trained at 256×192, and the outputs from

the modules are upscaled to 1024×768 during the inference.

Comparison with Baselines. Fig. 6 demonstrates

that VITON-HD generates more perceptually convincing

1024×768 images compared to the baselines. Our model

clearly preserves the details of the target clothes, such as

the logos and the clothing textures, due to the multi-scale

refinement at a feature level. In addition, regardless of what

clothes the person is wearing in the reference image, our

model synthesizes the body shape naturally. As shown in

Fig. 7, the shape of the original clothing item remains in the

synthetic segmentation map generated by ACGPN. On the

other hand, the segmentation generator in VITON-HD suc-

cessfully predicts the segmentation map regardless of the

original clothing item, due to our newly proposed clothing-

agnostic person representation. Although our model sur-

passes the baselines qualitatively, there are a few limitations
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Figure 8: Effects of ALIAS normalization. The orange colored areas in the

enlarged images indicate the misaligned regions.

Figure 9: LPIPS scores according to the

degree of misalignment.

to VITON-HD, which are reported in the supplementary

with the additional qualitative results.

Effectiveness of the ALIAS Normalization. We study

the effectiveness of ALIAS normalization by comparing

our model to VITON-HD*, where the standardization in

ALIAS normalization is replaced by channel-wise standard-

ization, as in the original instance normalization [26]. Fig. 8

shows that ALIAS normalization has the capability to fill

the misaligned areas with the target clothing texture by re-

moving the misleading information. On the other hand,

without utilizing ALIAS normalization, the artifacts are

produced in the misaligned areas, because the background

information in the warped clothing image is not removed as

described in Section 3.4. ALIAS normalization, however,

can handle the misaligned regions properly.

4.3. Quantitative Analysis

We perform the quantitative experiments in both a paired

and an unpaired settings, in which a person wears the origi-

nal clothes or the new clothes, respectively. We evaluate our

method using three metrics widely used in virtual try-on.

The structural similarity (SSIM) [29] and the learned per-

ceptual image patch similarity (LPIPS) [33] are used in the

paired setting, and the frechet inception distance (FID) [11]

score is adopted in the unpaired setting. The inception

score [23] is not included in the experiments, since it cannot

reflect whether the details of the clothing image are main-

tained [10]. The input of the each model contains different

amount of information that offers advantages in reconstruct-

ing the segmentation maps, thus we use the segmentation

maps from the test set instead of the synthetic segmentation

maps in the paired setting.

Comparison across different resolutions We com-

pare the baselines quantitatively across different resolutions

(256×192, 512×384, and 1024×768) as shown in Table 1.

Our model outperforms the baselines for SSIM and LPIPS

across all resolutions. For FID score, our model signifi-

cantly surpasses CP-VTON, regardless of the resolutions.

The FID score in ACGPN is slightly lower than that of

our model at the 256×192 resolution. However, at the

1024×768 resolution, our model achieves a lower FID score

than ACGPN with a large margin. The results indicate that

the baselines cannot handle 1024×768 images, while our

model is trained in a stable manner, even at a high resolu-

tion. This may be due to the limited capability of the U-Net

architecture employed in the baseline models.

Comparison according to the degree of misalignment.

To verify the ability of filling the misaligned areas with the

clothing texture, we perform experiments in the paired set-

ting according to the degree of the misalignment. Accord-

ing to the number of pixels in the misaligned areas, we

divide the test dataset in three types: small, medium, and

large. For a fair comparison, each model uses the same seg-

mentation maps and the same warped clothes as inputs to

match the misaligned regions. We evaluate LPIPS to mea-

sure the semantic distances between the reference images

and the reconstructed images. As shown in Fig. 9, the wider

the misaligned areas, the worse the performance of models,

which means that the misalignment hinders the models from

generating photo-realistic virtual try-on images. Compared

to the baselines, our model consistently performs better, and

the performance of our model decreases less as the degree

of misalignment increases.

5. Conclusions

We propose the VITON-HD that synthesizes photo-

realistic 1024×768 virtual try-on images. The proposed

ALIAS normalization can properly handle the misaligned

areas and propagate the semantic information throughout

the ALIAS generator, which preserves the details of the

clothes via the multi-scale refinement. Qualitative and

quantitative experiments demonstrate that VITON-HD sur-

passes existing virtual try-on methods with a large margin.
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